
1

POSTGRADUATE STUDIES – SECOND CYCLE

 THESIS:

Techniques for improving query performance in
Microsoft SQL Server

CANDIDATE: MENTOR:

Blerta Haxhijaha Emini Prof. Dr. sc. Jaumin Ajdari

Tetovo, August 2019

UNIVERSITETI I EVROPËS JUGLINDORE
УНИВЕРЗИТЕТ НА ЈУГОИСТОЧНА ЕВРОПА

SOUTH EAST EUROPEAN UNIVERSITY

FAKULTETI I SHKENCAVE DHE TEKNOLOGJIVE BASHKËKOHORE
ФАКУЛТЕТ ЗА СОВРЕМЕНИ НАУКИ И ТЕХНОЛОГИИ

FACULTY OF CONTEMPORARY SCIENCES AND TECHNOLOGIES

2

Contents
Declaration of original work ... 3

List of Figures .. 5

List of Tables .. 7

Abstract .. 8

1. Introduction ... 9

1.2. Internals of the Microsoft SQL Server rDBMS ...10

1.2.1. Indexes and storage internals ...10

1.2.2. Allocation units ..13

1.2.3. Wait statistics ...16

2. Literature Review ..22

3. Methodology ..27

4. Experimental set-up and Implementation ..28

4.1. Turning point on index usage ..28

4.2. Index fusion ...40

4.3. Identifying performance issues with wait statistics ...53

5. Conclusions ..63

References ...65

3

 Declaration of original work

I hereby declare in my honor that I am the original author of this thesis. I have not copied

from any other students’ work and the thesis does not contain other people’s work apart

from reviewed references in accordance with the rules of referencing.

Blerta Haxhijaha Emini

4

Acknowledgements

I would like to express my sincere gratitude to my husband and family who have

continuously motivated and supported me on this journey. Their encouragement has

kept pushing me forward towards the completion of this work.

I would also like to express my gratitude to my mentor, whose suggestions, directions

and continuous support has been invaluable during all the stages of preparation of this

thesis.

5

List of Figures

Figure 2.1. A page in Microsoft SQL Server ...12
Figure 2.2. Record structure in Microsoft SQL Server ..12
Figure 2.3. Pages in a Microsoft SQL Server file ..14
Figure 2.4. Threads in a parallel execution ...17
Figure 2.5. SQL OS scheduler components ..18
Figure 2.6. Signal, resource and total wait times ..20
Figure 5.1. Investigating the clustered index on [Clients] table……………………….…..…………………….29
Figure 5.2. DBCC IND for the clustered index on [Clients] table……………………………..………………….30
Figure 5.3. Visual Representation of the clustered index on table [Clients]……………..…………………31
Figure 5.4. Creation of the [TaxCodeNC] non-clustered index on table [Clients]………...………………32
Figure 5.5. Visual Representation of the non-clustered index……………………………………………………33
Figure 5.6. A simple equality query………………………………………………………………………….………………33
Figure 5.7. Execution plan of the equality query……………………………………………………….………………34
Figure 5.8. A query searching by [TaxCode]………………………………………………………………..……………34
Figure 5.9. Execution plan of the query searching by [TaxCode]…………………………………..……………35
Figure 5.10. An index seek followed by a key lookup…………………………………………………..……………36
Figure 5.11. A range query………………………………………………………………………………………………………36
Figure 5.12. Execution plan of the range query…………………………………………………………...……………37
Figure 5.13. Generalized range query………………………………………………………………………………………37
Figure 5.14. Range query with 1.000 resulting rows……………………………………………………...…………38
Figure 5.15. Execution plan of the range query with 1.000 resulting rows………………………..……….38
Figure 6.1. Range query on table [Clients]………………………………………………………………………..………41
Figure 6.2. Execution plan of the range query on table [Clients]…………………………………………..……42
Figure 6.3. Range query on table [Clients] with column [Name] in the SELECT list……………….……42
Figure 6.4. Execution plan of the range query on table [Clients] with [Name] column included in
the SELECT list..43
Figure 6.5. Creation of the [TaxCodeNCNameIncl] non-clustered index...43
Figure 6.6. Execution plan of the range query after the creation of the [TaxCodeNCNameIncl] non-
clustered index..43
Figure 6.7. Most critical queries identified – Part I.. 45
Figure 6.8. Most critical queries identified – Part II..46
Figure 6.9. Execution plan of critical queries - Part I...47
Figure 6.10. Execution plan of critical queries - Part II.. 48
Figure 6.11. Execution Plan of critical queries after the creation of new indexes - Part I...................49
Figure 6.12. Execution Plan of critical queries after the creation of new indexes - Part II..................49
Figure 6.13. Consolidated index creation…………………………………………………………………………………51
Figure 6.14. Execution plan of critical queries after creation of the consolidated index - Part I…..52
Figure 6.15. Execution plan of critical queries after creation of the consolidated index - Part II….53
Figure 7.1. Test table [WaitStatsTest] with a clustered index ...55
Figure 7.2. Inserting default values into [WaitStatsTest] ..57
Figure 7.3. Diagnostic query for waiting tasks in SQL Server ..55
Figure 7.4. Waiting tasks diagnostic query results ..55
Figure 7.5. DBCC PAGE command for the resource being waited on ...55
Figure 7.6. Header from DBCC PAGE command for page (1:3954) ...57
Figure 7.7. Diagnostic query for the wait statistics accumulated in SQL Server55
Figure 7.8. Accumulated wait statistics ..57
Figure 7.9. Table [WaitStatsTest2] with incorrect statistics ..60
Figure 7.10. Workload for [WaitStatsTest2] table ...60
Figure 7.11. Waiting tasks diagnostic query results when incorrect statistics are present60
Figure 7.12. Accumulated wait stats on a workload using incorrect statistics ..61

6

Figure 7.13. Execution plan of the query that uses incorrect statistics ...61
Figure 7.14. Properties of the execution plan ..62
Figure 7.15. Distribution of work among threads when incorrect statistics are present62
Figure 7.16. Execution plan of the query when statistics are correct ..63
Figure 7.17. Accumulated wait stats when the statistics are correct ...63

7

List of Tables

Table 2.1. GAM related calculations ...15
Table 2.2. Bit setting combinations for pages in GAM and SGAM ..15
Table 5.1. Columns of [Clients] table ...30
Table 5.2. Clustered index on [Clients] table ..31
Table 5.3. Pages of the clustered index on table [Clients] ...33
Table 5.4. Non-clustered index on [Clients] table...34
Table 5.5. DBCC IND command for the non-clustered index [TaxCodeNC] ...35
Table 5.6. Operation used according to number of records in the result set ..42
Table 6.1. Indexes present on table [Clients] ...48
Table 6.2. Page, row, level and depth number of the newly created indexes ...50
Table 6.3. Indexes for the individual critical queries ..53
Table 6.4. Page, row, level and depth number of the consolidated index...54

8

Abstract

The demand for doing high-performance operations with data is growing in parallel with the

vast growth of data itself. The retrieval of data for analysis, the manipulation of data, as well

as its insertion in data stores – must all be performed very efficiently, using techniques that

ensure speed, reliability and accuracy.

The principal objective of this master thesis is to research techniques and practices that

improve the performance of common data operations written in T-SQL and executed in

Microsoft SQL Server. Being that T-SQL is a declarative language that specifies what should

be produced as result, instead of how to achieve that result, this master thesis will investigate

the internals of SQL Server that affect the “how” of queries and data operations, in order to

leverage this knowledge in proposing techniques that ensure performance gains. The

internals of indexes are examined in order to shed light on their limitations, and to answer

the question why indexes are sometimes used, and other times not, in the exact same query.

The thesis then proposes techniques to overcome these limitations. Lastly, the power of wait

statistics in identifying query execution issues is described experientially through different

scenarios.

9

1. Introduction

What is acknowledged as fast enough by computer users is changing constantly. That which

was considered as very fast during the advent of computers is far from what is deemed even

acceptable now, a few decades later. Depending on the actual operation or process in

question, generally, seconds are not acceptable anymore, and users are expecting that

computer-related processes complete in matters of milliseconds or even faster.

Database operations are often responsible for a substantial portion of the delays associated

with completing a computer-related action on some computer program that operates on or

with data. In the early days of relational databases, performance issues were extensive

because of limited hardware resources and immature optimizers, so performance was a

priority consideration. But even today, despite the huge growth in resources, there is even

more growth in the amount of data available, so performance continues to be of critical

importance [1].

The Microsoft SQL Server CSS and Development team have announced that after taking a

deep dive into scalability and performance improvements, Microsoft SQL Server 2016 has

been shipped with as much as 25% performance improvement [2]. This commitment and

investment in performance improvement by one of the leading rDBMS vendors clearly shows

that customer businesses and enterprises worldwide are looking for faster and faster

database engines in order to fulfill their growing needs of responsive solutions that perform

more rapidly than ever.

Due to the ever-growing need for performance enhancements in data operations in today’s

data-driven world, this master thesis will focus on the performance of T-SQL queries executed

on Microsoft SQL Server.

However, this thesis will look at performance from another angle. It will attempt to provide

answers on why in certain circumstances, indexes as the classical go – to solution for

performance boosting, do not give the expected results. Often times DBAs and/or database

developers struggle in understanding why their indexes, while tested successfully in testing

environments, fail to be utilized on production. It will then aim to provide suggestions on how

10

to remove these limitations so that indexes serve their purpose in increasing the execution

speed of queries that use them. Finally, it will look at the waits stored by SQL Server which

track what has been waited for (in terms of contention for resources and being blocked)

during query executions and use this information as the starting point in fixing the potential

performance issues. Being that SQL Server is a complex system with memory, I/O, space and

network consideration, to name just a few, it is difficult and time consuming to pinpoint

exactly what the issue is when there is a performance downgrading observed. Wait statistics

will be investigated in order to assess their potential in becoming the first point to look at

while doing this troubleshooting.

The rest of this master thesis is organized as follows: chapter Internals of the Microsoft SQL

Server rDBMS provides an outline of the key building blocks of SQL Server that are of interest

to this thesis, followed by chapter Related Work which provides a summary of relevant

research in the area of performance improvement. Chapter Methodology describes the

methodology used in the Experimental Set-up and Implementation chapter, which in turn

constitutes the bulk portion of this thesis. Finally, chapter Conclusions summarizes and

concludes this work.

1.2. Internals of the Microsoft SQL Server rDBMS

1.2.1. Indexes and storage internals

The primary structure of a table in SQL Server can be either a heap or a B-tree, whereas

indexes in SQL Server are B-trees [3]. If a table is organized as a clustered index (B-tree), then

the column(s) that define the clustered index determine the order in which the table is

physically stored [4]. On the other hand, the data rows of a table that does not have a

clustered index are not organized in any particular order and these tables are referred to as

heaps.

The name “clustered index” implies that the said structure is an index, but in Microsoft SQL

Server, a clustered index also contains the table data in its leaf level. So, a clustered index in

SQL Server is a B-tree where the leaf nodes are the actual data pages and the non-leaf nodes

are index pages [5].

11

A table in Microsoft SQL Server can have at most one clustered index, because the clustering

key(s) determine the physical order of the data records. A non-clustered index on the other

hand does not affect the physical order of the data records, and hence their number is not

limited to one per table. A non-clustered index is simply an additional database structure with

leaf levels that point to the actual data records of the table.

A table can either be stored as an unordered structure, which is referred to as a heap, or the

table can have its data ordered. The data can be ordered through the creation of a clustered

index. Hence, if a table has a clustered index, it is no longer a heap and it is referred to as a

clustered table or clustered structure.

Heaps are comprised of data pages only. There is no guarantee on any particular order of the

data records in a heap, and there is no linkage between adjacent pages [6].

When a clustered index is created on a table, the table becomes ordered by the clustering

key(s) and is no longer an unordered heap. The ordered data becomes the leaf level of the

clustered index and then the index tree is built for navigation. The number of pages on the leaf

level, as well as the number of index pages in the non-leaf portion of the clustered index

depends on the amount of data records on the table and the record size.

Next in this section, an overview will be given on the storage internals of database files in

Microsoft SQL Server. This will help clarify how the two different structures that exist for tables

(heaps and clustered structures) are organized and stored in SQL Server, as well as how non-

clustered indexes compare to the former. The internals of the storage engine and the

organization of indexes will form the theoretical foundation upon which the thesis questions

on indexes will be examined.

Microsoft SQL Server organizes data in memory chunks of 8KB, called pages. Pages are the

fundamental unit of data storage in SQL Server. The data files that SQL Server uses are divided

into pages of 8KB, and these pages are numbered from 0 up to the number of pages that fit

into that data file. Hence, when specifying a page in SQL server, a 2-part specification is given,

comprised of the file number and the page number within that file.

Pages in SQL Server begin with a 96-byte header, followed by data rows which are then placed

serially on the page. One entry for each row found on the page is placed in the row offset

12

table, pointing to the first byte of that row. The row offset table is placed at the end of the

page and its entries are in reverse sequence from the sequence of the page rows (figure 2.1).

Figure 2.1. A page in Microsoft SQL Server

The amount of space that is available for storing data on a page, after subtracting the page

header, row offset and some reserved space, is 8,060 bytes.

Next in this section, an overview of the row structure in Microsoft SQL Server will be given, in

order to have a more complete understanding of how they fill the 8 KB pages discussed above.

The row structure is given in Figure 2.2 below, for an IN_ROW_DATA allocation unit

(described next in Allocation Units) without any sparse columns or compression enabled.

Figure 2.2. Record structure in Microsoft SQL Server

13

The record header is 4 bytes long. It consists of the tag bytes which contain information about

the record type (2 bytes), and the null bitmap offset (also 2 bytes). This offset points to the null

bitmap found further in the record and is explained later in this section. Next comes the fixed-

length columns portion, which contains the data of the columns which are fixed-length. The

NULL bitmap follows next, and it helps manage the nullability of the row columns. It contains

2 bytes for the row column count, and one bit for every column to denote if it is NULL or not

(so the NULL bitmap is at least 3 bytes in size). Finally, the variable-length column offset array

contains 2 bytes for the count of columns in the row which are of variable length, and 2 bytes

per variable-length column, giving the offset to the end of the column value [7].

Another important unit of data storage in SQL Server is the extent. An extent is a collection of

8 consecutive pages. There are 2 types of extents: uniform extents, where all 8 pages of the

extent are used by the same object, and mixed extents, where each of the pages of the extent

can be used by a different object.

1.2.2. Allocation units

In SQL Server, there are three types of allocation units available, depending on what type of

data is being stored into pages. Allocation units are collection of pages within a heap or B-

tree used to store data depending on the data type and characteristics. The three different

allocation units in SQL Server are the following [8]:

 IN_ROW_DATA

 ROW_OVERFLOW_DATA

 LOB_DATA

The first allocation unit IN_ROW_DATA contains pages that are used to store data or index

rows that contain all data types, except for large object (LOB) data types. This allocation unit

is for data rows that fit into the 8,060 bytes limit of the page. There is one IN_ROW_DATA

allocation unit for every partition used by a table, index, or indexed view.

Тhe ROW_OVERFLOW_DATA allocation unit is a collection of pages that is used to store

variable length data stored in nvarchar, varchar, sql_variant or varbinary columns that exceed

the 8,060 byte row size limit. When this limit is reached, the column with the largest width

14

from that row is moved to a page in the ROW_OVERFLOW_DATA allocation unit, and the

original page keeps a 24-byte pointer to this new location.

The third allocation unit LOB_DATA is a collection of pages that store data in text, ntext, xml,

image, varbinary(max), varchar(max), nvarchar(max) or CLR user-defined types. One

LOB_DATA allocation unit per partition is allocated when a table or index has one or more

LOB data types to store. The LOB_DATA and ROW_OVERFLOW allocation units are what give

the possibility to define very large rows in SQL Server.

For SQL Server to determine where to store any data that is being inserted into tables, it makes

use of special data structures that track allocation and deallocation of pages, as well as the free

space available in them [9]. These special structures are in essence special page types that SQL

Server keeps in order to manage the available space in database file(s). The types of storage

tracking data structures that are of interest to our topic are the GAM (Global Allocation Map),

SGAM (Shared Global Allocation Map), Page Free Space (PFS) and IAM (Index Allocation Map).

A short overview of them is provided below.

A GAM page, just like any other type of page in SQL Server is 8KB in size. 8,000 bytes of the 8KB

GAM are used to store information about availability of extents, with one bit representing one

extent. The bit has value 0 if the extent is being used (is allocated), or 1 if the extent is free.

8,000 bytes with 8 bits each equals 64,000 bits, so that’s the number of extents that are

covered by a single GAM page. The third page in the first data file is a GAM page, as shown in

figure 2.3 below.

Figure 2.3. Pages in a Microsoft SQL Server file

15

Since one GAM page tracks the availability of 64,000 extents (which is 512.000 pages), the first

GAM page covers almost 4GB of storage space, and this storage space is known as one GAM

interval. All the calculations related to GAM pages are detailed in table 2.1. Since most

databases today are larger than 4GB or one GAM interval, multiple GAM pages exist in order

to track the availability of all the data pages in the database.

Unit Size

Page size 8 KB
Extent size 64 KB (8 pages * 8 KB)

GAM portion that tracks extent allocation 8,000 B
Number of bits in a GAM that track extent allocation 64,000 bits (8,000 B * 8 bits)

Number of extents covered by a single GAM page 64,000 extents (one bit per extent)
Number of pages covered by a single GAM page 512,000 pages (64,000 extents * 8 pages)

Storage space covered by a single GAM page ~ 4 GB (512,000 pages * 8 KB = 4,096,000 KB)

Table 2.1. GAM related calculations

When a GAM page marks an extent with bit 0 as used, that extent can be in two different states

– it can be partially used or completely used. In order to track this additional information, the

SGAM page is used. Like the GAM, the SGAM page also uses one bit per extent and covers

64,000 extents or 512,000 pages. The GAM and SGAM work in parallel, and the following

combinations are possible (table 2.2):

Current use of extent GAM bit setting SGAM bit setting
Free, not being used 1 0

Uniform extent, or full mixed extent 0 0
Mixed extent with free pages 0 1

Table 2.2. Bit setting combinations for pages in GAM and SGAM

An IAM page is also a type of bitmap, which, like the GAM and SGAM, covers extents that span

approximately 4GB of space. The IAM page tracks which extents within that specific interval

belong to a single allocation unit of a table or index. So IAM pages belong to allocation units

and as such, they are created every time a new allocation unit is created, or when the allocation

unit grows to span more than one GAM interval. When multiple IAM pages exist for a single

allocation unit, they are linked into what is called an IAM chain.

Finally, a PFS page looks different from the GAM, SGAM and IAM pages which were bitmaps

with one bit in the page per extent. The PFS page is broken down into bytes, and each byte

represents a page. Each byte tracks if the page is allocated or not, and if it is allocated, to what

16

percentage it is full: 1 to 50 percent full, 51 to 80 percent full, 81 to 95 percent full, or 96 to

100 percent full. SQL Server uses the PFS page to check which pages have been allocated and

if there is enough space to enter a new row on some allocated page.

1.2.3. Wait statistics

Wait statistics were introduced in SQL Server 2008, and they have already grown to include

around a thousand different wait types. These wait types tell us what is delaying queries, and

this is contention for various resources. It could be that a query is waiting for a lock, it could

be waiting for a page from disk, it could be waiting for some memory to be available so that it

can start running. SQL Server keeps track of all these waits happening due to contention for

various resources, and this data provides a reliable foundation in order to start performance

troubleshooting.

Microsoft SQL Server comes with its own mini operating system, called the SQL Server

Operating System or SQL OS. Among other things, the SQL OS performs memory management

and scheduling as its two main functions [10]. It gets memory from Windows and then parcels

it out to threads within SQL Server for its own needs.

A thread is the smallest unit of execution within a process. There are many threads that can

be running within a single process. Threading works is such a way that each thread is given a

small amount of processing time to run until it needs to wait for a resource or until it's run for

a certain amount of time. Then it relinquishes the processor so that other threads can

continue. Eventually, it will get back on the processor and do more work. This process of

running for a while, having to wait and then running again is called scheduling. Scheduling

gives the user the impression that lots of things are happening at the same time, whereas, in

fact, on each individual processor, only one thread is executing at once. But because each

executes for a very small amount of time and they relinquish the processor to another thread,

it seems like there are lots of things happening concurrently.

SQL Server uses operating system threads, as worker threads, to perform the tasks necessary

to complete a given process. There are threads that are dedicated for a particular task (a

17

dedicated thread for the CHECKPOINT process, for example) but SQL Server maintains the

others in a thread pool and uses them as necessary to process user requests [11].

Many performance gains in SQL Server come from the ability to execute in parallel. SQL Server

can introduce parallelism by using several processors during the execution of an expensive

query so that it runs faster [12]. For example, in a machine with 4 processors, all of which are

configured to be allowed to be used by SQL Server, the query execution portion of the engine

may decide to use a degree of parallelism 4. In that case, the threads involved would be the

following (figure 2.4):

 a single control thread,

 four threads that produce streams which go into some type of exchange operator

to decide where the record should go on the output side,

 four threads consuming those streams on the output side of the operation

Figure 2.4. Threads in a parallel execution

A concrete example for this operation would be a large table scan of four million rows. If there

are four CPUs available, 1 thread can be running on each of the CPUs, scanning 1/4th of those

four million rows. This process would run in less amount of time than 1 thread having to scan

all four million rows. When the query optimizer decides that an operation can run in parallel,

it will produce a query plan that can be parallelized at the time the query executes. If it decides

that there are no operations that could be parallelized, it will produce a plan that can only be

run single threaded, or serially. Then, the query execution portion of the query processor

decides what level of parallelism to actually use, based on the resources there are available at

that time and various configuration options on server or query level.

18

SQL server performs its own thread scheduling in non-preemptive mode. Windows (which

does pre-emptive scheduling) does not control when a given thread has to get off the

processor so that the other threads can execute.

Normally, there is one SQL OS scheduler per CPU “core”, regardless if it's a logical core or a

physical core. A scheduler can be said to compose of three parts (figure 2.5): the processor

itself where only one thread can be running at a time; the list of threads that are waiting for

resources (the waiter list), and the queue of threads that have all the resources they need and

they're waiting for their turn to get back on the processor (the runnable queue). Scheduling

works by having threads switch from the processor to the waiter list, then to the runnable

queue and back to the processor, up until they finish doing all their work.

Figure 2.5. SQL OS scheduler components

While on the scheduler, the thread can be in one of three states:

 Running - when the thread is executing on the processor. Only 1 thread per

scheduler can have the state running.

 Suspended - when the thread must wait for a resource to become available, it

can't continue running and its state changes to suspended. The thread moves to the waiter

list and simply waits for its resource to become available (ex. a page to be fetched to memory).

 Runnable - when the thread is signalled that its resource is available, its state

changes to runnable and it moves to the runnable queue (which is a FIFO queue) to wait for

its turn. When it makes its way up to the top of the runnable queue, it goes back to state

running again.

The threads that are being used for query execution transition between these states until their

19

work is done. There is a limit to the processing time a thread is allowed to use the processor

in state running, and that is 4 milliseconds. A thread must yield the processor after the

exhaustion of this 4-millisecond quantum, even if it does not need to wait for any kind of

resource to become available. In that case, the thread bypasses the waiter list and goes

directly to the bottom of the runnable queue. If, however, the running thread needs a

resource before its allotted quantum is complete, it moves to the waiter list. Once the

resource is available, the thread moves to the runnable queue and then, when its time comes,

back onto the CPU [11].

The analysis of threads waiting for a resource to become available, and the analysis of how

long they remain suspended and how long they wait on the runnable queue, is the basis of

the wait statistics analysis. This analysis is also the basis of the waits and queues performance

tuning methodology.

A wait in SQL Server is what occurs when a thread which is running on the processor cannot

proceed because it needs a resource and this resource is not available. SQL Server keeps track

of all the different resources being waited for - how often they have been waited, as well as

how long they have been waited for by the various threads. Each of the resources maps to a

wait type and these wait types can be retrieved from various DMVs. An example of a resource

that a thread might have to wait for because it isn't available is a lock. This shows up as a

LCK_M_S or LCK_M_S wait type, depending if a shared or exclusive lock is needed for the

resource, respectively. Another common wait type is the CXPACKET, which is accumulated by

a thread which is involved in a parallel operation and is waiting for another thread in that

operation to finish. An overview of the common wait types defined in SQL Server, as well as

information on how to leverage them in order to increase performance can be found in [13]

and [14].

The total time spent waiting by a thread (known as wait time) is the sum of the resource wait

time and signal wait time (figure 2.6), where:

 Resource wait time - Time spent waiting for the resource to be available, i.e. time

spent on the Waiter List with state SUSPENDED

 Signal wait time - Time spent waiting to get back to the processor after the

resource is available, i.e. time spent on the Runnable Queue with state RUNNABLE

20

Figure 2.6. Signal, resource and total wait times

In the next section, a short description of the wait types relevant to the experiments

performed in section Troubleshooting with wait statistics of this thesis will be given below.

In the first experiment, latch-related wait types are encountered. Latches are short-term

lightweight synchronization primitives used to protect memory structures for concurrent

access [9]. Unlike locks which protect transactional consistency and isolation and are held

during the whole duration of the transaction, latches are shorter term and are used to

guarantee the consistency of in-memory objects. However, they do have similar modes like

locks, including shared and exclusive modes [13]. Latches are taken any time there needs to

be a page modification – either moving the page from disk to memory or vice versa, writing a

record onto a page or changing the page’s metadata.

There are several wait types that map to latch-related waits, as described below (‘XX’ stands

for the mode abbreviation):

 PAGEIOLATCH_XX waits - latches waiting for data pages to be read from disk into

memory

 PAGELATCH_XX waits - latches for access to in-memory data pages

 LATCH_XX waits - Latches for access to other data structures

In the second experiment, CXPACKET waits are encountered. CXPACKET waits occur during

parallel query executions. Whenever there is parallelism occurring, there will always be

21

associated CXPACKET waits recorded [13], since the controller thread (thread 0) will always

produce CXPACKET waits while waiting for the threads to finish. Related to the producer

threads, according to [15], there are two main scenarios when CXPACKET waits are produced

by them. The first scenario is when a thread from the parallel query is blocked and cannot

continue while waiting for a resource. The second scenario is when one of the threads from

the parallel query takes longer to execute that the rest of the threads and the rest of the

threads have to wait for the slower thread to complete. During the waits in both scenarios,

CXPACKET waits are produced.

22

2. Literature Review

There is an abundance of available literature focusing on performance improvement of

relational database management systems, and the Microsoft SQL Server RDBMs is no

exception. Numerous research papers have attempted to propose techniques and solutions

towards better performance in Microsoft SQL Server, focusing on different areas for

improvement.

Several papers have approached the performance improvement goal through proposing

techniques for writing T-SQL queries in ways that maximise execution speed. In [16], the

authors provide several recommendations for optimizing query execution in Microsoft SQL

Server, including the use of temporary indexes that are created just before running rare

queries and reports, and are then dropped. They further recommend the usage of stored

procedures over ad-hoc queries. In order to reuse the execution plan, the authors advise using

the sys.sp_executesql system stored procedure for running ad-hoc queries.

In [17], Habimana lists several recommendations for writing efficient and faster SQL queries.

The author advises to un-nest sub queries, arguing that rewriting nested queries as joins often

leads towards more efficient execution. Habimana also postulates that using an ‘OR’ in the

join condition will slow down the query by at least a factor of two.

In [18], the authors look at several sample queries written in T-SQL using different alternatives,

in order to determine which alternative executes in the most efficient manner. They conclude

that the difference in performance when local variables are used in scripts containing multiple

queries (especially when these variables are transmitted from one query to another), and

when local variables are not used, is about 50%. The authors also recommend using, where

possible, the BETWEEN clause instead the IN or OR conditions. The reason behind this is that

SQL Server 2008, in case of using the IN condition, will access the index for a number of times

equal to the number of values in the search. On the other hand, when using the BETWEEN

clause, the index will be accessed only once, since the optimizer will turn it into a pair of >= <=

conditions.

In [19], several principles for proper usage of indexes are outlined, suggesting that table scans

should be avoided since seeks have better efficiency in most cases. The paper concludes that

23

functions and calculations should be avoided or replaced, or be used as little as possible in

queries, in order to make indexes effective.

Other papers have focused directly on indexes, recognizing them as crucial in performance

improvement strategies. Ferrar et al. in [20] have proposed a methodology for automated

determination and selection of optimal indexes. Their method consists of capturing a

workload representative of queries executed during system use, computing cost benefits for

different combinations of indexes, and recommending the best indexes to be created by

selecting those that have the most favourable cost on the captured workload. A similar index

selection mechanism allowing for efficient generation of index recommendations for a given

workload is also proposed by Brown et al. in [21].

Monteiro et al. in [22] have used heuristics to enable indexes creation and destruction for

DBMSs. Their engine is based on an integration between software agents and the components

of the database management system. The proposed non-intrusive architecture is claimed to

allow the complete automation of the index choice, creation and destruction, during normal

operation of the database management system.

This research incentive to explore methods that automate the physical design of relational

databases, based on a workload of SQL statements, gained lots of prominence in scope of the

AutoAdmin project. The principles however were not limited to the Microsoft SQL Server

RDBMs alone but were applicable to other relational database management systems as well.

In [23], Agrawal et al. go beyond the underlying assumption that in order to provide

automation of the database physical design based on a workload of SQL statements, that

workload must be a set of SQL statements. The authors instead look at the possibility of

treating the SQL statements workload as a sequence in order to exploit the ordering of

statements, and present scenarios where the sequence information is crucial for performance

improvement.

Chaudhuri and Bruno in [24] discuss the limitation present in most of the work on automated

database physical design, which is that the tuning tools are invoked offline and depend on

DBAs to select representative workloads. They propose an always-on, low-overhead

technique that continuously modifies the current physical design, by reacting to changes in

24

the query workload.

In [25], Narasayya and Chen argue that traditional RDBMs do not provide an adequate solution

to the common scenario in data warehousing that operate on large amounts of data, whereby

many GROUP BY queries are executed in order to analyse and understand the data. Claiming

that numerous GROUP BY queries are expensive, the paper proposes an optimization

technique for GROUPING SETS queries for common data analysis scenarios.

An ambitious undertake that focuses on database performance tuning is the AutoAdmin

project by Microsoft Research, which in a nutshell, aims to make database systems self-tuning

and self-administering. In scope of this project, numerous research papers have been

published, and [26] makes a summary of the progress from a decade of research in self-tuning

database systems, while [27] reviews the lessons learned from the AutoAdmin project at

Microsoft Research up to year 2011. Publications from the AutoAdmin project pertinent to

performance enhancements are also referenced and described in this section.

Bruno and Chaudhuri in [28] argue that although there has been a considerable amount of

recent research on automated selection of physical design in database systems, the proposed

techniques have become increasingly complex. In their paper, the authors critically examine

the architecture of current solutions, and then move on to design a new framework that

reduces the heuristics and assumptions used in previous approaches.

The same authors in [29], argue that although current techniques for automating the physical

design in database systems give good recommendations, they are quite resource intensive,

making DBAs often reluctant in deciding to start a tuning session. In their paper, they

introduce an alerter that helps determine when a physical design tool should be invoked,

claiming also that their mechanism is lightweight and is able to handle large workloads with

little overhead.

In [30], the authors discuss the limitations of query hints that try to address situations when

optimizers choose a poor plan for a given query. Claiming that they are not flexible enough to

handle a multitude of non-trivial scenarios, the authors introduce a hinting framework that

offers rich constraints that influence the optimizer to pick more optimal plans for execution.

25

Lee et al. in [31] discuss the importance of the ability to estimate the overall progress of

execution of a query. This feature would be valuable to DBAs in order to decide if a long-

running, resource intensive query should be terminated or allowed to run to completion. The

authors also discuss the value of having progress estimates for individual operators in a query

execution plan, since this can help DBAs understand and identify which operators are

requiring significantly more time or resources than expected and take appropriate measures.

Further, they introduce the new Live Query Statistics (LQS) feature in Microsoft SQL Server

2016, which includes the display of overall query progress as well as progress of individual

operators in the query execution plan. Other relevant papers that focus on progress

estimation are [32] and [33].

In [34], Dziedzic et al. focus on the importance of hybrid database physical designs, which

consist both of B+ tree indexes and columnstore indexes. The authors argue that this hybrid

design can yield better performance in several orders of magnitude. They also extend the

Microsoft SQL Server Database Engine Tuning Advisor to recommend an appropriate

combination of columnstore and B+ indexes in a given workload.

In [35], the authors similarly discuss the trend of using specialized systems that are optimized

for either fast ACID transaction workloads or complex analytical query workloads, but not

both (thus inducing additional storage and administration overhead by keeping two separate

copies of the database). The paper then introduces a hybrid DBMS architecture that efficiently

supports varied workloads on the same database, thus obviating the need to maintain

separate copies of the same database in independent systems.

Narasayya and Syamala in [36] address the performance degradation in queries that require

scanning large indexes that are defragmented. They argue that the DBA task of deciding which

indexes to defragment is very challenging due to the following two limitations: little support

by database engines to estimate the impact of defragmenting an index on the performance of

a query and the fact that defragmentation can only be performed on an entire B+ tree, which

is very costly. The authors propose methods to address these limitations and also study the

question of which indexes is it most appropriate to defragment for a given workload.

26

27

3. Methodology

This thesis will follow an experimental approach in investigating 3 research questions related

to query performance in SQL Server.

First, the thesis will investigate at which point non-clustered indexes stop being used in queries,

even-though previously the same queries, written in the same way, did make use of those

indexes. This is a source of confusion for many T-SQL developers and database administrators,

who suddenly find out that their queries no longer use the intended indexes, even-though

previous tests demonstrated that the indexes were used.

In order to provide an answer to the question of why for the same query, sometimes non-

clustered indexes are used, and at other times not, this thesis will create a test table with several

indexes on it, and look at the query execution plan and IO statistics for several queries, in order

to identify and provide an explanation for this turning point on index usage.

Next, the thesis will investigate how these limitations can be removed, and queries fine-tuned

in order to utilize the intended indexes, by proposing a different technique in choosing what

kind of indexes to create. Again, query execution plans will be used in order to confirm if the

goal of making the indexes be utilized in the queries is achieved.

Finally, this thesis will show how wait statistics can point to potential performance issues,

particularly involving indexes, by looking at what resources SQL Server has been waiting on

while executing queries.

All the experiments defined in this thesis are performed on a machine with Microsoft SQL Server

2014 Developer edition with Service Pack 2 installed. This machine has 4 cores (8 logical

processors), and 8GB of RAM installed.

28

4. Experimental set-up and Implementation

4.1. Turning point on index usage

Let’s consider a table [Clients], which contains 8 columns that add up to 393 bytes in size (table

5.1). However, as described in section Indexes and storage internals, SQL Server also stores

some overhead in the data records. For our table structure, the extra overhead is as follows:

 2 Bytes for the record header

 2 Bytes for the NULL bitmap pointer

 3 Bytes for the NULL bitmap (2 Bytes column count, and one bit for each column)

Since the table contains no variable-length columns, the record structure does not include the

variable-length specific portion of the records. This makes the total length of the data rows in

our table 400 bytes.

Column Name Column Type Column size (B)

ClientID INT 4

TaxCode CHAR(11) 11

Name NCHAR(60) 120

Surname NCAHR(60) 120

IsActive TINYINT 1

RegistrationDate DATETIME 16

Address NCAHR(57) 114

Phone CHAR(15) 15

Table 5.1. Columns of [Clients] table

Table [Clients] is populated with 80,000 rows and has column ClientID defined as its primary

key. Microsoft SQL Server automatically adds a clustered index based on the primary key

column(s) of the table. This means that our table is a clustered index, not a heap.

In order to calculate the number of rows in each leaf level page of the clustered index, we

divide the available page size for storing records (8,060 B) by the total length of the data row

(393B data columns length plus 7B row overhead). Fixed-length column records are part of the

IN_ROW_DATA allocation unit and as explained in section Allocation Units, they cannot span

29

pages:

8,060 𝑏𝑦𝑡𝑒𝑠/𝑝𝑎𝑔𝑒

400 𝑏𝑦𝑡𝑒𝑠/𝑟𝑜𝑤
 = 20 rows/page (+2 bytes row offset)

Since each data page can hold a maximum of 20 rows, and our table contains a total of 80,000

rows, we can calculate the number of data pages in the leaf level of the index:

80,000 𝑟𝑜𝑤𝑠

20 𝑟𝑜𝑤𝑠/𝑝𝑎𝑔𝑒
 = 4,000 pages

We can check these calculations from the dm_db_index_physical_stats dynamic view, using the

Detailed mode (figure 5.1):

SELECT [index_depth] AS [Depth],
 [index_level] AS [Level],

 [record_count] AS [Rows],
 [page_count] AS [Pages],

 [min_record_size_in_bytes] AS [RowMinLen],
 [max_record_size_in_bytes] AS [RowMaxLen]

FROM [sys].[dm_db_index_physical_stats]
 (DB_ID (N'ThesisDB'),
 OBJECT_ID (N'ThesisDB.dbo.Clients'),
 1,
 NULL,
 'DETAILED');
 GO

The results of this query are given in table 5.2, and it can be observed that indeed there are

4,000 pages in the leaf level of the index.

Depth Level Rows Pages RowMinLen RowMaxLen

3 0 80000 4000 400 400

3 1 4000 14 11 11

3 2 14 1 11 11

Table 5.2. Clustered index on [Clients] table

Table 5.2 further shows that the clustered index is of depth 3. It contains a leaf level (Level 0)

with the 80,000 data rows spread over 4,000 data pages. As expected, the row length is 400

bytes because 7 bytes of overhead were added to the 393 bytes of data. The minimum and

Figure 5.1. Investigating the clustered index on [Clients table]

30

maximum row length in the leaf level are both 400 Bytes since our table does not contain

variable-length columns.

The next level in the index is the intermediate level (Level 1), which contains 4000 index rows ,

spread over 14 pages. There are 4000 index records at this level because at the leaf level there

were 4000 pages, and according to the index structure in Microsoft SQL Server, there is one

index record per page in the level below, and that index record points to the first record of the

page in the level below. This explains also why there are 14 index records in the root level (Level

2), pointing to the 14 pages of the intermediate level.

To list the pages allocated to our clustered index, the DBCC IND command can be used, which

returns a row for every page allocated to the requested object [15]. The resulting dataset of

this command will be inserted in a helper table [ClusteredIndexPages], which can be then

manipulated with an ORDER BY clause to better see the ordering of the pages of the index.

insert into [ClusteredIndexPages]
exec ('DBCC IND (ThesisDB, Clients, 1)')

Table [ClusteredIndexPages] contains 4,016 pages, which is 1 page more than the total number

of pages of the clustered index (table 5.2). The extra page is for the IAM page of the index (IAM

pages were discussed in the Introduction section). A portion of the [ClusteredIndexPages] table

(10 out of the 4,016 result pages) is given in table 5.3 below, with information for the following

pages:

 the IAM page (1:146)

 first three pages of the leaf level (1:256), (1:280), (1:281)

 last three pages of the leaf level (1:4380),(1:4381),(1:4382)

 first page of the intermediate level (1:264)

 last page of the intermediate level (1:1149)

 the root page (1:1136)

Figure 5.2. DBCC IND for the clustered index on [Clients] table

31

A visual representation of the clustered index, with the file and page numbers as returned from

the DBCC IND command, is given in the figure 5.3. below.

Figure 5.3. Visual Representation of the clustered index on table [Clients]

Next, a non-clustered index on column [TaxCode] is added for the [Clients] table (figure 5.4). A

non-clustered index in Microsoft SQL Server is a separate structure (unlike the clustered index

which contained the table itself in its leaf level), so the leaf level pages of the non-clustered

IndexLevel PageFID PagePID PrevPageFID PrevPagePID NextPageFID NextPagePID
 NULL 1 146 0 0 0 0

0 1 256 0 0 1 280
0 1 280 1 256 1 281
0 1 281 1 280 1 282
… … … … … … …
0 1 4380 1 4379 1 4381
0 1 4381 1 4380 1 4382
0 1 4382 1 4381 0 0
1 1 264 0 0 1 1137
… … … … … … …
1 1 1149 1 1148 0 0
2 1 1136 0 0 0 0

Table 5.3. Pages of the clustered index on table [Clients]

32

indexes point to the base data table’s row lookup ID. If the base data table is a clustered

structure, then this row lookup ID is the clustered key, whereas if the data table is a heap, then

the RID of the heap rows is used.

create unique nonclustered index TaxCodeNC

on [Clients] (TaxCode)

To examine the non-clustered index, similarly as with the clustered index, the

dm_db_index_physical_stats dynamic view will be used. For the non-clustered index, it yields

the following results given in table 5.4 below:

Depth Level Rows Pages RowMinLen RowMaxLen

2 0 80000 212 19 19

2 1 212 1 21 21
Table 5.4. Non-clustered index on [Clients] table

The non-clustered index is of depth 2, meaning it contains 2 levels - the leaf level and the root

level. The leaf level contains the 80,000 records spread over 212 pages. The number of pages is

smaller when compared to the clustered index because the records themselves are smaller (19

B in the leaf level). This is so because these records do not contain all the columns of the actual

data record, but only the non-clustered key ([TaxCode] in our case) and the base table row

lookup id (the [ClientID] in our case) and some overhead.

Again, the output of the DBCC IND command for the non-clustered index gives the pages

allocated for this object. A portion of this table containing some of the leaf pages, as well as the

root and IAM page, is given in table 5.5.

Next, we will examine several queries where the clustered and non-clustered indexes are used

effectively, and then move on to scenarios where these indexes are not deemed as effective by

SQL Server anymore.

Figure 5.4. Creation of the [TaxCodeNC] non-clustered index on table [Clients]

33

The structure of the non-clustered index is given in figure 5.5 below:

Figure 5.5. Visual representation of the non-clustered index

Consider the following query (figure 5.6) which makes for a rather straightforward example

where the clustered index would be used:

SET STATISTICS IO ON;

GO

SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[ClientID] = 2438;
GO

This query references column [ClientID] in its WHERE clause in an equality comparison.

[ClientID] is the clustering key of the clustered index [ClientsPK] in table [Clients], and we would

IndexLevel PageFID PagePID PrevPageFID PrevPagePID NextPageFID NextPagePID
 NULL 1 150 0 0 0 0

0 1 4628 1 4627 1 4629
0 1 4629 1 4628 1 4630
0 1 4630 1 4629 1 4631
… … … … … … …
0 1 4851 1 4850 1 4852
0 1 4852 1 4851 1 4853
0 1 4853 1 4852 1 4854
1 1 5168 0 0 0 0

Table 5.5. DBCC IND command for the non-clustered index [TaxCodeNC]

Figure 5.6. A simple equality query

34

expect that the SQL Server engine would make use of this clustered index when evaluating the

result. By examining the actual execution plan, it is shown that this is exactly the case (figure

5.7).

Regarding the IO statistics, the following message is displayed:

Table 'Clients'. Scan count 0, logical reads 3, physical reads 2, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

As expected, there are 3 logical reads, because 3 different pages of the [ClientsPK] clustered

index structure have to be read: first the root of the index, then the corresponding intermediate

page, and finally the data page containing the client record with [ClientId] = 2348.

The next query to be examined will reference the [TaxCode] column of the [Clients] table in the

WHERE clause, hinting this to be a case where the non-clustered index defined on [TaxCode]

could be used.

SET STATISTICS IO ON;
GO

SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[TaxCode] = '87704182846';

GO

It should be noted that the query does a SELECT * against the [Clients] table for the particular

client with the specified [TaxCode]. However, the non-clustered index contains only the non-

clustered key [TaxCode] and the base table row lookup id [ClientID] in its leaf pages. This means

that the rest of the columns requested in the SELECT need to be retrieved from the base table

- in our case the clustered index.

Indeed, the query execution plan demonstrates this. The non-clustered index [TaxCodeNC]

Figure 5.7. Execution plan of the equality query

Figure 5.8. A query searching by [TaxCode]

35

defined on column [Clients].[TaxCode] is used in an index seek, but there is also a key lookup

operation performed in the clustered index [ClientsPK], to retrieve the rest of the columns.

The following message is displayed for the IO statistics for this query:

Table 'Clients'. Scan count 0, logical reads 5, physical reads 4, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

There are 5 logical reads performed, and this matches our expectation: in order to evaluate the

query, the non-clustered index seek operation needs to take place, by accessing the root page

and the corresponding leaf page of the non-clustered index, thus making for 2 logical reads.

From the leaf page, the clustered key is read and this enables the key lookup operation in the

clustered index, where again the root page of this index, the corresponding intermediate page,

and finally the leaf page containing the record are retrieved. This contributes to additional 3

logical reads, for a total of 5, as displayed by the IO statistics message.

This sequence of operations is shown figuratively in fig. 5.10 below:

Figure 5.9. Execution plan of the query searching by [TaxCode]

36

Figure 5.10. An index seek followed by a key lookup

The number of logical reads of course increases when there are more records returned by the

query. Let us consider a result set of 20 client records; in order to retrieve all the columns for

these 20 records, according to Figure 5.10 above, there should be:

 2 or 3 logical reads from the non-clustered index (the root page plus the leaf page

containing the 20 records. At most, these 20 records can be scattered across 2 adjacent leaf

pages, in which case there would be a total of 3 logical reads instead of 2)

 20 x 3 = 60 logical reads from the clustered index (for each of the 20 client IDs, the

clustered index must be traversed (from root to the corresponding intermediate page, and then

to the corresponding leaf page) in order to retrieve the rest of the columns of that client record.

In order to check this assumption, the following query (figure 5.11) which returns 20 rows from

the Clients table will be examined through its execution plan and IO statistics:

SET STATISTICS IO ON;
GO

SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[TaxCode] BETWEEN '01153701453' AND '01164967899'
GO

The query returns the following information about the IO statistics:

Table 'Clients'. Scan count 1, logical reads 62, physical reads 34, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

The execution plan of the query is as follows (figure 5.12., again a non-clustered index seek

Figure 5.11. A range query

37

followed by key lookup in the clustered index):

Figure 5.12. Execution plan of the range query

This number of logical reads is still more efficient then doing a table (clustered index) scan,

which in our case would produce 4,016 logical reads (the total number of pages in the clustered

index). The usage of the non-clustered index in an index seek, followed by a key lookup in the

clustered index is efficient enough for the SQL Server engine to use this execution plan instead

of a table scan, at least for our two sample queries so far.

However, the question arises: does this execution plan remain effective when the number of

records in the result set increases even more? Does an index seek followed by a key lookup

operation ever become too expensive? This will be examined next.

Let’s consider a more generalized form of our range query, with unknown min and max range

boundaries (let’s call them x and y):

SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[TaxCode] BETWEEN x AND y

The number of page reads that need to be performed by the non-clustered index seek, followed

by the clustered index key lookup, changes depending on the number of rows that fall into the

[x,y] range requested by the query. As this number of resulting rows increases, the number of

page reads made by the two operations described above also increases. When this number of

reads approaches the number of page reads that would be necessary if a clustered index scan

was to be performed instead, does the SQL Server engine then decide to switch to using a

Figure 5.13. Generalized range query

38

clustered index scan directly, instead of going through the two separate operations (non-

clustered index seek and key lookup in the clustered index) and joining their results to get all

the necessary columns for the resulting records? One element that affects this decision is also

the nature of these operations. In a clustered index scan, the logical reads are sequential,

whereas the key lookup in the clustered index might be very random – although the resulting

records have sequential [TaxCode] values, their corresponding [ClientID] are probably not

sequential at all and reside on different pages.

Let’s next examine the execution plan and IO statistics of the following query, which returns

1,000 rows:

SET STATISTICS IO ON;
GO

SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[TaxCode] BETWEEN '60904989375' AND '62115722473'
GO

The execution plan (figure 5.15) and the IO statistics message are given below:

Figure 5.15. Execution plan of the range query with 1.000 resulting rows

(1000 rows affected)
Table 'Clients'. Scan count 1, logical reads 4016, physical reads 0, read-ahead

reads 3994, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

In this case, SQL Server chose to do a clustered index scan. Although the structure of this query

is identical compared to the previous test queries, this time the execution plan is different. Even

though this last query returned only 1,000 out of the 80,000 rows in the table (1.25 % of the

data in the table), still SQL Server estimated that the non-clustered index is more expensive to

be used. For our test case, table 5.6 shows information on the type of operation(s) used during

query execution for several queries with different number of resulting records.

Figure 5.14. Range query with 1.000 resulting rows

39

SQL Server makes use of the clustered index only when the query is highly selective. It looks at

the table size (in our case the clustered index size) to compare the cost of key lookups (which

are random) to the cost of a table scan (which can be performed sequentially). Consequently,

non-clustered indexes are only useful when a very selective set of data needs to be retrieved.

This also explains why some queries sometimes have one plan, and at other times a completely

different plan – a situation that often puts at unease many DBAs. It also makes clear why some

of the non-clustered indexes simply aren't as useful as they were expected to be, and the

habitual recommendation of simply adding indexes for the columns referenced in the WHERE

clause does not give the expected results. In fact, the addition of indexes might work well during

testing, but on a production environment where the same queries provide different result sets,

the indexes might just not be used. This implies that in terms of query tuning and performance

optimization, other strategies should be considered than just adding an index on a column that's

in the where clause of queries that are most critical to performance and for which more

consistent performance and consistent plans are needed.

Query No. of records
in the result set

Operation used

SELECT [c].*
FROM [dbo].[Clients]
WHERE [c].[TaxCode]

BETWEEN x AND y

1 record

Non-clustered Index Seek and
Clustered Index Key Lookup

20 records

Non-clustered Index Seek and
Clustered Index Key Lookup

350 records

Non-clustered Index Seek and
Clustered Index Key Lookup

800 records

Non-clustered Index Seek and
Clustered Index Key Lookup

1,000 records
Clustered Index Scan

1,500 records

Clustered Index Scan

10,000 records

Clustered Index Scan

80,000 records

Clustered Index Scan

Table 5.6. Operation used according to number of records in the result set

40

4.2. Index fusion

Following our thesis objective of proposing techniques that increase query performance in

Microsoft SQL Server, next we will examine ways on how to remove the limitations on index

usage presented in the previous section.

We will look at the concept of covering queries and examine if and how it can impact index

usage in queries. In order to understand covering, a short re-statement of the non-clustered

index structure examined in the previous section should be made. The non-clustered index on

[Clients].[TaxCode] was made of two levels – the root and leaf levels. The leaf level records

contained the non-clustered index key [TaxCode] as well as the key of the clustered index

[ClientId]. The key was then used in key lookup operations into the clustered index when it was

necessary to retrieve the rest of the columns of the client record requested in the SELECT

statement.

But what if going to the clustered index to perform the expensive random lookups was to

become unnecessary? Then it would suffice for the non-clustered index to be traversed in a

seek operation, and potentially SQL Server would not switch to the clustered index scan that

read the complete table. Consider the following query (figure 6.1):

SET STATISTICS IO ON;
GO

SELECT [c].[ClientId], [c].[TaxCode]
FROM [dbo].[Clients] AS [c]
WHERE [c].[TaxCode] BETWEEN '60904989375' AND '99733993541'
GO

The query requests that only [ClientID] and [TaxCode] columns be retrieved, both of which are

found in the leaf page of the non-clustered index. Thus, in order to retrieve this information,

the non-clustered index is sufficient, and hence the query execution plan (figure 6.2) shows that

only an index seek operation has been performed:

Figure 6.1. Range query on table [Clients]

41

Figure 6.2. Execution plan of the range query on table [Clients]

The IO statistics message of the query is given below:

(31000 rows affected)
Table 'Clients'. Scan count 1, logical reads 86, physical reads 1, read-ahead reads
105, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Even-though this query returned 31,000 rows, it made use only of the non-clustered index as

this index was essentially “covering” the needs of our query.

This scenario is a good introduction to the concept of covering indexes. Our existing non-

clustering index covers queries that require only [TaxCode] and [ClientId] to be returned as

these fields are stored in the non-clustered index itself. But SQL Server offers a technique to

include other columns of the record in the page leaves of the non-clustered index as well. This

is done via the keyword INCLUDE, after which the columns that we wish to be included in the

index are specified.

With this, we can ensure that for critical queries that require a specific collection of record

columns to be returned in the SELECT part, those columns are included in the index itself. When

they are included in the non-clustered index (hence the term “covering index” or “covered

query”), there is no need to go to the base table and do a key lookup operation to retrieve those

necessary columns.

Let’s consider the following query (figure 6.3):

SET STATISTICS IO ON;
GO

SELECT [c].[ClientId], [c].[TaxCode], [c].[Name]
FROM [dbo].[Clients] AS [c]
WHERE [c].[TaxCode] BETWEEN '60904989375' AND '99733993541'
GO

Figure 6.3. Range query on table [Clients] with column [Name] in the SELECT list

42

This is the same as the previous query in figure 6.1, with the difference that here also the client

name is requested to be retrieved. Now SQL Server must go to the clustered index in order to

retrieve the [Name] column, as it is not located in the non-clustered index. Since the index seek

together with the key lookup operation is too expensive, SQL Server opts for a table scan

instead. Below are given the execution plan (figure 6.4) and IO statistics message, respectively:

 Figure 6.4. Execution plan of the range query on table [Clients] with [Name] column included in the SELECT list

(31000 rows affected)
Table 'Clients'. Scan count 1, logical reads 4016, physical reads 2, read-ahead
reads 4015, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Let’s try to add a new, covering index for this query, that will contain also the [Name] column

in its leaf level (figure 6.5):

CREATE NONCLUSTERED INDEX TaxCodeNCNameIncl
on [dbo].[Clients] (TaxCode)
INCLUDE ([Name])
GO

The execution plan (figure 6.6.) for the same query now uses this new non-clustered index in an index

seek operation to retrieve all the necessary information:

 Figure 6.6. Execution plan of the range query after the creation of the [TaxCodeNCNameIncl] non-clustered index

(31000 rows affected)
Table 'Clients'. Scan count 1, logical reads 713, physical reads 2, read-ahead reads
635, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Covering indexes are an excellent technique made available by SQL Server for ensuring better

index usability and performance improvements. However, even-though this technique might

seem very attractive and simple to implement, it is not a good approach to use it for every single

Figure 6.5. Creation of the [TaxCodeNCNameIncl] non-clustered index

43

query in the workload. The reason is obvious: too many indexes become costly during data

modifications as well as during index maintenance. They also waste memory and disk space

(including back-up space).

Additionally, our last example also shows another drawback in the creation of numerous

indexes. Namely, index [TaxCodeNCNameIncl] now contains another copy of the [TaxCode] and

[ClientID] columns. If there appears another query to tune, similar to the one in figure 6.3 but

requesting column [Phone] in the SELECT list instead of [Name], a new covering index

[TaxCodeNCPhoneIncl] might be introduced for this query. But this would increase the

redundancy for columns [TaxCode] and [ClientId] even more. In that case, there would be four

copies of these two columns: in the clustered index, in the [TaxCodeNC] index, in the

[TaxCodeNCNameIncl] index, and in the last index introduced [TaxCodeNCPhoneIncl].

After having examined the internals of indexes in Microsoft SQL Server, their limitations in

queries that return larger record sets, as well as briefly looking at the powerful concept of

covering indexes, the next question we will attempt to answer in this research work is: what

techniques should be followed in order to achieve better, more predictable usage of indexes in

queries and thus improve performance?

We already discussed what is NOT the best technique – attempting to add indexes for every

column in the WHERE clause. Depending on the result set, they might not even get used, even-

though the query is written in the same way as in the testing stages, when those indexes were

shown to be used. We then presented the concept of covering indexes, which although

powerful and relatively simple to implement, is not a good solution if for every single query a

new covering index is introduced. If this practise is followed, there will soon be too many

indexes which are costly to maintain during inserts, updates, deletes, as well as during index

maintenance. Those indexes also cost in terms of disk space, in caching, and in backups.

Having too many indexes on a server is a quite common scenario that happens when a variety

of different sources all propose different indexes for one or few particular queries, and those

are executed without a more thorough analysis of what indexes are already present in the

server, and if the different indexes proposed introduce too much redundancy in terms of

containing many similar columns . For example, if different people work on performance tuning

of different parts of the same application, proposing indexes that benefit their own siloed part

of the system; if there are tools that suggest indexes for a particular query in question like the

hints in SHOWPLAN or other third-party tools; if the missing index DMVs are checked and

44

abided to without deeper analysis – all of these sources may contribute to there being too many

indexes on the server. Even-though these sources may all suggest indexes that benefit the

particular queries analysed by them, if there is no deeper analysis on server level, rather than

just on query level, then all this added overhead in the form of indexes will need to be

maintained, stored, logged, to the point that it might hurt the server's overall performance.

Let’s turn to the analysis of the following queries, which we assume were defined a most

critical during the workload analysis on the database (figure 6.7 and figure 6.8):

--Search clients by name and surname
SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] = N'Haxhijaha' AND [c].[Name] = N'Blerta';
GO

-- Search only active clients by name and surname
SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] = N'Aliu' AND [c].[Name] = N'Sara' AND [c].[IsActive] = 1;
GO

--Search clients by surname only
SELECT [c].*
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] = N'Aliu';
GO

--Search clients by surname in a specific range; retrieve name, surname and phone
SELECT [c].[Surname], [c].[Name], [c].[Phone]
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] LIKE '[A-E]%'
ORDER BY [c].[Surname], [c].[Name];
GO

--Search clients by surname in a specific range; retrieve name, surname and tax code
SELECT [c].[Surname], [c].[Name], [c].[TaxCode]
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] LIKE '[A-E]%'
ORDER BY [c].[Surname], [c].[Name];
GO

-- Search clients by surname in a specific range, retrieve name, surname and status
SELECT [c].[Surname], [c].[Name], [c].[IsActive]
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] LIKE '[S-Z]%'
ORDER BY [c].[Surname], [c].[Name], [c].[IsActive];
GO

-- Number of clients in a specific range
SELECT COUNT(*) AS [Total Number of Clients]
FROM [dbo].[Clients] AS [c]
WHERE [c].[Surname] LIKE '[F-M]%';
GO

Figure 6.7. Most critical queries identified – Part I

Figure 6.8. Most critical queries identified – Part II

45

If the only indexes present in the database for table [Clients] are those given in table 6.1 (retrieved

from sys.indexes), then the queries have the following execution plans (figure 6.9 and figure 6.10):

As expected, all the queries make a clustered index scan because the only currently available

non-clustered index on [TaxCode] is not usable. In order to fix this, it is easy to just follow the

advice to put an index on the WHERE clause columns of these critical queries.

Figure 6.9. Execution plan of critical queries - Part I

Given that we have critical queries that reference different columns/set of columns in the

WHERE clause, the list of indexes to create would become the following:

 (Surname)

 (Surname, Name, IsActive)

Name IndexID Type TypeDescription IsUnique IsPrimaryKey

ClientIDPK 1 1 Clustered 1 1

TaxCodeNC 2 2 Nonclustered 1 0

Table 6.1. Indexes present on table [Clients]

46

 (Surname, Name) INCLUDE (TaxCode)

 (Surname, Name) INCLUDE (Phone)

When the queries from figure 6.7 and 6.8 are executed again after creating these indexes, the

execution plans displayed are also different (figure 6.11 and figure 6.12). They now make use

of the newly created indexes.

Let’s have a look at what was the cost in terms of storage after adding the new indexes. Table

6.2 summarizes the number of levels and pages for each of the four indexes, obtained through

the dm_db_index_physical_stats DMV that we have used earlier in this paper when examining

the clustered index and the non-clustered index on [TaxCode].

Figure 6.10. Execution plan of critical queries - Part II

47

Index Depth Level Rows Pages

[Surname] 3 0 80000 1295

3 1 1295 24

3 2 24 1

[Surname],

[Name],

[IsActive]

4 0 80000 2504

4 1 2504 85

4 2 85 7

4 3 7 1

[Surname],

[Name]

INCLUDE

[Phone]

4 0 80000 2670

4 1 2670 90

4 2 90 7

4 3 7 1

[Surname],

[Name]

INCLUDE

[TaxCode]

4 0 80000 2585

4 1 2585 87

4 2 87 7

4 3 7 1

Table 6.2. Page, row, level and depth number of the newly created indexes

48

Figure 6.11. Execution plan of critical queries after the creation of new indexes - Part I

Figure 6.12. Execution plan of critical queries after the creation of new indexes - Part II

The total number of pages used by the four indexes is 9,365 pages, each at 8KB. In megabytes,

that’s around 73MB of storage. This number might not look too problematic in today’s systems

49

with a lot of memory available, but this number becomes much higher when dealing with tables

that have millions or hundreds of millions of records stored in them.

Even-though we managed to tune the individual queries in terms of index usage, this might not be

an adequate tuning on server level. As already discussed, adding indexes for all WHERE clause

columns in queries costs in terms of maintenance, storage space, cache, backups etc. So, is

there a better technique? This paper argues that there indeed is, and this technique revolves

around “consolidating” indexes, i.e. fusing them together so that one or a few indexes do the

work of many. These consolidated indexes might be slightly larger in structure, but as we will

show in the next section, eventually they will take less space than the combined space used by

the indexes they substitute.

Index consolidation as a process should follow after the process of tuning on query level. In our

thesis so far, we have performed performance tuning on query level. We did this by focusing

on how to improve the execution of the individual queries, assuming that those queries were

identified as critical in our workload. We created indexes that benefited these individual

queries, whereby we also hinted that this might potentially create redundancy, in terms of

certain index columns appearing on several indexes. Now we are ready to move on to the next

level - performance tuning on server level, or as we call it index fusion or index consolidation.

We will aim to show how this process can also address the issues we have raised in this paper

so far regarding indexes: redundancy in repeating columns and the high cost of maintenance

when numerous indexes are created in the server.

In order to describe the index fusion process, we will continue to use our existing example,

where the indexes for the individual critical queries were identified as displayed in table 6.3.

Looking at the indexes together, we next identify that column [Surname] is a left based subset

of all the index keys. This suggests that [Surname] should be the first (i.e. left-most) column of

our new index. The key columns that remain to be included are the [Name] and [IsActive]

columns, because they are used in index [FullNameStatusNC].

Name Key column(s) Included column(s)

SurnameNC Surname /

FullNameStatusNC Surname, Name, IsActive /

FullNameIncludePhoneNC Surname, Name Phone

FullNameIncludeTaxCodeNC Surname, Name TaxCode

Table 6.3. Indexes for the individual critical queries

50

So up to this point, we have identified the key column of our new index to be ([Surname],

[Name],[IsActive]). Looking at the list of included columns of the separate indexes, we observe

that in our new index, we must include columns [Phone] and [TaxCode] because they are used

in indexes [FullNameIncludePhoneNC] and [FullNameIncludeTaxCodeNC]. Unlike the key

columns which must retain the left-based order, the order of the included columns in the new

index is not important. Finally, our new consolidated index can be created as follows (figure

6.13):

CREATE INDEX [ConsolidatedIndexNC]
ON [dbo].[Clients] ([SurName], [Name], [IsActive])
INCLUDE ([Phone], [TaxCode]);
GO

In order to test our new consolidated index, we disable the four existing indexes from table 6.3.

Disabling is recommended over deletion during the testing stage. Then, if after thorough testing

we conclude that the new index is utilized as expected, the “old” indexes it substitutes can be

deleted from the server.

We execute the same queries given in figure 6.7 and 6.8 and observe their execution plans given

in figures 6.14 and 6.15 below. They indeed show that the new index [ConsolidatedIndexNC] is

used in all five critical queries. So now the server uses a single non-clustered index instead of

the four different non-clustered indexes it was utilizing previously. Those non-clustered indexes

were all suitable for query level performance tuning, but on server level, having only one index

to maintain is highly preferred in terms of all the different costs associated with indexes, even-

though this new index is bigger and may require a few more IOs.

The number of levels and pages of index [ConsolidatedIndexNC] is given in table 6.4, as returned

by the dm_db_index_physical_stats DMV. In order to calculate how much storage space was

saved, again the total number of pages is summed up and the result multiplied by 8K. This

calculates to around 22.4 MB of storage. The storage space occupied by the four previous

indexes was 73MB, so the storage space was reduced to less than a third of the initial space.

The numbers in this example might not seem to make a big difference, but let us consider larger

environments, with tables that are in the hundreds of gigabytes or even terabytes in size.

Figure 6.13. Consolidated index creation

51

Reducing indexes in such environments by a third of their size, could mean great savings in

terms of disk space, memory, logging, fragmentation, of maintenance in general.

Index Depth Level Rows Pages

[ConsolidatedIndexNC] 4 0 80000 2762

4 1 2762 93

4 2 93 7

4 3 7 1

Table 6.4. Page, row, level and depth number of the consolidated index

Figure 6.14. Execution plan of critical queries after creation of the consolidated index - Part I

52

Figure 6.15. Execution plan of critical queries after creation of the consolidated index - Part II

53

4.3. Identifying performance issues with wait statistics

In the previous sections we have looked at indexes and indexing strategies, claiming them to be

an important aspect to focus on in order to secure good database performance. In this next

section, we will attempt to tackle the query performance subject from a more general level.

Namely, we will attempt to answer the question on how to identify the bottlenecks of a SQL

Server query execution, when we observe that they are taking longer than usual.

It is a common scenario that DBAs or maybe even database developers are asked to perform

some troubleshooting of the server, when there are observations or complaints that different

database operations are running very slow or seem blocked altogether. Where to start

troubleshooting in these cases? There are many different components of SQL Server that

troubleshooting can start at - from checking different hardware configurations, the memory,

the I/O subsystem, the networking; the indexing strategies, the fragmentation in indexes. Or

perhaps there is something wrong with the application code, or the way that users are running

queries. Without a clear direction on where to start looking, troubleshooting can easily become

a lengthy process with time lost on examining or even fixing components that are not the actual

source of the problem.

This master thesis will propose the usage of Wait statistics in identifying performance

bottlenecks, because they point to what SQL Server has been waiting on while executing

queries. Only when there is proper information on where the bottleneck resides, measures can

be taken to address that particular bottleneck, amend it and increase performance.

A short introduction on how wait statistics work, as well as a brief description of the wait types

encountered in our experiments were provided in the Wait Statistics section of this paper.

Next, let’s consider a data table [WaitStatsTest], composed of only two columns: an identity

column [ID], on which a clustered index is created, and a char(20) column [Description], as in

figure 7.1:

CREATE TABLE [WaitStatsTest](
 [ID] int IDENTITY(1,1) NOT NULL
 , [Description] CHAR(20) NOT NULL)
 GO

 CREATE UNIQUE CLUSTERED INDEX WaitStatsTest_CLIX

54

 ON dbo.WaitStatsTest (ID)
 GO

Next, let’s assume that there are 100 concurrent connections, each trying to insert 10.000 rows

in this table (figure 7.2):

SET NOCOUNT ON;

INSERT INTO dbo.WaitStatsTest ([Description])
VALUES ('testing wait stats')
GO 10000

Since the records for this table are very small, many can fit into a single 8K page. Being that the

clustering key is monotonically increasing, records will be inserted consecutively at the end of

a page until that page is filled up. There will not be a problem with locks, since locking will be

on row level, but there will be contention on latches.

To examine what types of waits are being generated by the workload, the

sys.dm_os_waiting_tasks DMV will be used. This DMV retrieves information about every thread

on the server that is currently suspended. All threads, no matter what scheduler they are on, if

they are on the waiter list in state suspended, will show up in the output of this DMV.

sys.dm_os_waiting_tasks can be joined with some other useful DMVs in order to get some

other useful information, as in the script in figure 7.3 below:

SELECT

 [wt].[session_id],
 [wt].[exec_context_id],
 [wt].[wait_duration_ms],
 [wt].[wait_type],
 [wt].[blocking_session_id],
 [wt].[resource_description],
 [es].[program_name],
 [sql].[text]

FROM sys.dm_os_waiting_tasks [wt]
INNER JOIN sys.dm_exec_sessions [es] ON

 [wt].[session_id] = [es].[session_id]
INNER JOIN sys.dm_exec_requests [er] ON

 [es].[session_id] = [er].[session_id]
OUTER APPLY sys.dm_exec_sql_text ([er].[sql_handle]) [sql]
WHERE [es].[is_user_process] = 1
ORDER BY [wt].[session_id], [wt].[exec_context_id]
GO

Figure 7.1. Test table [WaitStatsTest] with a clustered index

Figure 7.2. Inserting default values into [WaitStatsTest]

Figure 7.3. Diagnostic query for waiting tasks in SQL Server

55

When executing this script on the server where only the workload described above is running,

the following result set is obtained (fig 7.4, abbreviated to show only the first 10 rows, for space

considerations):

Figure 7.4. Waiting tasks diagnostic query results

It can be observed that there are several PAGELATCH_EX wait types occurring at the moment

the script was executed. The resource_description column shows that the resource being

waited for is page (8:1:3954), where 8 is the database id, 1 is the file number, and 3954 is the

page number on that file. In order to check what type of page is this, the DBCC PAGE command

[15] can be used (figure 7.5), which gives the output given in figure 7.6 for the page header:

DBCC TRACEON(3604)
GO
DBCC PAGE(8,1,3954,0)
GO

Figure 7.6. Header from DBCC PAGE command for page (1:3954)

Investigating [ObjectID]=309576141 via the object_name() function in SQL Server, we confirm

that this page belongs to table [WaitStatsTest], which is a clustered index. Since the records

being inserted are very small, many inserts are happening on the same page and only one

thread at a time can have an exclusive latch on the page, whereas all the rest of them are

Figure 7.5. DBCC PAGE command for the resource being waited on

56

queuing up.

In order to examine the wait stats that have accumulated during the whole duration of our

workload, the following diagnostic query will be used (taken from [15], pp. 27-28). It uses the

sys. dm_os_wait_stats DMV, which keeps track of all the aggregated waits that have occurred

on the server since the SQL Server was last restarted, or the DMV manually cleared. Notice that

this version of the query filters out the benign waits, so that they don’t clutter up the result set.

In order to get the wait stats from our workload only, the sys. dm_os_wait_stats DMV is cleared

at the beginning of the script:

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR)
SELECT
wait_type,
wait_time_ms,
wait_time_ms * 100.0 / SUM(wait_time_ms) OVER() AS percentage,
signal_wait_time_ms * 100.0 / wait_time_ms as signal_pct
FROM sys.dm_os_wait_stats
WHERE wait_time_ms > 0
AND wait_type NOT IN (
'BROKER_DISPATCHER', 'BROKER_EVENTHANDLER',
'BROKER RECEIVE WAITFOR', 'BROKER TASK STOP',
'BROKERTOFLUSH', 'BROKER TRANSMITTER',
'CHECKPOINT_QUEUE', 'CHKPT',
'CLR_AUTO_EVENT', 'CLR_MANUAL_EVENT',
'CLR_SEMAPHORE', 'DBMIRROR_DBM_EVENT',
'DBMIRROR_DBM_MUTEX', 'DBMIRROR_EVENTS_OUEUE',
'DBMIRROR_WORKER_QUEUE', 'DBMIRRORING_CMD',
'DIRTY_PAGE POLL', 'DISPATCHER_QUEUE_SEMAPHORE', 'EXECSYNC',
'FST4GENT',
'FT_IFTS_SCHEDULER_IDLE_WAIT', 'FT_IFTSHC_MUTEX',
'HADRCLUSAPI_CALL', 'HADRFILESTREAMIOMGRIOCOMPLETION',
'HADR_LOGCAPTURE_WAIT', 'HADR_NOTIFICATION_DEQUEUE',
'HADR TIMER TASK', 'HADR WORK QUEUE',
'KSOURCEWAKEUP', 'LAZYWRITER_SLEEP',
'LOGMGR_OUEUE', 'ONDEMAND_TASK_OUEUE',
'PWAIT_ALL_COMPONENTS_INITIALIZED', 'ODS_ASYNC_OUEUE',
'OPS_PERSIST_TASK_MAIN_LOOP_SLEEP', 'QDS_SHUTDOWN_ENEUE',
'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP', 'REWEST_FOR_DEADLOCK_SEARCH',
'RESOURCE_OUEUE', 'SERVER_IDLE_CHECK',
'SLEEPBPOOLFLUSH', 'SLEEP_BUFFERPOOL_HELPLW',
'SLEEP_DBSTARTUP', 'SLEEP_DCOMSTARTUP',
'SLEEP MASTERDBREADY', 'SLEEP MASTERMDREADY',
'SLEEP_MASTERUPGRADED', 'SLEEP_MSDBSTARTBP',
'SLEEP_SYSTEMTASK', 'SLEEP_TASK',
'SLEEP_TEMPDBSTARTUP', 'SLEEP_WORKSPACE_ALLOCATEPAGE',
'SNI_HTTP_ACCEPT', 'SP_SERVER_DIAGNOSTICS_SLEEP',
'SO.LTRACE_BUFFER_FLUSW', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',
'NLTRACE_WAIT_ENTRIES' , 'WAIT_FOR_RESULTS',
'WAITFOR', 'WAITFOR TASKSHUTDOWN',
'WAITXTP_HOSTWAIT', 'WAITXTP_OFFLINECKPT_NEW_LOC',
'WAIT_XTP_CKPT_CLOSE', 'XE_DISPATCHER_JOIN',
'XE_DISPATCHER WAIT', 'XE_TIMER_EVENT')
ORDER BY percentage DESC

Figure 7.7. Diagnostic query for the wait statistics accumulated in SQL Server

57

The result of this query after the workload finished executing are given in figure 7.8 (the top

five wait types highest in percentage). The top two occurring wait types are the PAGELATCH_EX

and PAGELATCH_SH wait types, together contributing in more than 80% of the total waits

aggregated.

Figure 7.8. Accumulated wait statistics

In high throughput/high concurrency OLTP workloads, where the possibility for concurrency

increases due to the higher number of CPU cores on modern servers, contention points arise

on memory structures which must be accessed serially (in exclusive modes). This is especially

true, as our example shows, for clustered indexes with clustering keys of sequentially increasing

pattern, found on tables with narrow rows that can fit in a single page in a large number.

Via SQL Server’s wait statistics, contention problems which might lead to performance issues

can thus be discovered, and appropriate action taken in order to alleviate them. In the case of

high PAGELATCH_XX waits slowing down performance, alternatives such as splitting the

insertion points in the table through partitioning, or maybe even charting the inserts to multiple

tables can help reduce the contention issue.

Another example where wait statistics can show potential problems in the query execution will

be described next.

Let’s consider a table [WaitStatsTest2] with 3.000 rows in it (figure 7.9), but with incorrect

statistics on its clustering key column, where the optimizer assumes there are 5.000.000 records

in the table (for test purposes, achieved via the undocumented SQL Server command UPDATE

STATISTICS … WITH ROWCOUNT, PAGECOUNT):

CREATE TABLE [WaitStatsTest2] (
[ID] INT IDENTITY,

58

[SomeInteger] INT,
[SomeText] NVARCHAR (100)
)
GO

CREATE UNIQUE CLUSTERED INDEX WaitStatsTest2_CLIX
ON WaitStatsTest2 (ID)
GO

INSERT INTO [WaitStatsTest2] ([SomeInteger], [SomeText])
SELECT top 3000 [ClientId], [Name]
FROM [Clients]
GO

UPDATE STATISTICS [WaitStatsTest2] ([WaitStatsTest2_CLIX])
WITH ROWCOUNT = 5000000, PAGECOUNT = 500000;
GO

The workload that will be executed against table [WaitStats2] is given in figure 7.10:

SET NOCOUNT ON;
GO

DECLARE @SomeText NVARCHAR (100);

SELECT TOP (500)
 @SomeText = [SomeText]
FROM [WaitStatsTest2]
ORDER BY NEWID() DESC;
GO 50000

Executing the query from figure 7.3 for waiting tasks during the execution of this workload, we

observe that there are CXPACKET waits occuring on the server.

After the workload execution is finished, the accumulated wait stats are also retrieved via the

query from figure 7.7 and presented below in figure 7.12. The top wait type accumulated for

this workload, CXPACKET, contributes to more than 50% of the total waits. The CXPACKET wait

type was described in section Wait Statistics of this thesis.

Figure 7.9. Table [WaitStatsTest2] with incorrect statistics

Figure 7.10. Workload for [WaitStatsTest2] table

Figure 7.11. Waiting tasks diagnostic query results when incorrect statistics are present

59

Let’s now look at the query execution plan for our query (figure 7.13). As expected, the SQL

Server engine opted for a parallel execution, because it assumed that there were 5.000.000

rows in the table. Since we also identified CXPACKET waits occurring, we were indeed expecting

that there was a parallel execution taking place. Figure 7.13 shows that SQL Server was

estimating 5.000.000 rows in the table, when the actual number was only 3.000 rows.

Looking at the properties of the execution plan (figure 7.14), it can be observed that only one

thread was doing the work, and that is thread 1. And looking back at the results of the

sys.dm_os_waiting_tasks DMV in figure 7.11, it can be observed that only this thread did not

appear in the result set, while all the other threads were producing CXPACKET waits while

waiting for thread 1 to finish.

Figure 7.12. Accumulated wait stats on a workload using incorrect statistics

Figure 7.13. Execution plan of the query that uses incorrect statistics

60

Because this parallel execution was against incorrect statistics, there was a skewed distribution

of work to the threads, and actually all threads were waiting idly waiting for thread 1 to

complete. So, only one thread was doing all the work, and the parallelism introduced only

caused an overhead to the system, without any gains. Figure 7.15 graphically explains the

situation of unequal distribution of work amoung threads, making the waiting threads produce

CXPACKET waits:

Figure 7.15. Distribution of work among threads when incorrect statistics are present

Figure 7.14. Properties of the execution plan

61

Now that the wait statistics identified the problem with high CXPACKET waits, which prompted

us to look at the execution plan of the query and find out about the incorrect statistics on the

[ID] column, let’s next investigate the behaviour of the same workload when the statistics are

not off, and see if the CXPACKET waits still persist. Table [WaitStatsTest2] is recreated and

populated with 3.000 rows, and the statistics are not updated with the [UPDATE STATISTICS

WITH ROWCOUNT, PAGECOUNT] command which caused the incorrect statistics in the initial

workload. Now when running the query from figure 7.10, the query execution plan (figure 7.16)

does not show a parallel operation, and both the estimated and actual number of rows are

equal to 3.000 rows, which is the correct number of rows in the table.

The sys.dm_os_waiting_tasks diagnostic query from fig. 7.3 now gives an empty result set

during the whole execution of the workload (the query was executed repeatedly while the

workload was running, and no waits were returned).

The dm_os_wait_stats DMV query from figure 7.7 executed after the workload finished, also

revealed that there were no CXPACKET waits accumulated (figure 7.17):

Figure 7.16. Execution plan of the query when statistics are correct

Figure 7.17. Accumulated wait stats when the statistics are correct

62

The wait statistics analysis once again showed how the waits SQL Server keeps track of in

various DMVs, can be a reliable source of information in order to troubleshoot potential issues.

In our case, we were observing high CXPACKET waits accumulated after our workload

execution. Looking at the execution plan of the query involved, we observed that it had chosen

a parallel plan where only one thread was doing all the work, making all the other threads

produce CXPACKET waits. This was caused by the incorrect statistics, and repeating the

workload with correct statistics in place, had SQL Server choose a serial plan and complete the

workload without associated waits of CXPACKET type.

In order to utilize the true power of wait statistics, a good practice to follow is to additionally

track wait statistics over time, in order to reveal if there are any trends happening. By watching

the trends and wait statistics over time, different patterns may emerge that need to be solved

so that there is no performance downgrading.

63

5. Conclusions

As the reliance on digitally stored data is becoming ever more pervasive in today’s technology-

driven world, and the amount of data available is also increasing at a fast pace, the task of

efficiently retrieving and manipulating data is becoming ever more important and challenging.

Relational database management systems, as one of the traditional choices for storing data and

performing data-related operations, also participate in this trend and are continuously focused

on providing solutions that include performance enhancements.

This thesis also focused on performance improvement techniques for data operations, and

particularly investigated techniques for ensuring good performance of queries executed in

Microsoft SQL Server. It primarily addressed indexes, which although one of the most common

measures aimed at performance improvement, still pose challenges to DBAs because of their

not always predictable use on production environments.

This thesis attempted to answer the question of why these limitations on index usage occur, by

looking at the internals of indexes in SQL Server, and investigating the turning point after which

these indexes are no longer used in queries. It demonstrated that there are cases when using

an index becomes too expensive, even-though nothing was changed in the way the T-SQL query

was written, which previously did make use of the index.

Next, the thesis proposed the index fusion technique in order to overcome this challenge. This

ensured a more consistent usage of the indexes on the server, and reduced their overall

number, thus also saving on disk space, memory, logging, fragmentation issues, and making the

overall maintenance easier. In order to perform index fusion and have these gains on server

level, the process to follow must be based on a thorough analysis of the current indexes and of

the critical workload on that server. Analysing the two in conjunction with the knowledge on

the index internals, ensures a successful index consolidation on server level.

Finally, this thesis looked at using the wait statistics stored by SQL Server as the starting point

for troubleshooting query performance. Since SQL Server performs its own thread scheduling

and keeps track of what resources the various threads are waiting on while executing, the wait

statistics can be used as a starting point to analyse contention for resources and then apply

64

appropriate measures to provide for a smother query execution. Since there is a variety of

factors that might be responsible for delays during query execution, including but not limited

to network latencies, disk I/O pressure, CPU pressure as well as bad indexing strategies., using

the wait statistics in the performance tuning methodology is suitable as it pinpoints exactly

what is causing the delays. This helps avoid spending futile efforts in trying to discover where

the issue is, or even worse, in fixing what is not broken. Except for providing a peek at what is

going on in the server in terms of contention for resources and accumulated wait types, it is

also possible to proactively track wait statistics over time as this might point to when changes

and problems have started to occur, making it possible to map this back to some rollout of new

code or some other change in the system.

65

References

[1] T. Lahdenmaki, M. Leach. Relational Database Index Design and the Optimizers: DB2,

Oracle, SQL Server, et al. 1st edition, Wiley-Interscience, 2007

[2] B. Dorr, B. Ward, R. Stonecipher, “SQL 2016 - It Just Runs Faster Announcement”,

https://blogs.msdn.microsoft.com/bobsql/2016/06/03/sql-2016-it-just-runs-faster-

announcement/, June 3rd, 2016

[3] PA. Larson, C.Clinciu, E.N. Hanson, A. Oks, S.L. Price, S. Rangarajan, A. Surna, Q. Zhou. “SQL

Server Column Store Indexes”, Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, June 12-16, 2011, Athens, Greece

[4] J. M. Monteiro, S. Lifschitz, A. Brayner. “An architecture for automated index tuning”,

SBBD, 2006.

[5] B. Patel, S. Mishra, “Comparing Tables Organized with Clustered Indexes versus Heaps”,

Microsoft Documentation, 2010

[6] G. Fritchey, S. Dam, “SQL Server 2008 Query Performance Tuning Distilled”, Apress, 2009

[7] “Estimate the Size of a Clustered Index”, Microsoft Documentation,

https://docs.microsoft.com/en-us/sql/relational-databases/databases/estimate-the-size-of-

a-clustered-index?view=sql-server-2017, 2017

[8] Ch. Shaw, G. Fritchey, C. Bossy, J. Lowell, G. Shaw, J. Johansen, M. Prajdi, W.Pastrick, K.

Pot’Vin, J. Strate, H. Roggero, T. Belt, J. Gardner, G. Berry, B. Ball, J. Borland, B. DeBow, L.

Davidson. “Pro SQL Server 2012 Practices”, 1st edition, Apress, 2012

[9] B. Nevarez, “High Performance SQL Server: The Go Faster Book”, 1st edition, Apress, 2016

[10] K. Delaney, C. Freeman. “Microsoft SQL Server 2012 Internals”, 1st edition, Microsoft

Press, 2013

[11] J. Kehayias, E. Stellato. “SQL Server Performance Tuning Using Wait Statistics: A

Beginner’s Guide”, Simple Talk, 2014

[12] B. Nevarez. “Inside the SQL Server Query Optimizer”, Red Gate, 2011

[13] E. Van de Laar. “Pro SQL Server Wait Statistics”, 1st edition, Apress, 2015

[14] P.Dave, R. Morelan. “SQL Wait Stats Joes 2 Pros: SQL Performance Tuning Techniques

Using Wait Statistics, Types & Queues”, CreateSpace Independent Publishing Platform, 2011

66

[15] J. Strate, T. Krueger. “Expert Performance Indexing for SQL Server 2012”, 1st edition,

Apress, 2012

[16] C. G. Corlatan, M.M. Lazar, V. Luca, O. T. Petricica. “Query Optimization Techniques in

Microsoft SQLServer”. Database System Journal, 2014, Vol. 5, No. 2, pp. 33-48.

[17] J. Habimana. “Query Optimization Techniques – Tips for Writing Efficient and Faster SQL

Queries” International Journal of Scientific and Technology Research, vol. 4, issue 10, October

2015, pp. 22 – 26.

[18] I. Lungu, N. Mercioiu, and V. Vladucu. “Optimizing Queries in SQL Server 2008” Sci-entific

Bulletin – Economic Sciences, Vol. 9, No. 15, 2010, pp. 103-108.

[19] Q. Chunxia. "On index-based query in SQL Server database." Control Conference (CCC),

2016 35th Chinese. IEEE, 2016.

[20] D. J. Farrar, A. Nica. Database systems with methodology for automated determination

of indexes, Patent No. US 7,406,477 B2, 2008

[21] D. P. Brown, J. Chaware, A.Pradesh, M. Koppuravuri, A. Pradesh. Index Selection in a

Database Systems, Patent No. US 7,499,907 B2, 2009

[22] J.M. Monteiro, S. Lifschitz, A.Brayner. “An Architecture for Automated Index Tuning”, In

V Ph.D. and M.S. SBBD, 2006

[23] S. Agrawal, E. Chu, V. Narasayya. “Automatic physical design tuning: workload as a

sequence”, Proceedings of the 2006 ACM SIGMOD international conference on Management

of data, June 27-29, 2006

[24] N. Bruno, S. Chaudhuri. “An Online Approach to Physical Design Tuning”. Proceedings of

the 2007 ICDE Conference

[25] Z. Chen, V. Narasayya. “Efficient computation of multiple group by queries”. In SIGMOD,

2005

[26] S. Chaudhuri , V. Narasayya “Self-tuning database systems: a decade of progress”,

Proceedings of the 33rd international conference on Very large data bases, September 23-27,

2007, Vienna, Austria

[27] N. Bruno, S. Chaudhuri, A. C, König, V. Narasayya, R. Ramamurthy, M. Syamala.

“AutoAdmin Project at Microsoft Research: Lessons Learned”. Bulletin of the Technical

Committee on Data Engineering, Vol. 34, №. 4, December 2011, pp. 12-19

[28] N. Bruno, S. Chaudhuri. “Automatic physical database tuning: A relaxation-based

approach”. In Proceedings of the ACM International Conference on Management of Data

67

(SIGMOD), 2005

[29] N Bruno , S Chaudhuri. “To tune or not to tune?: a lightweight physical design alerter”,

Proceedings of the 32nd international conference on Very large data bases, September 12-15,

2006, Seoul, Korea

[30] N. Bruno, S. Chaudhuri, R. Ramamurthy, “Power Hints for Query Optimization”, IEEE

International Conference on Data Engineering, 2009

[31] K. Lee, A. C. König, V. Narasayya, B. Ding, S. Chaudhuri, B. Ellwein, A. Eksarevskiy, M. Kohli,

J. Wyant, P. Prakash et al., "Operator and query progress estimation in microsoft sql server

live query statistics", Proceedings of the 2016 International Conference on Management of

Data, pp. 1753-1764, 2016

[32] S. Chaudhuri, R. Kaushik, R. Ramamurthy. "When Can We Trust Progress Estimators for

SQL Queries?" in SIGMOD '05: Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data. New York, NY, USA: ACM Press, 2005, pp. 575-586

[33] C. Mishra, N. Koudas. “A lightweight online framework for query progress indicators”. In

Proceedings of the 23rd ICDE Conference, 2007

[34] A Dziedzic, J. Wang, S. Das, B. Ding, V. Narasayya, M. Syamala. “Columnstore and B+ tree

- Are Hybrid Physical Designs Important?” Proceedings of the 2018 International Conference

on Management of Data, June 10-15, 2018, Houston, TX, USA

[35] J. Arulraj , A. Pavlo , P. Menon, “Bridging the Archipelago between Row-Stores and

Column-Stores for Hybrid Workloads”, Proceedings of the 2016 International Conference on

Management of Data, June 26-July 01, 2016, San Francisco, CA, USA

[36] V. Narasayya, M. Syamala. “Workload driven index defragmentation”. In Proceedings of

the IEEE International Conference on Data Engineering, pages 497–508. IEEE Computer

Society, 2010

