

POSTGRADUATE STUDIES – SECOND CYCLE

THESIS:

“E2E Web Application Testing”

CANDIDATE: MENTOR:

Blerand Zendeli Prof. dr. Artan Luma

Tetovë, 2021

Contents
Proofreading Confirmation .. 4

Declaration of original work ... 6

Acknowledgements .. 7

Abstract .. 9

Abstrakt .. 10

Абстракт ... 11

List of Figures ... 13

List of Tables ... 15

Chapter 1. Introduction .. 17

Problem statement .. 18

Research Field .. 18

Aim of the research .. 18

Importance of thesis .. 19

Hypotheses ... 19

Structure of thesis .. 20

Chapter 2. Literature Review ... 21

Related Work .. 22

Chapter 3. Research Methodology ... 25

ReactJs .. 25

Firebase .. 26

Selected tools ... 28

Chapter 4. Implementation .. 30

Project Execution ... 30

Test Structure ... 31

Test scenarios ... 33

Running scripts ... 40

Difference between test scenarios ... 41

Difference between Cypress and TestCafe .. 47

Selector difference between Cypress and TestCafe ... 48

Console Output .. 49

Supported browser .. 51

Advantages and disadvantages between Cypress and TestCafe .. 51

Continuous Integration .. 54

Cloud Testing .. 56

Chapter 5. Results and discussion .. 58

TestCafe (headless Chrome) ... 59

Cypress (headless chrome) ... 61

Difference between Cypress and TestCafe in chrome headless .. 63

TestCafe (headless Firefox) .. 64

Cypress (headless Firefox) .. 66

Difference between Cypress and TestCafe in Firefox headless .. 68

Difference running test scenarios between chrome and firefox .. 68

Chapter 6. Recommendations .. 70

DRY ... 70

Browser Support .. 70

Speed .. 70

Selector Playgrounds .. 71

Live reloading (hot reload) ... 71

Chapter 7. Conclusion .. 72

Chapter 8.Bibliography ... 73

Proofreading Confirmation

I, Kujtim Ramadani, certify that the manuscript below was edited/proofread for proper English
Language, including grammar, punctuation, spelling and overall style.

In Tetovo, on 02.02.2021

Declaration of original work

I certify that I am the original author of this thesis. I have not copied from any other students’ work or
from any other sources apart from reviewed references in accordance with the rules of referencing.

Acknowledgements

First, I would like to express my special gratitude to my supervisor, Prof. Dr. Artan Luma for his extreme

support and motivation. His inspiring suggestions have been precious for the development of the

content of this thesis.

In addition, I would like to express my sincere gratitude to all my family members and friends for their

support and patience during the preparation of this study. I have been very lucky to have such a great

family and friends.

Abstract
The main intention of this master thesis is to make a comparison between two end-to-end testing
frameworks such as TestCafe and Cypress.

In this thesis, we have implemented end-to-end testing using these two frameworks on a web
application built with reactJs and firebase.

By implementing these two frameworks on this web application, we have analyzed all the details related
to implementation, documentation, benefits, pros and cons, performance testing, CI integration, Cloud
testing integration, selectors playground, browser support.

In this thesis, we have compared performance testing of two testing frameworks on two different web
browsers such as Chrome headless and Firefox headless whereupon there was a big difference between
Cypress and TestCafe in terms of running time.

In this thesis, we have carried out the Continuous integration of two testing frameworks on GitLab
CI/CD, as well as the integration on Cloud testing platforms such as LambdaTest.

We have also compared browser support between two frameworks and we have analyzed selector
playground.

Abstrakt
Qëllimi kryesor i kësaj teze master është të bëjë një krahasim midis dy sistemeve të testimit end-to-end
si TestCafe dhe Cypress.

Në këtë tezë kemi zbatuar testimin "end-to-end" duke përdorur këto dy sisteme në një ueb aplikacion
me ane te këtyre dy kornizave reactJs, firebase.

Duke zbatuar këto dy korniza ne kemi analizuar të gjitha detajet në lidhje me zbatimin,
dokumentacionin, përfitimet, avantazhet dhe dizavantazhet, testimin e performancës, integrimin e CI,
integrimin "Cloud", fushën për të zgjedhur selektorët dhe mbështetjen e shfletuesit.

Në këtë tezë është bërë krahasimi në testimin e performancës ne mes dy kornizave të testimit, në dy
shfletues ("browser") të ndryshëm të internetit si "Chrome headless" dhe "Mozilla firefox headless" ku
ka pasur një ndryshim të madh midis "Cypress" dhe "TestCafe" në kohën e ekzekutimit.

Në këtë tezë është bërë integrimi i vazhdueshëm i dy kornizave të testimit në GitLab CI / CD, gjithashtu
integrimi në platformën e testimit "Cloud" si LambdaTest.

Në këtë tezë është bërë edhe krahasimi i mbështetjes së shfletuesit midis dy kornizave dhe po ashtu
kemi analizuar fushën për t’u zgjedhur selektorët.

Абстракт
Главната намера на оваа магистерска теза е да се направи споредба помеѓу две рамки за
тестирање од крај до крај, како што се TestCafe и Cypress.

Во оваа теза спроведовме тестирање од крај до крај со користење на овие две рамки на веб-
апликација изградена со реактивни мрежи и огнена база.

Со имплементирање на овие две рамки на оваа веб-апликација ги анализиравме сите детали
поврзани со имплементацијата, документацијата, придобивките, добрите и лошите страни,
тестирање на перформансите, интеграција на CI, интеграција на тестирање на облак, игралиште за
селектори, поддршка на прелистувачот.

Во оваа теза е направена споредба за тестирање на перформансите на две рамки за тестирање на
два различни веб-прелистувачи, како што се Chrome headless и Mozilla firefox headless, каде што
постоеше голема разлика помеѓу Cypress и TestCafe во времето на траење.

Во оваа теза се прави континуирана интеграција на две рамки за тестирање на GitLab CI / CD, исто
така, интеграција на платформата за тестирање на облак, како што е LambdaTest.

Во оваа теза е направена и споредба на поддршката на прелистувачот помеѓу две рамки, исто
така, направивме анализи на игралиштето за селектори.

List of Figures
Figure 1 Details for each of JS testing frameworks .. 22
Figure 2 Benefits of Cypress ... 29
Figure 3 Benefits of Testcafe .. 29
Figure 4 Cypress Runner ... 30
Figure 5 Cypress Settings .. 31
Figure 6 Selectors ... 32
Figure 7 Service Creator Selector ... 33
Figure 8 Cypress Custom Script .. 40
Figure 9 Package Json Script ... 40
Figure 10 Testcafe New User Flow ... 41
Figure 11 Testcafe flow for creation of service .. 41
Figure 12 Cypress create new service creator account .. 42
Figure 13 Cypress for creator logic on Utils folder ... 42
Figure 14 Faq Navigation Testcafe ... 43
Figure 15 Faq Navigation Cypress .. 43
Figure 16 New service creation TestCafe ... 44
Figure 17 Cypress creation of service ... 45
Figure 18 Desired Service Finder TestCafe ... 45
Figure 19 Desired Service Finder Cypress ... 46
Figure 20 Collaboration Testcafe .. 46
Figure 21 Collaboration Cypress ... 47
Figure 22 TestCafe Studio ... 48
Figure 23 TestCafe Studio Demo .. 49
Figure 24 TestCafe Console Output .. 50
Figure 25 Cypress Interface .. 50
Figure 26 Cypress Pipeline .. 55
Figure 27 TestCafe Pipeline .. 56
Figure 28 Lambdatest Dashboard .. 57
Figure 29 Lambdatest List .. 57
Figure 30 Laptop Memory .. 58
Figure 31 Laptop CPU ... 58
Figure 32 GPU ... 59

List of Tables
Table 1 Test Scenarios .. 34
Table 2 Executed test steps and results for Successfully creates new user account 35
Table 3 Executed test steps and results for Sucessfully navigate to FAQ screen 35
Table 4 Executed test steps and results for Create new service and checkout my services page 36
Table 5 Executed test steps and results for Creator successfully accepts offer and signs out 36
Table 6 Executed test steps and results for Service creator joins the collaboration and sent message 37
Table 7 Executed test steps and results for Successfully creates new user service finder account 37
Table 8 Executed test steps and results Successfully sign in with new account and makes an offer 38
Table 9 Executed test steps and results for Service finder starts collaboration and signs out 39
Table 10 Executed test steps and results for admin ... 39

Chapter 1. Introduction
Software testing is the most critical phase of software development. Software under test goes through
various phases like test analysis, test planning, test case, test execution and bug logging/tracking.
Testing is still the primary means for quality assurance today. The integration-testing phase is the most
time consuming and expensive part of testing. It is common to find software project development with
only 50% to 60% of effort in testing. There is a lot of research, which has been done so far to optimize
the overall testing process with the intent of improving quality of software at the least amount of time.

One of the tools for end-to-end testing is Cypress, which is a framework that does not use Selenium
most end-to-end tools use selenium, which is the reason why all those tools are facing the same issue.
Cypress is built on an architecture whereas Selenium executes remote commands through the network
Cypress runs in the same run-loop as the application. The other tool that is used to compare with
Cypress is TestCafe, which is a pure node js end-to-end solution for testing web applications. It takes
care of all stages such as starting the browser, running tests, gathering test results and generating test
results.

This research automates a dynamic web application – WeOffer. WeOffer is chosen as it contains
various dynamic elements and rendering, and it is created only to demonstrate the difference
between two testing frameworks such as TestCafe and Cypress.

The goals of this research are as follows:

• To create an automation script using TestCafe and Cypress.
• To develop a regression automation suite for WeOffer main business flow which are customer’s,

admin’s and service creator’s account and order checkout flow.
• To compare the test execution time between TestCafe and Cypress.
• To compare the test efficiency and test coverage between TestCafe and Cypress.
• To compare the difficulty of writing tests between TestCafe and Cypress.

There are several environments for the execution of the E2E automated tests. By simulating the user
flow from start to finish, the completion of this testing will not only validate the system under test but
will also ensure that all other systems work and behave as expected. It should also be noted that with
E2E tests, we do not need to check all possible scenarios. This is because much of the test coverage will
already have been done with the unit tests. The idea here is that we want to check that those units all
work together as they should, as an integrated user flow. Therefore, before we proceed to develop E2E
tests, we need to choose an appropriate framework that will satisfy our needs. In the remainder of the
article, let us look at the JavaScript-based testing frameworks and wrappers. The reason for focusing on
JavaScript is that most companies nowadays are making a shift-left move for testing, i.e. moving left in
the project timeline and performing tests earlier in the development lifecycle. Therefore, developers can
develop the E2E tests as part of their development practices using the language they are very familiar
with.

Problem statement
Choosing the right e2e framework for testing is a bit difficult since there are some features, which are
supported by one of them and are not supported by the other.

The main thing that developers notice when they look for a framework tool to integrate is the web
browsers that these testing frameworks support, i.e. if they support javascript or typesrcipt..
In this thesis, a web application has been used to demonstrate the integration of both end-to-end
testing frameworks, such as Cypress and TestCafe, and for each of them it has been explained in details
what features they support, writing down the advantages and disadvantages and also the cloud
integration of the created end-to-end tests to CI.

Research Field
The focus of this project centers on comparing and demonstrating the advantages and disadvantages of
two end-to-end testing frameworks such as Cypress and TestCafe on a web application built with reactJS
library and firebase.

There are many front-end application development frameworks and libraries out there for developing a
web application. One of them is ReactJs library which, for the time being, is one the most recent web
technologies. It focuses on the view part of the MVC pattern and is being widely adopted for big scale
application development. First, it has been developed by Facebook for their internal use but since it has
proved an efficient and fast library compared to other technologies, they made it an open source. When
it comes to dealing with large amounts of data and users, it has been quite successful in providing better
user experiences. Alongside Facebook, some other big organizations and applications are also using
ReactJS and React Native for their development. Instagram, Netflix, Airbnb are a few of the big names
serving smoothly enormous numbers of users worldwide. Those big names prove that ReactJS is serving
them quite well. However, as we know, an application without tests is not preferable and for that part,
we have chosen to compare two end-to-end testing frameworks, which would help that application in
the long term.

E2E testing is a technique that tests entire applications from the beginning to the end to ensure the
application flow behaves as expected. The main purpose of the end-to-end (E2E) testing is to test the
application from the end user’s experience simulating the real user scenarios and validating the system
under test and its component integration and data integrity. By end-to-end (e2e) tests many major risks
can be avoided. Software systems nowadays are complex and interconnected with numerous
subsystems. If any of these subsystems fails, the whole system could crash.

E2E testing is still the primary means for quality assurance today. However, in practice, integration
testing is often the most time consuming and expensive part of testing. E2E testing is a testing
methodology to test an application flow from start to end.

Aim of the research
The primary aim of this project is to present a freelancing web application, whereupon we will
demonstrate two testing frameworks such as Cypress and TestCafe[11]. We also aim to present a

consolidated view of the challenges while implementing e2e testing frameworks and reveal which one
of these has better performance on a real life application. In other words, we will point out the
advantages and disadvantages of these two testing [12] frameworks.

The following are the constructive (concrete) steps to achieve the aim:

• Examining the benefits of integrating E2E tests in a project.
• Identifying challenges related to the integration of the E2E testing framework.
• Identifying the advantages and disadvantages of the Cypress testing framework.
• Identifying the advantages and disadvantages of the TestCafe testing framework.
• Identifying which is the most promising framework for our web application, TestCafe or Cypress.
• Identifying which framework performs better in our application, TestCafe or Cypress.
• Identifying the differences between open-source TestCafe and TestCafe studio.
• Identifying web and mobile browsers, which support TestCafe and Cypress.

Importance of thesis
End to end testing is a very common testing methodology where the objective is to test how an
application works by checking the flow from start to end. Not only the application flow under develop
environment is tested, but the tester also has to check how it behaves once integrated with the external
interface. The importance of thesis is to get the best of two testing frameworks, to get the pros and cons
of both testing frameworks and to ensure which one is more suitable for integration on a real-life
project.

By using written tests on javascript, we will introduce the challenges that we will face from the
beginning to the end of the integrating and testing process on both frameworks.

Hypotheses
Based on the reviewed literature and the defined boundaries, we formulated our primary research
questions to narrow the field of investigation further:

• RQ1: Does Cypress or TestCafe work on CI provider?
• RQ2: Does Cypress or TestCafe require us to make changes on the existing code in order to

create automated tests?
• RQ3: Are these two frameworks, Cypress and TestCafe, open source?
• RQ4: What are the benefits of integrating E2E tests on web applications?
• RQ5: Does it cost more by integrating E2E tests and is it worth it?

The following hypotheses are intended to highlight different aspects using reactjs combo with firebase.
They provide structure and detail to the enquired topic by serving as more particular “implementations”
of research questions. Each hypothesis is followed by the rationale, as to why we chose to create the
respective hypotheses.

H1: Cypress provides a better learning curve.

H2: TestCafe offers a wide range of features compared to Cypress.

H3: In the frame of application, Cypress is faster.

Structure of thesis
Chapter 1. Introduction. This chapter provides an introduction of the research and sets the research
within a context. It summarizes the problems, importance, the reasons that have led to the
development of the thesis and gives an overview of the aim of the research, the research field and the
hypothesis raised in this thesis.

Chapter 2. Literature Review. In this chapter, the end-to-end testing concept is briefly explained along
with the frameworks of end-to-end testing. It is an overview of different testing frameworks and
different research methodologies.

Chapter 3. Research Methodology. This chapter illustrates the way research has been conducted by
presenting the steps that need to be undertaken to be able to compare Cypress and Testcafe testing
frameworks. General methods to analyze the two testing frameworks have also been mentioned here.

Chapter 4. Implementation. In this chapter, the steps that have been undertaken to obtain the results of
running Cypress and TestCafe tests have been explained in more details. Each step has been described,
and then a summary statistic of the collected data has been given.

Chapter 5. Results and discussion. This chapter presents the results achieved in this thesis. The results
have been shown and discussed. The author’s findings based on the raised hypothesis have been
discussed in detail.

Chapter 6. Recommendations. This chapter discusses the author’s recommendations in terms of which
tool offers better documentation, hence which framework to use.

Chapter 7. Conclusion. Chapter 7 summarizes the importance of the topic and presents the conclusions
from the main findings and the results achieved in this thesis. The main results and findings have been
summarized.

Bibliography

Chapter 2. Literature Review
There has been enormous work done in the area of end-to-end testing frameworks but scientific papers
about the Cypress and TestCafe testing frameworks are lacking, since these are new end to end testing
frameworks. Several researches regarding the most widely used end-to-end testing frameworks have
been presented as well as comparative studies targeting the advantages and limitations of end-to-end
testing frameworks.

End to end testing is a technique used to test whether the flow of an application right from the start is
behaving as expected. In simple terms, end-to-end testing is a methodology to test an application from
start to end.

 The main purpose of end-to-end testing is to test the complete application flow, mimic the actual
production scenario, and test application integrity with its interface. There is a traditional way of E2E
testing, which is is usually performed in an application using selenium (JAVA). It covers the end-to-end of
different applications flow in staging environment used for regression testing before release.

E2E tests are written and executed by a quality analysis (QA) team and if there [11] are any issues, they
report the bug. There has been a lot of discussion about using JS and not Java. Currently, the QA process
involves E2E testing with selenium (JAVA). However, since frontend-development is mostly based on JS
frameworks such as ReactJS, Angular, Vue, etc, there is a need to identify a JS based framework so that
the developers can write E2E tests along with development.

Developers can write end-to-end tests for a feature implemented along with unit tests in the
development phase.

Benefits of E2E tests written by developers:

• Payload regression changes: E2E tests give us a bigger picture when multiple payloads are
involved across the feature end-to-end.

• Visual regression changes: E2E tests can report that the latest design changes are failing in
Chrome but are passing in Safari and Firefox.

Available JS frameworks for E2E testing:

• WebdriverJS
• Protractor
• WebDriverIO
• NightWatchJS
• Cypress
• TestCafe

In the image below, details for each of JS testing frameworks have been provided:

Figure 1 Details for each of JS testing frameworks

Selenium-based frameworks use web driver approaches to interact with the browsers whereas the non-
selenium-based frameworks can interact with the browser directly. This is a major win for the non-
selenium-based frameworks over the former as the overhead to install drivers is not there.

TestCafe is a pure node-js end-to-end solution for testing web applications. It takes care of all stages
such as starting the browser, running tests, gathering test results and generating results.

Related Work
In his paper, the author Fransiskus Anindita Kristiawan Pramana Gentur Sutapa “Review of Automated
Testing Approach for Software Regression Testing” discuses that the most important part of software
development life-cycle is software testing, one of which is [1] regression testing. According to the
author, this method is not efficient because it is time-consuming, not reusable and prone to errors. The
results of his research show that the automated testing approach is suitable to enhance the regression
testing with some plausible options of tools such as Selenium, SAHI and robot framework. The author
further concludes that the parallel execution method is considered as a promising choice to conduct the
most efficient testing process.

Authors Jyotsna, Mukul Varshney, Shivani Garg, Abha Kiran Rajpoot on their research paper “Automated
Testing: An Edge Over Manual Software Testing” explain that software testing is a process of finding
errors while executing a program so that we get zero-defect software. [2] They also claim that the
software testing is aimed at evaluating the capability or usability of a program. Software testing is an
important means of accessing quality of software. According to them, manual testing involves a lot of
effort measured in person per month. These efforts can be reduced by using the automated testing with
specific tools.

In his paper, “E-Commerce testing framework”,, Denislav Lefterov presents the development of an
automation-based testing framework which supports and helps to implement easily new tests related
to Web platforms analogous to e-commerce applications. [3] Denislav Lefterov created scripts that
represents automated acceptance, functional and non-functional tests in which the Page Object pattern
is used to separate the tests into individual fragments and subsequently to call them in a different order
according to the test requirements and business logic. In addition, tests can be numerous, but the
elements visualized in a given functionality are similar in order to reuse the key iterations.

Da Zhang in his research paper “End to end testing [4] using integrated tools” describes an environment
for testing with Selenium and Nagios, as well as customization that he develops to incorporate Selenium
script into a Nagios executable library. In his research paper, he explains how he combined the Nagios
monitoring tool and Selenium testing tool to realize end-to-end testing using integrated tools.

“Automated Software Testing Framework ‘STASSY’” by author Denislav Lefterof presents the idea to
develop an automation-based testing framework “Stassy” - System Table Testing which supports and
helps to implement easily new tests related to web applications.[5]

This implementation includes the incoming structure: Object repository, functional libraries, global
variables and constants, data provider, test scripts, configuration files, recovery scenarios etc. with the
advantages of page object pattern and using following technologies: Java programming language, JUnit,
TestNG extended libraries. The created scripts represent automated acceptance, functional and non-
functional tests in which page object is used to separate tests into individual fragments and
subsequently call them in a different order according to the automation requirements and business
logic. According to the author, the proposed idea of the framework reduces the required time to write
and run test cases and increases their pass percentage rate by covering all the main steps in applications
of this kind. It also reduces vulnerable workload of testers.

Authors W.T. Tsai, Xiaoying Bai, Ray Paul, Weiguang Shao, Vishal Agarwal in their research paper “End-
To-End Integration Design” present a systematic E2E testing design [6] approach where they include test
specification, test case generation and tool support. The authors’ approach has the following
characteristics: It uses both black-box and white-box testing techniques, which provides sufficient
information for functional test case design, coverage analysis, result analysis, defects identification and
software evaluation. In addition, this approach supports remote project management and distributed
collaboration so that engineers and project managers can work together via the Internet.

In their case study “Evaluation of an Automated Testing Framework”, authors Abel Mendez-Porras,
Jorge Alfaro-Velasco, Alexandra Martinez reveal that the behavior of mobile applications [7] is affected
by different types of user events: events produced through GUI events generated by the device
hardware platform and events from the internet. These types of events are likely to generate bugs in
mobile applications. In addition, the use of historical bug information to find bugs in mobile applications
is complex because it requires storing information about all the bugs detected each time that other
applications are tested. As for difficulties, they listed the following: The first difficulty is to know when
there is enough information to infer, when to enter a user interaction during the testing process; the

second difficulty is that it is necessary to obtain applications that are being developed and have not yet
been tested to increase the probability of storing bugs associated with user interface features. In their
research, they have used a top-down technique to design the automated testing framework. The
advantage of using this technique, according to them, was that through a formal process, the
architecture of framework was designed to foster further research progress. This architecture was
organized into four components: an exploration environment, an inference system, a bug analyzer, and
a test storage database. In addition, in the future they plan to develop their own extrapolation
environment because they will need more control over the event-sequences automatically entered in
the applications under test.

In “Comparative review of the literature of automated testing tools”, authors [8] Anand Singh Gadwal
and Dr. Lalju Prasa selected twelve tools that are frequently used in automation testing of web-based
applications. They performed a comparative analysis on the basis of their characteristics. According to
them, in selecting tools, if the project cost is to be given higher consideration, open-source tools such as
selenium, are a better option. In their research, they conclude that thorough research is needed to
improve the quality of tools in various aspects. However, there is no single solution available by which
we can achieve complete automation testing. However, tools can be used in integration to accomplish
testing requirements.

According to authors Fatini Mobaraya and Shahid Ali, in their research paper “Technical Analysis of
Selenium and Cypress as Functional Automation Framework for Modern [9] Web Application Testing“,
Selenium framework is undeniably a powerful tool due to its huge community and support as it has
been on the market for many years. However, Cypress also gives a promising view of how the future of
the automating testing will be. It significantly eases and simplifies the automation configuration
processes and produces a better and cleaner code. With the right number of resources and support,
Cypress can be used to achieve much more. Their research relies heavily on stackoverflow, github and
Cypress official page to develop the automation scripts in Cypress. It might not be the best industry
practice yet, as it is conducted on the basis of self-study.

Chapter 3. Research Methodology
The work carried out in this thesis has to do with analyzing the two end-to-end testing frameworks,
Cypress and TestCafe, and understanding the advantages, disadvantages and the difficulty level upon
their first-time implementation on a web application built in reactjs and firebase. In addition, the
integration of an end-to-end test in CI is part of our activities.

ReactJs
React is an open-source JavaScript library that is used for building user interfaces specifically for single-
page applications. It is used for handling the view layer for web and mobile apps. React also allows us to
create reusable UI components. React was first created by Jordan Walke, a software engineer working
for Facebook. React was first deployed on [10fi] Facebook’s newsfeed in 2011 and on Instagram.com in
2012.

React allows developers to create large web applications that can change data, without reloading the
page. The main purpose of React is to be fast, scalable, and simple. It works only on user interfaces in
the application. This corresponds to the view in the MVC template. It can be used with a combination of
other JavaScript libraries or frameworks, such as Angular JS in MVC.

React JS is also called simply React or React.js.

Now, the main question is why one should use React. There are so many open-source platforms for
making the front-end web application development easier, like Angular. Let us take a quick look at the
benefits of React over other competitive technologies or frameworks. With the front-end world-
changing daily, it is hard to devote time to learning a new framework – especially when that framework
could ultimately become a dead end. So, if you are looking for the next best thing but you are feeling a
little bit lost in the framework jungle, I suggest checking out React.

1. Simplicity

ReactJS is just simpler to grasp right away. The component-based approach, well-defined lifecycle, and
use of just plain JavaScript make React very simple to learn, build a professional web (and mobile
applications), and support it. React uses a special syntax called JSX, which allows you to mix HTML with
JavaScript. This is not a requirement; developers can still write in plain JavaScript but JSX is much easier
to use.

2. Easy to learn

Anyone with some basic previous knowledge in programming can easily understand React while Angular
and Ember are referred to as ‘Domain-specific Language’, implying that it is difficult to learn them. To
react, you just need basic knowledge of CSS and HTML.

3. Native Approach

React can be used to create mobile applications (React Native). Moreover, React is a diehard fan of
reusability, meaning extensive code reusability is supported. Therefore, we can make IOS, Android and
Web applications at the same time.

4. Data Binding

React uses one-way data binding and an application architecture called Flux. It controls the flow of data
to components through one control point – the dispatcher. It is easier to debug self-contained
components of large ReactJS apps.

5. Performance

React does not offer any concept of a built-in container for dependency. You can use Browserify,
Require JS, ECMAScript 6 - modules that we can use via Babel, ReactJS-di to inject dependencies
automatically.

6. Testability

ReactJS applications are super easy to test. React views can be treated as functions of the state, so we
can manipulate with the state we pass to the ReactJS view and take a look at the output and triggered
actions, events, functions, etc.JSX

In React, instead of using regular JavaScript for templating, JSX is sused. JSX is a simple JavaScript that
allows HTML quoting and uses these HTML tag syntaxes to render subcomponents. HTML syntax is
processed into JavaScript calls of React Framework. We can also write in pure old JavaScript.

Single-Way data flow

In React, a set of immutable values are passed to the component’s renderer as properties in its HTML
tags. The component cannot directly modify any properties but can pass a call back function with the
help of which we can do modifications. This complete process is known as “properties flow down;
actions flow up”.

Firebase
Firebase is a Backend-as-a-Service — BaaS — that started as an YC11 startup and grew up into a next-
generation app-development platform on Google Cloud Platform.

Firebase frees developers to focus on designing fantastic user experiences. You do not need to manage
servers. You do not need to write APIs. Firebase is your server, your API and your datastore, all written
so generically that you can modify it to suit most needs. You will occasionally need to use other bits of
the Google Cloud for your advanced applications. Firebase cannot be everything to everybody. However,
it gets close.

1. Realtime Databases

Real-time data is the way of the future. Nothing compares to it.

Most databases require you to make HTTP calls to get and synchronize your data. Most databases give
you data only when you ask for it.

When you connect your app to Firebase, you are not connecting through normal HTTP. You are
connecting through a WebSocket. WebSockets are much, much faster than HTTP. You do not have to
make individual WebSocket calls, because one socket connection is plenty. All of your data syncs
automatically through that single WebSocket as fast as your client’s network can carry it.

Firebase sends you new data as soon [18] as it is updated. When your client saves a change to the data,
all connected clients receive the updated data almost instantly.

2. File Storage

Firebase Storage provides a simple way to save binary files — most often images, but it could be
anything — to Google Cloud Storage directly from the client!

Firebase Storage has its own system of security rules to protect your GCloud bucket from the masses,
while granting detailed write privileges to your authenticated clients.

3. Authentication

Firebase auth has a built-in email/password authentication system. It also supports OAuth2 for Google,
Facebook, Twitter and GitHub. We will focus on email/password authentication for the most part.
Firebase’s OAuth2 system is well documented and mostly copy/pasted.

If you have ever written an authentication system, let us commiserate for a moment. Custom
authentication is terrible. I will never write an auth system again for as long as I live. I fell in love with
Firebase Auth at first sight, and the flame has never wavered. Sometimes I get frustrated. Sometimes we
fight. But I never forget the cold, dark abyss of a custom auth system. I count my blessings. 4. Hosting

Firebase includes an easy-to-use hosting service for all your static files. It serves them from a global CDN
with HTTP/2.

And to make your development particularly painless, Firebase hosting utilizes Superstatic, which you can
run locally for all your testing.

The BrowserSync + Superstatic development environment is slick. BrowserSync handles reloading your
development app across all connected devices and Superstatic replicates Firebase hosting locally in such
a way that you can deploy straight to Firebase for production use.

5. Fully Featured App Platform

The Firebase team has integrated a bunch of new and existing Google products with Firebase. I do not
plan to cover these features in detail quite yet…

A bunch of these features applies to iOS and Android but not to web.

• Remote Config
• Test Lab
• Crash
• Notifications
• Dynamic Links
• AdMob

6. Firebase Pros & Cons

Pros

• Email & password, Google, Facebook, and Github authentication
• Realtime data
• Ready-made api
• Built in security at the data node level
• File storage backed by Google Cloud Storage
• Static file hosting
• Treat data as streams to build highly scalable applications
• Do not worry about your infrastructure!

Cons

• Limited query abilities due to Firebase’s data stream model
• Traditional relational data models are not applicable to NoSQL; therefore, your SQL chops will

not transfer

No on-premise installation

Selected tools
This research uses two automation tools to develop the automation scripts which are TestCafe and
Cypress. TestCafe is selected as it is one of the open sourced tools in automating web application
while Cypress is selected as it offers a new way in automating modern web application. Cypress
is initially a primary work of Brian Mann, a developer who felt testing dynamic websites has
been tedious due to inefficient automation test execution.

He then conducted a survey on the challenges automation developers faced while testing current
web application. Based on the collected data, automation developers expressed that most of the
debugging time was spent on synchronizing wait with page loads, though the time should

actually be spent on writing more test scripts. Due to these concerns, Cypress was developed and
founded in year 2015.

Figure 2 Benefits of Cypress

Figure 3 Benefits of Testcafe

Chapter 4. Implementation
The conducted steps were defined in the third Implementation chapter, while in this chapter there is a
detailed description regarding how the steps were conducted during the implementation phase.

Project Execution
There are some requirements before the implementation of the E2E tests such as system requirements.
Cypress is a desktop application that is installed on your machine and supports the following operating
systems:

• macOS 10.9 and above (64bit only)
• Linux Ubuntu 12.04 and above
• Windows 7 and above

In this project, we have used npm and for this Cypress supports Node.js 10, 12 and above versions.
Installation of Cypress is very easy npm install Cypress --save-dev this command will install Cypress
locally as a dev dependency for your project. Best practice to install Cypress is with npm also this
approach is recommended by Cypress documentation itself because Cypress is versioned like any other
dependency and it simplifies running Cypress in Continuous integration.

Opening Cypress

npx Cypress open but in our case we have edited package json script and for that reason in this project
we can open it with a simple command like: npm run Cypress-headless which will run the Cypress
headless which means hides the browser instead showing the browsers, and by default Cypress headless
run in electron.

Figure 4 Cypress Runner

This is the interface of Cypress when you run it with the command npm run Cypress which gives us a
user friendly interface where all our test scenarios folder are listed.

In addition, Cypress gives you a simple way to see the project settings by just clicking the settings link,
which opens a new tab like the picture below:

Figure 5 Cypress Settings

Here you can edit project configuration, node.js version, proxy settings, file opener preferences and
experiments.

Opening TestCafe

You can install TestCafe from npm globally or locally in your project.

Local installation should be preferred for continuous integration systems, Node.js applications and other
scenarios where global installation is not required.

Local installation makes your project setup easier: npm install executed in the project directory installs
all dependencies including TestCafe.

Different projects can use different local TestCafe versions.

You can also run TestCcafe without prior installation. However, this is not recommended for regular use.

Global installation of TestCafe: npm install -g TestCafe

Local installation of TestCafe: npm install –save-dev TestCafe

Test Structure
By collecting information about different open source projects on GitHub the test structure for TestCafe
is like below:

Each test has been separated in functions, by this we ensure that we can reuse each executable test that
has been written.

Figure 6 Selectors

User credentials are the selectors for the login screen and logout screen such as password, username
etc. In this way, we have implemented for all the screens and we have implemented it in Cypress in the
same way.

Figure 7 Service Creator Selector

Test scenarios
Test scenarios of this research are defined as in Table 1 below while Table 2 shows the detailed test
steps for test execution. As mentioned earlier, this research will automate the two key functionalities of
WeOffer, the service creator and service finder. Thus, the following test scenarios are derived to cover
the functionality of each feature.

Table 1 Test Scenarios

Service Creator Successfully creates new user account

Successfully navigate to FAQ screen

Create new service and checkout my services
page

Creator successfully accepts offer and signs out

Service creator joins the collaboration and sent
message

Service Finder Successfully creates new user service finder
account

Successfully sign in with new account and makes
an offer

Service finder starts collaboration and signs out

Admin Admin Deletes Account

Table 2 Executed test steps and results for successfully creates new user account

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual Result Status

Successfully
creates new
user account

1. Open browser

2. Navigate to
we offer url

3. Click
hamburger
menu icon

4. Click
username input.

5. Type random
username

6. Click
password input

7. Click register
button.

8. Logout

Localhost:3000

Email:
Cypressrandom
email that is
generated.
password:

B123456b

Service
creator
successfully
create new
account

As expected Pass

Table 3 Executed test steps and results for Successfully navigate to FAQ screen

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual
Result

Status

Successfully
navigate to
FAQ screen

1. Open
browser

2. Navigate to
we offer url/
faq.

localhost:3000/faq Successfully
navigate to
faq screen

As expected Pass

Table 4 Executed test steps and results for Create new service and checkout my services page

Test
Scenarios

Test Steps Test Data Expected
Result

Actual Result Status

Create new
service and
checkout my
services page

1. Open
browser

2. Navigate to
we offer url

3. Sign is as user
creator with the
newly created
account.

4. Navigate to
my service page.

5. Create new
service.

6. Navigate to
home page

7. Logout

Service creator
email and
password,

Service title,
service price,
service url.

Successfully
creates new
service and
navigates to
home page.

As expected Pass

Table 5 Executed test steps and results for Creator successfully accepts offer and signs out

Test
Scenarios

Test Steps Test Data Expected
Result

Actual Result Status

Creator
successfully
accepts offer
and signs out

1. Open
browser

2. Navigate to
we offer url

3. Sign in

4. Navigate to
offer screen

5. Accept offer

- Successfully
accepts offer
and signs out

As expected Pass

6. Sign out

Table 6 Executed test steps and results for Service creator joins the collaboration and sent message

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual Result Status

Service
creator joins
the
collaboration
and sent
message

1. Open
browser

2. Navigate to
we offer url

3. Sign in

4. Navigate to
offer screen

5. Join
collaboration

6. Send
message

7. Logout

- message Successfully
creator joins
the
collaboration
and sent
message

As expected Pass

Table 7 Executed test steps and results for successfully creates new user service finder account

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual
Result

Status

Successfully
creates new
user service
finder
account

1. Open
browser

2. Navigate to
we offer url

3. Click
hamburger
menu icon

4. Click

Localhost:3000

Email:
Cypressrandomfinder
email that is
generated.
password:

B123456b

Successfully
creates new
user service
finder
account

As expected Pass

username
input.

5. Type
random
username

6. Click
password
input

7. Click register
button.

8. Logout

Table 8 Executed test steps and results Successfully sign in with new account and makes an offer

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual Result Status

Successfully
sign in with
new account
and makes
an offer

1. Open
browser

2. Navigate to
we offer url

3. Click specific
service

4. Make the
offer

5. Log out

Offer title, offer
description and
offer price

Successfully
sign in with
new account
and makes
an offer

As expected Pass

Table 9 Executed test steps and results for Service finder starts collaboration and signs out

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual Result Status

Service finder
starts
collaboration
and signs out

1. Open
browser

2. Navigate to
we offer
collaboration
screen

3. Starts
collaboration

4.Logout

- Service finder
starts
collaboration
and signs out

As expected Pass

Table 10 Executed test steps and results for admin

Test
Scenarios

Test Steps

Test Data Expected
Result

Actual Result Status

Admin 1. Open
browser

2. Navigate to
we offer url

3. Click
hamburger
menu icon

4. Click
username input.

5. Type random
username

6. Click
password input

Username and
password from
env variables

Successfully
deletes
created users

As expected Pass

Running scripts
Custom scripts are created in order to run E2E tests. For running Cypress test we have created a bash
script from where we generate new users and service title. Meanwhile, in TestCafe we generate users
while running tests by the help of selectors.

Figure 8 Cypress Custom Script

Figure 9 Package Json Script

There are more than one way where you want to run E2E test, either locally or on any other
environment such as production or develop(testing environment).

With npm run e2e we are able to run all the TestCafe tests except for the admin test scenarios. In this
case, we need to SET our environment variables for admin email and admin password in order to run all

tests via npm run e2e command. The same method is also implemented in Cypress tests, which we run
with npn run Cypress-headless command.

Difference between test scenarios
The same logic is used for both testing frameworks in order to get the best results:

1. Successfully creates new user account code in TestCafe

Figure 10 Testcafe New User Flow

Here we call a function which is placed at Utils folder:

Figure 11 Testcafe flow for creation of service

The same logic has been used also with Cypress scenario:

Figure 12 Cypress create new service creator account

Figure 13 Cypress for creator logic on Utils folder

2. Navigation to faq screen:

TestCafe:

Figure 14 Faq Navigation Testcafe

Cypress:

Figure 15 Faq Navigation Cypress

3. CreateServiceFinderUser

TestCafe:

Figure 16 New service creation TestCafe

Cypress:

Figure 17 Cypress creation of service

4. Find desired service:

TestCafe:

Figure 18 Desired Service Finder TestCafe

Cypress:

Figure 19 Desired Service Finder Cypress

5. Collaboration

TestCafe:

Figure 20 Collaboration Testcafe

Cypress:

Figure 21 Collaboration Cypress

Difference between Cypress and TestCafe
Both of these frameworks are open source written in javascripts. They run partially in the browser and
partially in node.js. Cypress and TestCafe are transparently retry assertions, which eliminates a lot of the
flakiness associated with Selenium based tests.

Both frameworks are under heavy development with very responsive developers and similar sized
communities.

Cypress framework uses Mocha for running tests with Chai for assertions and sinon for mocking. By this,
it allows developers to feel like they are in their home. TestCafe uses its own test runner, which is a bit
strange, because it refers to a group of tests as a fixture. In addition, TestCafe makes you to use
promises async and await to manage execution.

There are different ways on how these two frameworks serve the test site. TestCafe works by serving via
a proxy server, where the server injects scripts into the webpage, which can inspect and control all
elements on page. It also supports the interaction between native alerts, which means TestCafe also
works in mobile devices and cloud services like Browserstack and Lambdatest. On the other hand,
Cypress works by controlling the web browser via its proprietary automation APIs. Cypress runs test
code in the web browser process whereas TestCafe runs it in node, which means Cypress has access to
the real DOM elements. In TestCafe communication between tests and DOM must be serialized.

TestCafe tests run in Node, and by this you can call out to parts of your node server application directly
from the tests. This is useful and helps clean database fixtures or events starting and stopping the test
server. In Cypress, we are limited to communication with the app via HTTP or executing shell commands.

Selector difference between Cypress and TestCafe
TestCafe uses standard CSS selectors to find elements, meanwhile Cypress uses jQuery selectors which
have some extra capabilities such as :first, :parent. On the other side, TestCafe has framework specific
extensions for React, Angularm Aurelia, VUE that let you use component names as selectors.

TestCafe offers automation selector finder. TestCafe-Studio is a cross-platform IDE for end-to-end web
testing. You can record tests visually within your favorite browser, edit scripts in its IDE-like interface,
and execute tests across different browsers, platforms, and devices. This platform is free only for 30
days; meanwhile Cypress offers you selector finder for free and is more efficient.

Figure 22 TestCafe Studio

Figure 23 TestCafe Studio Demo

Console Output
TestCafe has a nice console output for test failures, which shows the exact place where the tests have
failed.

Figure 24 TestCafe Console Output

Cypress has an extra feature by having a dedicated electron app that shows your tests side by side with
a site under test. By this, we can have more details about which exact step the test scenario has failed
in.

Figure 25 Cypress Interface

Supported browser
Officially supported web browser by TestCafe:

• Google Chrome: Stable, Beta, Dev and Canary
• Internet Explorer (11+)
• Microsoft Edge (legacy and Chromium-based)
• Mozilla Firefox
• Safari
• Google Chrome mobile
• Safari mobile

Officially supported web browser by Cypress

• Canary.
• Chrome.
• Chromium.
• Edge.
• Edge Beta.
• Edge Canary.
• Edge Dev.
• Electron.
• Firefox.
• Firefox Developer Edition
• Firefox Nightly

Advantages and disadvantages between Cypress and TestCafe
TestCafe

Table 11.

Advantages Disadvantages

Really good documentation The only disadvantage is that it is still under
development

Huge community and contributors

Fast and reliable

No selenium WebDriver needed to run tests

Standard css selectors

React selector extension

Parallel execution

Synchronization handled by framework

Live reload/retest

Allow interacting with native alerts

Debug command for easy test debugging

Screenshot/Videos on fail

Javascript errors

Cross browser support

Jenkins error reporting integrated

Headless browser

Integrates easily with Borwserstack and
SauceLabs

TestCafe studio- record and playback tool

Cypress

Table 12.

Advantages Disadvantages

Really good documentation No integration with Browserstack or SauceLabs

Huge community. Error reporting needs more improvement

Fast and reliable

No selenium WebDriver needed to run tests

JQuery selectors

Easy debugging in the Cypress UI

Parallel execution

Synchronization handled by framework

Live reload/retest

Headless browser

Debug command for easy test debugging

Screenshot/Videos on fail

Javascript errors

Cross browser support

Open source

Possibility to go to previous state (visually)

TestCafe Pros Cypress Pros

Table 13.

Really good documentation Possibility to go to previous state (visually)

Huge community and contributors Really good documentation

Fast and reliable Huge community.

No selenium WebDriver needed to run tests Fast and reliable

Standard css selectors No selenium WebDriver needed to run tests

React selector extension JQuery selectors

Parallel execution Easy debugging in the Cypress UI

Synchronization handled by framework Parallel execution

Live reload/retest Synchronization handled by framework

Allow interacting with native alerts Live reload/retest

Debug command for easy test debugging Headless browser

Screenshot/Videos on fail Debug command for easy test debugging

Javascript errors Screenshot/Videos on fail

Cross browser support Javascript errors

Jenkins error reporting integrated Cross browser support

Headless browser Open source

Integrates easily with Borwserstack and
SauceLabs

TestCafe studio- record and playback tool

Based on the above-mentioned, we come to a conclusion that TestCafe offers a more similar approach
to pure JS, because you get the values from a page and then you assert that those values are correct. On
the other hand, Cypress offers a more user oriented approach, when you select the element you want to
interact with and you have to do the assertion on the spot.

Continuous Integration
Running cypress in continuous integration is similar to running Cypress locally in our terminal. In general,
all what we have to do is to install cypress and run cypress.

Depending on what CI provider you are using, there are different ways to create a config file. Typically,
first we boot a local server before running the server. A wait-on module has been installed in order to
block the cypress run command from being executed until the server has booted: npm start & wait-on
http://localhost:3030

Code snipped:

cypress_e2e:

 stage: cypress_e2e

 image:

 name: cypress/base:10

 script:

 - echo $CI_SERVER_HOST

 - npm install cypress

 - npm install wait-on

 - npx wait-on https://weoffer.tech

 - bash ./runCypress.sh run

 artifacts:

 when: always

 paths:

 - cypress/videos/**/*.mp4

 - cypress/screenshots/**/*.png

 expire_in: 1 day

 only:

 - develop

Figure 26 Cypress Pipeline

Same as Cypress we can integrate TestCafe

testcafe_e2e:

 stage: testcafe_e2e

 image:

 name: testcafe/testcafe

 entrypoint: ['/bin/sh', '-c']

 script:

 - echo $CI_SERVER_HOST

 - npm install wait-on

 - npx wait-on https://we-offer.herokuapp.com/

 - /opt/testcafe/docker/testcafe-docker.sh "chromium:headless --no-sandbox" -a "npm run start-
dev" tests/testcafe/

 only:

 - develop

Figure 27 TestCafe Pipeline

Cloud Testing
Cloud Testing is a type of software testing in which the software application is tested using cloud-
computing services. The purpose of Cloud testing is to test the software for functional as well as non-
functional requirements using cloud computing which [19] ensures faster availability with scalability and
flexibility to save time and cost for software testing.

Cloud computing is an internet-based platform that renders various computing services like hardware,
software and other computer related services remotely.

From the selected frameworks in our thesis, only TestCafe supports full integration of cloud testing such
as LambdaTest or BrowserStack. In addition, the integration of Lambdatest has been made in this thesis.

LambdaTest, a cloud-based, cross browser testing platform is out with an npm plugin that would allow
you to integrate TestCafe with your LambdaTest account. That way, you can expand your test coverage
using LambdaTest Selenium Grid of 2000+ real browsers, and browser versions running across various
operating systems for mobile, desktop, and tablets. Similar to TestCafe, LambdaTest Selenium Grid also
allows you to perform parallel testing.

Figure 28 Lambdatest Dashboard

Figure 29 Lambdatest List

Figure 31 Laptop CPU

Chapter 5. Results and discussion
With the completion of the implementation phase (collecting the necessary data and applying sentiment
analysis), for these test scenarios only a specific laptop has been used with the following performances:

Figure 30 Laptop Memory

Figure 32 GPU

TestCafe (headless Chrome)
Table 14.

Successfu
lly
creates
new user
account(t
est file)

Successf
ully
navigate
to FAQ
screen

Create
new
service
and
checko
ut my
service
s page

Successf
ully
creates
new user
service
finder
account

Successf
ully sign
in with
new
account
and
makes an
offer

Creator
successfu
lly
accepts
offer and
signs out

Service
finder
starts
collaborat
ion and
signs out

Service
creator
joins the
collaborat
ion and
sent
message

Admi
n
Delet
es
Accou
nt

10036 936 11066 9361 13288 12286 17334 11074 7102

10036 3987 11043 8846 13335 13326 19279 13376 11805

10080 3956 10773 8924 10448 13020 14407 11476 10203

10122 3972 11425 9458 13407 12074 19531 11424 10249

10063 1114 11433 9041 14293 12257 17302 11156 10046

10062 3968 11128 11219 10358 12348 17322 11084 10139

7120 3959 11439 9357 13400 12158 17569 10906 10676

10040 4035 11241 9644 15135 14757 17302 11593 10263

10128 1098 11528 9017 13445 12118 17170 8556 10158

10461 3980 11194 9006 13407 12365 17377 11462 10188

In table 14 tests were run 10 times in order to get the average speed of each test scenario by table 14
and table 15 we can se that each test scenario on each test run is approximately close to 10 time result.
By running testcafe test scenarios, we can see that for test scenario number one which is “Successfully
creates new user account (test file)”, the average for running the test is 9.814 seconds. For the second
test scenario, “Successfully navigate to FAQ screen”, the average is 3.1 seconds, which means this is the
lightest test scenario on this project; it only contains the navigation to faq screen. “Create new service
and checkout my services page” is the third test scenario where service creator creates its own first
service and it was executed on an average of 11.227 seconds, which is somewhat long for a test file.

The fourth test scenario, “Successfully creates new user service finder account” produced an average of
9.387 seconds after being run for ten times. On the fifth one, “Successfully sign in with new account and
makes an offer”, we have an average of 13.051 sec. “Creator successfully accepts offer and signs out”
averages at 12.670 seconds; “Service finder starts collaboration and signs out” - 17.459 seconds;
“Service creator joins the collaboration and sent message” - 11.210 seconds; “Admin Deletes Account” -
10.082 seconds.

After running TestCafe test for 10 times, we have the following results for each test that was executed:

Table 15.

Test
name
:

Successf
ully
creates
new
user
account(
test file)

Successful
ly
navigate
to FAQ
screen

Creat
e new
servic
e and
check
out
my
servic
es
page

Successf
ully
creates
new
user
service
finder
account

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

Aver
age

9814.8 3100.5 11227 9387.3 13051.6 12670.9 17459.3 11210.7 1008
2.9

Total
Sec.

9.814 3.100 11.22
7

9.387 13.051 12.670 17.459 11.210 10.08
2

The arithmetic average test speed for TestCafe is 1.633 min.

The geometric average test speed for tescafe is 0.750 min.

Cypress (headless chrome)
In the table below are listed the results of Cypress tests in MS (milliseconds).

Table 16.

Test
nam
e:

Successf
ully
creates
new user
account(
test file)

Successf
ully
navigate
to FAQ
screen

Create
new
servic
e and
check
out
my
servic
es
page

Successf
ully
creates
new
user
service
finder
account

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

 5638 399 6905 5628 3965 5068 3408 3637 3901

 5662 401 6846 5624 3955 5109 3359 3693 3883

 5626 398 6936 5668 4023 4993 3521 3693 3818

 5709 404 7027 5610 4081 5000 3369 3869 3838

 5714 390 7063 5638 3848 5319 3393 3705 3816

 5754 399 7066 5602 3995 5022 3408 3996 3819

 5688 395 7239 5726 3925 5086 3382 3726 3867

 5688 400 7239 5726 3925 5086 3382 3726 3867

 5646 400 6903 5548 4036 4991 3367 3712 4264

 5646 395 6903 5548 4036 4991 3367 3712 4264

On the table 14, tests were run 10 times in order to get the average speed of each test scenario. From
table 16 and table 17 we can see that each test scenario on each test run on Cypress is approximately
close to 10 time result. By running Cypress test scenarios, we can see that for test scenario number one,
which is “Successfully creates new user account (test file)”, the average for running the test was 5.677
seconds. For the second test scenario, “Successfully navigate to FAQ screen” the average is 0.391
seconds, which means this it is the lightest test scenario on this project; it only contains the navigation
to faq screen. The third, “Create new service and checkout my services page” is the test scenario where
service creator creates its own first service and it was executed on a average 7.012 seconds which for a
test file is a little bit too much.

The fourth, “Successfully creates new user service finder account” we got the average of 5.631 seconds
after running the same test scenario for the 10th time. On the fifth one, “Successfully sign in with new
account and makes an offer” we have an average of 3.978 sec. “Creator successfully accepts offer and
signs out” achieved an average of 5.066 seconds; “Service finder starts collaboration and signs out” -
3.395 seconds; “Service creator joins the collaboration and sent message” - 3.749 seconds; “Admin
Deletes Account” - 3.933 seconds.

After running TestCafe test 10 times we have the following results for each test that was executed:
Table 17.

Test
name
:

Successf
ully
creates
new
user
account(
test file)

Successf
ully
navigate
to FAQ
screen

Creat
e new
servic
e and
check
out
my
servic
es
page

Successf
ully
creates
new
user
service
finder
account

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

Avera
ge

5677.1 398.1 7012.
7

5631.8 3978.9 5066.5 3395.6 3746.9 3933.
7

Total
in
secon
ds

5.677 0.391 7.012 5.631 3.978 5.066 3.395 3.749 3.933

The arithmetic average test speed for cypress is 0.707min.

The geometric average test speed for cypress is 0.711min.

Difference between Cypress and TestCafe in chrome headless
Table 18.

Test
name:

Successf
ully
creates
new
user
account(
test file)

Successf
ully
navigat
e to
FAQ
screen

Creat
e new
servic
e and
check
out
my
servic
es
page

Successf
ully
creates
new
user
service
finder
account

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

TestCa
fe

9.814 3.100 11.22
7

9.387 13.051 12.670 17.459 11.210 10.08
2

Cypres
s

5.677 0.391 7.012 5.631 3.978 5.066 3.395 3.749 3.933

Differe
nce

4.137 2.709 4.215 3.756 9.073 7.604 14.064 7.461 6.149

Table 19.

Total TestCafe Cypress

S(seconds) 98 42.422

Min(minutes) 1.633 0.707

By running all tests both Cypress and Testcafe headless in Chrome browser on our web application, we
can clearly see the difference between these two.

On the first test case, “Successfully creates new user account” Testcafe was able to run the test for
4.137 seconds slower than Cypress with 5.677 seconds. One of the main differences is that cypress runs
test code in browser process whereas TestCafe runs it in Node. This means Cypress tests have access to
real DOM elements but in TestCafe communication between your tests and the DOM must be serialized.

Successfully navigate to FAQ screen was run by TestCafe for 3.100 seconds and Cypress 0,391 seconds
with a huge difference of 2.709 seconds. In “Create new service and checkout my services page”,
TestCafe is slower than Cypress by 4.215 seconds. In “Successfully creates new user service finder

account”, TestCafe run tests for 9.387 seconds and Cypress for 5.631 seconds, even on this test scenario
TestCafe is slower than Cypress by 3.756 seconds.

In “Successfully sign in with new account and makes an offer”, Cypress is faster than TestCafe by 9.073
seconds, Moreover, on all the 3 remaining test scenarios, Cypress was faster than Testcafe. In “Creator
successfully accepts offer and signs out”, Cypress was faster by 7.604 seconds; In “Service finder starts
collaboration and signs out” it was faster by 14.065 seconds; In “Service creator joins the collaboration
and sent message” it was faster by 7.461 and in running the admin tests, Cypress was faster than
TestCafe by 6.149 seconds.

By running all test scenarios in both Cypress and Testcafe, we can conclude that Cypress is faster than
Testcafe by 55.578 seconds.

TestCafe (headless Firefox)
In the table below are listed the results of TestCafe tests in MS (milliseconds).

Table 20.

Successfu
lly
creates
new user
account(t
est file)

Successf
ully
navigate
to FAQ
screen

Create
new
service
and
checko
ut my
service
s page

Successf
ully
creates
new user
service
finder
account

Successf
ully sign
in with
new
account
and
makes an
offer

Creator
successfu
lly
accepts
offer and
signs out

Service
finder
starts
collaborat
ion and
signs out

Service
creator
joins the
collaborat
ion and
sent
message

Admi
n
Delet
es
Accou
nt

9045 4379 13 6949 14049 10621 17605 11986 16421

7915 4082 13267 10226 15780 13133 18203 9204 11837

9112 4169 13435 7041 13991 14701 18931 12354 12606

11810 4107 13963 12788 12007 13071 19392 12373 12600

10988 5376 16952 6938 15225 12861 17786 12531 14505

11518 1279 13043 6910 13165 14854 28438 24049 14433

7951 1175 13199 6671 11374 10244 17697 12263 12786

8044 4152 13515 6946 11812 9978 15485 9430 9983

7871 4049 13150 6714 14380 12931 15087 9639 10416

8185 1015 13209 6866 15000 10442 18027 9389 10100

After running TestCafe 10 times, we have the following results for each test that was executed:

Table 21

Test
name
:

Successf
ully
creates
new
user
account(
test file)

Successful
ly
navigate
to FAQ
screen

Create
new
service
and
checko
ut my
services
page

Succes
sfully
create
s new
user
servic
e
finder
accou
nt

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

Aver
age

9243.9 3378.3 13703.4 7804.9 13678.3 12283.6 18665.1 12321.8 1256
8.7

Total
in
sec.

9.243 3.367 13.703 7.804 13.678 12.283 18.665 12.321 12.56
8

On table 20, tests were run 10 times in order to get the average speed of each test scenario. From table
20 and table 21, we can see that each test scenario on each test run on TestCafe is approximately close
to 10 time result. By running TestCafe test scenarios, we can see that for test scenario number one
which is “Successfully creates new user account (test file)”, the average for running the test was 9.243
seconds. For the second test scenario, “Successfully navigate to FAQ screen”, the average was 3.367
seconds, which means this it is the lightest/fastest (???) test scenario on this project; it only contains the
navigation to faq screen. The third, “Create new service and checkout my services page” is the test
scenario where service creator creates its own first service and it was executed at an average of 13.703
seconds, which for a test file is a little long.

The fourth, “Successfully creates new user service finder account” after running the same test scenario
for ten times, we got the average of 7.804 seconds. In the fifth one, we have “Successfully sign in with
new account and makes an offer” with an average 13.678 seconds. “Creator successfully accepts offer
and signs out” had an average of 12.283 seconds. “Service finder starts collaboration and signs out” -
18.665 seconds; “Service creator joins the collaboration and sent message” - 12.321 seconds; “Admin
Deletes Account” - 12.568 seconds.

The average test speed for TestCafe run on Firefox headless is 1.727 min

Cypress (headless Firefox)
In the table below are listed the results of TestCafe tests in MS (milliseconds).

Table 22.

Successfu
lly
creates
new user
account(t
est file)

Successf
ully
navigate
to FAQ
screen

Create
new
service
and
checko
ut my
service
s page

Successf
ully
creates
new user
service
finder
account

Successf
ully sign
in with
new
account
and
makes an
offer

Creator
successfu
lly
accepts
offer and
signs out

Service
finder
starts
collaborat
ion and
signs out

Service
creator
joins the
collaborat
ion and
sent
message

Admi
n
Delet
es
Accou
nt

5556 635 7021 5255 4663 4706 4440 4789 3219

5846 883 7097 5310 4828 4668 4734 4768 3052

5782 1025 7071 5303 4709 4898 4737 5132 3150

5873 909 7000 5402 4567 4678 4933 4969 3262

5808 946 6855 5298 4654 4942 4848 4903 3179

5945 1016 6911 5372 5304 4752 4809 4845 3318

5511 633 6800 5273 4642 5004 4705 4883 3142

5725 1019 6925 5251 4991 5146 4350 4487 3166

5701 894 7059 5228 4812 4455 4310 4920 3042

5530 635 6969 5727 5292 4724 4193 4815 3185

On table 22, tests were run 10 times in order to get the average speed of each test scenario. From table
22 and table 23 we can see that each test scenario on each test run on Cypress results are
approximately close to 10 time result. By running Cypress test scenarios, we can see that for test
scenario number one, which is “Successfully creates new user account(test file)” the average for
running the test was 5.727 seconds. For the second test scenario, “Successfully navigate to FAQ screen”,
the average was 0.859 seconds, which means that this is the lightest/fastest (???) test scenario on this
project, it only contains the navigation to faq screen. The third, “Create new service and checkout my
services page” is a test scenario where service creator creates its own first service and it was executed at
an average of 6.970 seconds, which for a test file is a little too long.

The fourth, “Successfully creates new user service finder account” we got the average of 5.341 seconds
after running the same test scenario for ten times. On the fifth one, “Successfully sign in with new
account and makes an offer” we have an average of 4.846 seconds. “Creator successfully accepts offer
and signs out” got an average of 4.797 seconds. “Service finder starts collaboration and signs out” -
4.605 seconds; “Service creator joins the collaboration and sent message” - 4.851 seconds; “Admin
Deletes Account” - 3.171 seconds.

After running Cypress headless test 10 times, we have the following results for each test that was
executed:

Table 23.

Test
name
:

Successf
ully
creates
new
user
account(
test file)

Successful
ly
navigate
to FAQ
screen

Create
new
service
and
checko
ut my
services
page

Succes
sfully
create
s new
user
servic
e
finder
accou
nt

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

Aver
age

5727.7 859.5 6970.8 5341.9 4846.2 4797.3 4605.9 4851.1 3171.
5

Total
in
seco
nds

5.727 0.859 6.970 5.341 4.846 4.797 4.605 4.851 3.171

The arithmetic average test speed for Cypress is 0.686 min

The geometric average test speed for Cypress is 0.690 min

Difference between Cypress and TestCafe in Firefox headless
Table 24.

Test
name:

Successf
ully
creates
new
user
account(
test file)

Successf
ully
navigat
e to
FAQ
screen

Creat
e new
servic
e and
check
out
my
servic
es
page

Successf
ully
creates
new
user
service
finder
account

Successf
ully sign
in with
new
account
and
makes
an offer

Creator
successf
ully
accepts
offer
and
signs
out

Service
finder
starts
collabora
tion and
signs out

Service
creator
joins the
collabora
tion and
sent
message

Admi
n
Delet
es
Acco
unt

TestCa
fe

9.243 3.367 13.70
3

7.804 13.678 12.283 18.665 12.321 12.56
8

Cypres
s

5.727 0.859 6.970 5.341 4.846 4.797 4.605 4.851 3.171

Differe
nce

3.516 2.508 6.733 2.463 8.832 7.486 14.06 7.47 9.397

Table 25.

Total TestCafe Cypress

S(seconds) 103.632 41.167

Min(minutes) 1.727 0.686

Difference running test scenarios between chrome and firefox
Table 26.

Total TestCafe Cypress

Chrome 1.633 0.707

Firefox 1.727 0.686

On the table above, we can see that Cypress test run time results are slower in Chrome and faster in
Firefox.

Testcafe test run time is faster in Chrome.

Based on all of these results, we can see that Cypress is faster than TestCafe for 0.926 minutes even in
Firefox browser. Note: all these tests were runin headless mode in Chrome and Firefox, which are the
most widely used browsers to date.

Chapter 6. Recommendations
After reading the documentation of both frameworks, Cypress and TestCafe, and going through
different open source projects, I started to implement them into my web application built in ReactJS and
Firebase. The best way to handle end-to-end test structure is by dividing them into functions, which
provides the easiest way to read the code.

DRY
I have followed the best principle of programming: Write DRY (do not repeat yourself); for example, we
have a scenario where a user wants to log out from application and we have eight same cases where we
want to log out via end-to-end tests. In this case, there is no need to write the same logic eight times but
we can use only one function and call that whenever we need it. This can be done on both Cypress and
TestCafe.

Another thing is that when you are writing end-to-end tests, always put selectors in another file; from
there, you can split into classes –we had the same case on this project where we have an external file
that only deals with selectors. We have divided all the desired classes there.

Browser Support
In terms of browser compatibility, TestCafe support more browsers than Cypress. If you feel insecure
about how your application will act in different browsers, the multi-browser support in TestCafé will be
a big plus for you. TestCafé is able to run the tests in the following browsers (when installed on your
system):

Google Chrome: Stable, Beta, Dev and Canary, Internet Explorer (11+), Microsoft Edge (legacy and
Chromium-based), Mozilla Firefox, Safari, Google Chrome mobile, Safari mobile.

Besides running the tests in the local browsers on a developer’s machine, TestCafé is able to run the
tests headless in a pipeline and even on the cloud services like SauceLabs or Browserstack.

On the other side, Cypress only supports Chrome, Electron, Chromium and Firefox.

Speed
There is no need to think about speed in these two frameworks. It all depends on what you expect from
an end-to-end test. Because Testcafe has only one extra feature, which is Testcafe Studio, in comparison
to Cypress. also In addition, it is not that open source that has been mentioned on the TestCafe
documentation. On the other side, Cypress is entirely free. In addition, the Cypress playground is one of
the best features that Cypress has for picking selectors in the easiest way. On my web application,
Cypress was faster and the main reason for that is that Cypress runs test codes in the browser process,
whereas TestCafe runs it in Node. This means that Cypress has access to real DOM elements but in
TestCafe communication between tests and DOM must be serialized.

If you want to run end-to-end tests only in limited browsers, say Chrome and Firefox, the best
framework for you is Cypress. But if you plan to run you end-to-end tests in more browsers and also

integrate Browserstack, then you can use Testcafe which is a little bit more complicated than Cypress;
also, selecting selectors gives you harder time to select all the elements on your web application.

Selector Playgrounds
In terms of using the tools to get a selector the easiest way, Cypress has Selector Playground and
TestCafe has TestCafe Studio.

In comparison to Cypress selector playground, which is free to use, TestCafe Studio offers only 30 days
trial period and afterwards you have to pay in order to use TestCafe Studio.

An extra feature that I liked in TestCafe Studio is test recording, which allows us to generate test code in
an automated way.

In my opinion, the Cypress selector playground is better than TestCafe Studio.

Live reloading (hot reload)
A very handy feature of Cypress is the live reloading capability. This means that as you write your
testscript and hit ‘save’, the Test Runner picks up the file and reruns the test, even if this means
breaking off the already running test. This gives you almost instant feedback on the test you are writing.
In TestCafe, this is implemented a bit less intuitively. When you edit and save the test file while your test
is already running, you have to abort your test by clicking ctrl-z (but then you have to start TestCafe all
over again) or you have to wait for the test run to finish and then hit save again. Therefore, TestCafe
listens to changes in the test file only when the Runner is not running a test.

Chapter 7. Conclusion
It is important to note that E2E tests do not replace component test coverage, but unlock a holistic
testing scheme. This approach drives higher product quality and maintainability, promotes an
atmosphere of ownership, leads to faster development, and reduces operating costs.

Both frameworks are great choices, and nothing can get wrong if you choose one of them. In this
research paper we have analyzed the implementation of both frameworks, meaning by this the
performance, documentation, browsers support, CI integration, Cloud testing integration, test runners,
code syntax and from all of these we have collected the required data to come in a conclusion for which
framework is better to use and more easy to implement.

The first hypothesis raised in this thesis claimed that: Cypress provides a better learning curve, its
partially true, according to the analyses of documentations, tutorials that both frameworks offers we
came to a conclusion that both frameworks have a better learning curve.

The second hypothesis: TestCafe offers a wide range of features compared to Cypress. According to the
analyses that we have done on previous chapters, we came to a conclusion that TestCafe offers a wide
range of features, such as TestCafe Studio, which allow users to record test cases and automatically
generates an js file with the code in it. Browser support: Testcafe, compared to Cypress, offers more
support for Safari, Firefox and other web browsers that we have listed on the previous chapters. Cloud
testing suite support: TestCafe supports a lot of cloud testing suites in comparison with Cypress. Since
Cypress is newer than TestCafe, support for Cloud testing is in its alpha and beta phase.

The third hypothesis: In the frame of application, Cypress is faster. Based on all the analyses and
performance tests that we did on the previous chapters, we can clearly come to a conclusion that
Cypress is much faster than TestCafe in the frame of application. The main reason for this is that Cypress
runs your actual test code in the browser process whereas TestCafe runs it in Node.

Bibliography
1. Sutapa.F.A.K.P.G (2020), Reveiw of Automated Testing Approach for Software Regression

Testing, IOP Conference Series: Materials Science and Engineering, Volume 846, Issue 1, pp.
012042 (2020)

2. Jyotsna, Varshney.M,Garg.Sh,Rajpoot.A.K (2017), Automated Testing: An Edge Over Manual
Software Testing, ResearchGate

3. Lefterov.D (2019), E-Commerce testing framework, ResearchGate
4. Zhang.D (2012), End to end testing using integrated tools, Ohiolink
5. Lefterov.D, Enkov.S (2019), Automated Software Testing Framework “Stassy”, ResearchGate
6. Tsau.W, Bai.X, Paul.R.A, Shao.W (2001), End-to-end integration testing design
7. Mendez-Porras.A, Alfaro-Velasco.J, Martinez.A (2020), Evaluation of the Automated Testing

Framework: A case study, ResearchGate
8. Gadwal.A.S, Prasad.L (2020), Comparative review of the literature of automated testing tools,

ResearchGate
9. Mobaraya.F, Ali.Sh (2019), Technical Analysis of Selenium and Cypres as Functional Automation

Framework for Modern Web Application Testing, ResearchGate
10. Naim.N (2017), ReactJS: An open Source JavaScript Library for front-end development,

scribd.com
11. S. Katalon (2020), What is End-to-End (E2E) Testing? All You Need to Know, katalon.com
12. Chowdhury.A (2018), All You Need to Know About End to End Testing, lambdaest.com
13. TechnoArch Softwares (2017), React is a JS library for building user interfaces

 https://www.technoarchsoftwares.com/
14. Pandit.N (2020), What and why react.js
15. Godlewski.M (2016), Top 6 Reasons Why we love React
16. Faheem (2018), Why I choose react?
17. Appoennix (2018), ReactJs website development
18. Adel. M, The complete Firebase and Amazon S3 with JavaFX course.
19. Guru 99 (2020), What is Cloud testing.
20. CypressIO Documentation (2019)
21. Testcafe Documentation(2017)
22. LambdaTest Documentation
23. Oreilly, CI, https://www.oreilly.com/library/view/continuous-integration-

delivery/9781787286610/13a652d5-9d26-45dd-99f0-f79576bba30c.xhtml (12/24/2020)

