
FACULTY OF CONTEMPORARY SCIENCES AND
TECHNOLOGIES

TITLE:

“RECOMMENDATION SYSTEMS FOR COMPUTER SCIENCE

PUBLICATIONS”

MENTOR: CANDIDATE:

PROF.DR.XHEMAL ZENUNI MUSTAFA FEJZA

Tetovo, 2021

Declaration

I certify that I am the original author of this work.

The copyright is transferred to the University for use for educational and research purposes.

Abstrakti

Qëllimi i tezës është prezantimi i një sistemi rekomandues të bazuar në përmbajtje i cili do të

rekomandojë botime të shkencave kompjuterike për përdoruesit bazuar në preferencat e

tyre. Publikimet janë nxjerrë nga konferenca "Sistemet Neurale të Përpunimit të

Informacionit" (SNPI) që është një nga konferencat më të rëndësishme të mësimit të

makinerive në të gjithë botën.

Sistemi do t'i ndihmojë përdoruesit të gjejnë përmbajtje më të shpejtë, më të lehtë dhe më

efikase me qëllim të tejkalimit të mbingarkesës së informacionit.

Ekzistojnë lloje të ndryshme të sistemeve të rekomanduesve, por tre të parat që përdoren

më shumë janë: filtrimi bashkëpunues,sistemi i bazuar në përmbajtje dhe sistemet

hibride.Këto sisteme kanë modele të ndryshme që varen nga sasia dhe cilësia e të dhënave

që ato përpunojnë.

Në këtë tezë kemi përdorur qasjen e bazuar në përmbajtje. Sistemi i rekomanduesve të

bazuar në përmbajtje është një përmirësim i sistemit bashkëpunues të filtrimit. Ky model

nuk kërkon vlerësimin e përdoruesit për artikuj të ndryshëm, përkundrazi rekomandimi

krijohet bazuar në ngjashmërinë midis artikujve.

Për shkak të rritjes së shumë shërbimeve të internetit të ofruara nga kompani si Amazon,

Facebook, Microsoft dhe shumë të tjera, sistemet rekomanduese morën një rritje dhe po

shfaqen çdo ditë në jetën tonë.

Nën këto sisteme vendosen algoritme të ndryshme me qëllim sugjerimin e përmbajtjes së

duhur dhe artikullit përkatës për përdoruesit siç janë filmat për të shikuar, ose blerja e

produkteve etj. Në disa industri këto sisteme janë shumë kritike sepse ato prodhojnë sasi të

mëdha të ardhurash për kompaninë. Kompanitë si Netflix kanë organizuar sfida me çmime të

mëdha me qëllimin për të zbuluar mënyra të ndryshme për të përmirësuar algoritmin e tyre

(ÇmimNetflix).

Abstract

The purpose of the thesis is to present a content-based recommender system that will

recommend computer science publications to users based on their preferences. The

publications are extracted from the conference “Neural Information Processing Systems”

(NIPS)(Sejnowski, 2015)which is one of the most important machines learning conferences

worldwide.

The system will help users find content faster, easier, and more efficiently to overcome the

information overload.

There are different types of recommender systems but the top three that are most used are

collaborative filtering, content-based and hybrid systems. These systems have different

models that are depended on the quantity and quality of the data they are processing.

In this thesis, we used the content-based approach. The content-based recommender

system is an improvement of the collaborative filtering system. This model doesn’t require

the user’s evaluation for different items, instead, the recommendation is created based on

the similarity between the items.

Because of the rise of many web services offered by companies like Amazon, Facebook,

Microsoft, and many others, recommender systems received a boost and are appearing daily

in our lives.

Underneath these systems lay different algorithms to suggest the right content and the

relevant item to users such as movies to watch, or buying products, etc. In some industries,

these systems are very critical because they generate large amounts of income for the

company. Companies like Netflix have organized challenges with huge prizes to discover

different ways to improve their algorithm (Netflix Prize).

Апстракт

Целта на тезата е да се претстави систем за препораки засновани на содржини

кој ќе им препорача накорисниците компјутерски науки публикации врз основа на

нивните преференции. Публикациите се извлечени од конференцијата „Системи

за обработка на нервните информации“ (СОНИ) која е една од најважните

конференции за машинско учење низ целиот свет.

Системот ќе им помогне на корисниците да најдат содржина побрзо, полесно и

поефикасно со цел да го надминат преоптоварувањето на информациите.

Постојат различни типови на препорачани системи, но првите три што најмногу

се користат се: колаборативно филтрирање, заснована на содржина и хибридни

системи. Овие системи имаат различни модели кои зависат од количината и

квалитетот на податоците што ги обработуваат.

Во оваа теза го искористивме пристапот заснован на содржината. Системот за

препораки заснована на конкурентност е подобрување на системот за соработка

на филтрирање. Овој модел не бара проценка на корисникот за различни

артикли, наместо тоа, препораката се креира врз основа на сличноста помеѓу

артиклите.

Поради порастот на многу веб-услуги понудени од компании како Амазон,

Фејсбук, Мајкрософт и многу други, препорачаните системи добија поттик и се

појавуваат секој ден во нашите животи.

Под овие системи се поставени различни алгоритми со цел да се предложи

вистинската содржина и релевантната ставка на корисниците, како што се

филмови за гледање, или купување производи и сл. Во некои индустрии овие

системи се многу критични затоа што создаваат големи количини на приход за

компанијата. Компании како Netflix имаат организирано предизвици со огромни

награди со цел да откријат различни начини за подобрување на нивниот

алгоритам (Награда Netflix).

Acknowledgments

First of all, I would like to thank my thesis advisor Prof.Dr. XhemalZenuni for his support and

desire to give me the opportunity to work on this project. He was with me from the

beginning, providing excellent support in many ways and showing keen interest in my

project.

Special thanks to members of the council: Prof.Dr. Visar Shehu and Prof.Dr. BujarRaufi, who

gave me the chance and confidence to complete this thesis.

I would like to express my gratitude to professors, staff members, and fellow students from

South East European University for their support during my Master’s program.

In the end, I thank my family for supporting me during this long road of studies attending

both bachelor’s and master’s programs at South East European University.

Table of Contents

1 Chapter 1 - Introduction 1

1.1 Background 2

1.2 Problem Statement 3

1.3 Motivation 3

1.4 Research Objective 4

2 Chapter 2 - Overview of Recommender Systems 5

2.1 Definition 5

2.2 Types of Recommender systems 5

2.2.1 Content-Based Recommender Systems 5

2.2.2 Collaborative Recommender Systems 6

2.2.3 Hybrid Recommender Systems 7

2.3 Usage of Recommender Systems 8

2.3.1 Paper Recommender System 8

2.3.2 Music Recommendation System 9

2.3.3 Movie Recommender System 9

2.3.4 News Recommender System 9

3 Chapter 3 - Collaborative Filtering 10

3.1 Neighborhood-Based 10

3.1.1 Item-Based 11

3.2 Model-Based 13

3.2.1 Clustering 13

3.2.2 Classification 14

3.2.3 Latent Class Model 14

3.2.4 Matrix Factorization 15

3.3 Summary 15

4 Chapter 4 - Content – Based Filtering 16

4.1 Content Representation 17

4.2 Vector Space Model and TF-IDF 18

4.3 TF-IDF versus Doc2Vec and BERT 20

4.3.1 TF-IDF 20

4.3.2 Doc2Vec 20

4.3.3 BERT 21

4.4 Improving – Vector Space Model 22

4.4.1 Stop Words 22

4.4.2 Size Cutoffs 22

4.4.3 Phrases 22

4.5 Limitations 23

4.6 Similarity-Based Retrieval 23

4.6.1 Nearest Neighbors 23

4.6.2 Relevance Feedback – Rocchio’s Method 24

4.7 Probabilistic Methods 26

4.8 Other Classifiers 27

4.9 Explicit Decision Models 28

4.10 Feature Selection 30

4.11 Limitations 31

5 Chapter 5 - Hybrid Recommender Systems 33

5.1 Hybridization Design 34

5.1.1 Monolithic 34

5.1.2 Parallelized 34

5.1.3 Pipelined 35

5.2 Hybridization Techniques 35

5.2.1 Feature Combination 35

5.2.2 Feature Augmentation 36

5.2.3 Weighting Average 36

5.2.4 Switching 36

5.2.5 Cascade 36

5.2.6 Meta-level 37

5.2.7 Mixed 37

5.3 Summary 37

6 Chapter 6 -Building the Recommender System 38

6.1 System Requirements 38

6.2 Libraries 38

6.2.1 Pandas 38

6.2.2 NumPy 39

6.2.3 Re 39

6.2.4 Plotly 39

6.2.5 Cufflinks 39

6.2.6 NLTK 40

6.3 Dataset 40

6.4 Data Cleaning 41

6.5 TF-IDF 43

6.6 Cosine Similarity 44

6.7 Making a Recommendation 45

7 Chapter 7 - Evaluation of Recommender Systems 46

7.1 Types of Evaluations 47

7.1.1 User Studies 47

7.1.2 Online Evaluation 48

7.1.3 Offline Evaluation 49

7.2 Goals of Evaluation Design 49

7.2.1 Accuracy 49

7.2.2 Coverage 50

7.2.3 Confidence 51

7.2.4 Trust 51

7.2.5 Novelty 52

7.2.6 Serendipity 52

7.2.7 Diversity 53

7.2.8 Utility 53

7.2.9 Risk 54

7.2.10 Robustness 54

7.2.11 Privacy 55

7.2.12 Adaptivity 55

7.2.13 Scalability 56

8 Chapter 8 – Evaluating the System 57

8.1 Precision-Based Metrics 57

8.1.1 Precision and Recall 57

8.1.2 Implementation 58

8.2 Other Metrics 60

8.2.1 Novelty 60

8.2.2 Serendipity 60

8.2.3 Diversity 60

9 Chapter 9 - Conclusion 62

9.1 In Summary 62

9.2 Advance Topics 63

9.2.1 Evolution 63

9.2.2 Group Recommender Systems 64

9.2.3 Privacy in Recommender Systems 64

Table of Figures

Figure 2.1 - Types of ratings that collaborative systems use to recommend movies. 7

Figure 2.2 - Paper Recommender System. 8

Figure 3.1 - Pearson Correlation Coefficient for weighting. 10

Figure 3.2 - Pearson Correlation Coefficient for prediction. 11

Figure 3.3 - Pearson Correlation Coefficient with cosine similarity. 11

Figure 3.4 - Pearson Correlation Coefficient for comparing similarities between items. 12

Figure 3.5 - Prediction formula. 12

Figure 3.6 - Case amplification. p = amplification factor 13

Figure 3.7 - Minkowski, Euclidian and Manhattan distance. 14

Figure 4.1 - Book characteristics. 17

Figure 4.2 - Dice Coefficient for measuring keywords. 18

Figure 4.3 - Calculating the frequency and length. 19

Figure 4.4 - Inverse document frequency. 19

Figure 4.5 - Doc2Vec. 21

Figure 4.6 - Two groups and the search query. 25

Figure 4.7 - Naïve Bayes classifier. 26

Figure 4.8 - A classifier with one line and two dimensions. 28

Figure 4.9 - Decision Tree example. 29

Figure 4.10 - X2 test. 31

Figure 4.11 - Contingency table of x2. 31

Figure 5.1 - Hybrid recommender system. 33

Figure 5.2 - Monolithic design. 34

Figure 5.3 - Parallelized design. 35

Figure 5.4 - Pipelined design. 35

Figure 6.1 - The dataset. 40

Figure 6.2 - Most used words in column paper_text before using stop words. 41

Figure 6.3 - Most used words in column paper_text after using stop words. 42

Figure 6.4 - The function that is used for stop-words removal. 42

Figure 6.5 - Weighting formula. 43

Figure 6.6 - TF-IDF code in the system. 44

Figure 6.7 - Cosine Similarity for two documents. 44

Figure 6.8 - Cosine Similarity code. 44

Figure 6.9 - Recommendation function. 45

Figure 6.10 - Results of the system. 45

Figure 7.1 - Mean squared error. 50

Figure 7.2 - Root mean squared error. 50

Figure 8.1 – Paper 1 vs Paper 2 59

Figure 8.2 – Paper 1 vs Paper 3 59

Figure 8.3 – Paper 1 vs Paper 4 59

1 Chapter 1 - Introduction

During our lifetime what we buy or consume is influenced by some type of

recommendation; whether that’s a friend, family member, colleague, some reviews, or

feedback on the website. When we buy a product on Amazon, the company always

recommends us similar products to that product we bought. Even Facebook based on our

friend list recommends to us people that we may like to add as a new friend.

With the expansion of the Web and the growth of e-commerce, a pressing emerged for

providing recommendations. Users had difficulties finding the appropriate items due to the

large variety of items that were offered by the websites. During this exponential growth, a

range variety of choices were offered to the users, which lead to the diminishing of the

client’s prosperity and the expansion of their poor choices.

Recommender Systems (RSs) are software tools and techniques that provide suggestions for

items that are most likely of interest to a particular user (Burke, 2002).

These suggestions are identified with various decision-making processes, for example, the

sort of music to tune in, what sort of news to peruse, or what things to purchase.

These RS are focused on specific types of items (news, movies), and based on their design

and model they generate useful and effective suggestions for those specific items.

Along these lines, we understand that providing decent suggestions to clients is very

beneficial and crucial for the organization.

1

1.1 Background

Nowadays the term “Artificial Intelligence” (AI) it’s used very commonly. AI is a large field

that enables the creation of different applications for specific purposes. Many industries use

AI but as the top five, I will list: healthcare, education, marketing, retail, and e-commerce.

We find AI in our laptops, smartphones and very soon it will be in our homes as well. Big

companies are testing the so-called “smart home” where most of the devices will be

connected to the Internet.

As we can see AI has and exponential growth and day by day it surrounds us. With the

growth of AI, arise many questions from people that are confronted with it such as:

- What does “Artificial Intelligence” mean?

- How will it affect our daily lives?

- What are the advantages and disadvantages of AI?

Through using AI people and companies get benefits by reducing cost, optimizing their daily

tasks. When users use AI devices, they enable the system to learn from their behavior and

propose suggestions to make the tasks easier and more efficient.

In the era of the Internet where a large number of items are available online, the user can't

inspect or compare the items with the hope of finding cheaper products or better quality.

Many companies invest a huge amount of resources into Recommender System to solve this

issue and the challenges that arise from the expansion of Information Overload.

We can say that the main purpose of the Recommender System is to connect users with

information that they need, which is one way will help the user to find valuable content. This

strategy benefits both the user and the company and it is a win-win.

The main reason for our content-based recommender system is to test how efficient is the

content-based model in finding relevant publications or research papers based on the input

of the user.

1.2 Problem Statement

There is an explosion of knowledge which has led to exponential growth in the number of

publications yearly. Users experience difficulties in finding favorite research papers from a

large volume of research papers available on the Internet. With the increasing volume of

information available on the internet, it is even more difficult for users to find the exact

information of interest.

By trying to build a recommender system you will face several problems. During our

development process we addressed the following:

- What kind of publication features can be used for the recommender system?

- How do we create a similarity between publications based on their attributes?

- How to calculate the similarity between two publications?

- How do we choose the content or the features of the publication?

1.3 Motivation

During my studies in Computer Science and Business Informatics, I got familiar with different

topics in areas such as Artificial Intelligence and E-Commerce. I saw how big tech companies

such as Netflix, Amazon, YouTube, and Google increase their revenue with the help of

Recommender Systems. The reason why these companies care about Recommender System

is money. With the help of such systems, they can deliver to users actual value, provide

personalized content, and recommender many items. My motive emerged from these topics

for the purpose of researching how these systems work and how they are created.

1.4 Research Objective

The main objective of this research is to present a content-based recommender system that

will be able to analyze the content of the publication by analyzing its attributes and finding

predictive methods for calculating and comparing the content of the two or more

publications and find their similarities.

We will focus on what kind of features are useful for creating a model, which attributes

should we drop, how to remove words from the content of the paper that are not useful for

the model, and how to use content-based techniques to calculate the similarity between the

publications.

2 Chapter 2 - Overview of Recommender Systems

In this section, we will give a brief introduction to recommender systems, the reason behind

why they were created, what is their main purpose, what types of recommender systems

exist, and how tech giants are solving their problems with the help of recommender

systems.

2.1 Definition

What is a Recommender System? “A Computer program that recommends some sort of

resource based on algorithms that rely on some sort of user model, some sort of content

model, and some means of matching the two”(Dron, 2009).

Recommender System emerged in the mid of 1990s as a specific field that derived from

research areas such as information retrieval, cognitive science, forecasting, and consumer

modeling.

The reason behind their creation is to help clients in finding their way through huge

databases and different catalogs, by suggesting relevant items to users while taking into

account their preferences (tastes).

2.2 Types of Recommender systems

Due to different requirements, there are different types of recommender systems that are

specific in their techniques and model when recommending items to users. The demand for

recommender systems is growing due to the huge amount of data available. The most

known types of recommender systems are content-based recommender systems,

collaborative recommender systems, and hybrid recommender systems.

2.2.1 Content-Based Recommender Systems

The filtering methods are based on the attributes of the content to create an individualized

recommendation. The content is displayed through features and can link these to the ratings

of the users. By doing this, the systems learn from the user profile and display appropriate

recommendations(Burke, 2002). This system has an algorithm that is able to build the user

profile based on the features of the item the users rated. It combines the rating and

behavior of users with the content of the item. It has an advantage over other systems

because it is able to make recommendations if sufficient data is not available for that item. A

content-based recommender system is used by Netflix. It helps in recommending movies to

their clients. For example: if a client has watched a Fiction movie and gave a high rating, then

he will get suggestions from the same genre.

2.2.2 Collaborative Recommender Systems

These systems are one of the most commonly used. These kinds of systems create the user

profile based on the rating of the item by the user and then comparing that profile to other

group user profiles. It recognizes the similarities between the profiles and based on that

similarity recommends the item to the user. It filters items by using the opinion of other

users. This type of system has been around near a decade, but its roots are from soothing

that humans have been doing long ago “sharing opinions with others”.

For decades humans have been sharing an opinion on tastes discussing many things such as:

what kind of food they have tasted, which movie they liked, etc.

With the help of the Internet, we are now able to go beyond word-of-mouth. Instead of

talking to hundreds of individuals now, we can connect with thousands of users and develop

a personalized view about a particular item based on the rating that all other users and by

reading their shared opinion.

Figure 2.1- Types of ratings that collaborative systems use to recommend movies.

(Puleston, 2012)

2.2.3 Hybrid Recommender Systems

These systems are created by the combination of two or more recommendation strategies

and their models to benefit from their complementary advantages. Researches have shown

that by combining different models we can achieve better results. In such a hybrid approach

the crucial part is the combination of the information given by the user and the content of

the item. Six main techniques can be mixed for the creation of the hybrid system.

● Weighting: This technique uses the final score of the recommender systems

and combines it to create a single recommendation.

● Switching: the system possesses many techniques and it can switch between

them based on the current situation.

● Mixed: with the mixed model, different recommendations are used at the

same time.

● Combined feature: in this technique, we select different features from several

data sources and combine them into a single algorithm.

● Cascade: the recommender system refines the output that is given by other

recommender systems. The aim is to optimize the results given by the

recommenders.

● Feature augmentation: the output of the recommender system is used as an

input for another recommender system.

● Meta-level: the purpose is to understand the meta structure of the problem

and using the models that are learned by one recommender system as an

input to another recommender system.

2.3 Usage of Recommender Systems

2.3.1 Paper Recommender System

Recommender Systems are becoming more and more useful in recent years. These systems

are applied in different areas and applications. The most common areas are movies, news,

music, research papers, and others.

Such a system was created by Simon Philip, P.B. Shola, and E.P. Musa were for the creation of

the recommender system they used the content-based approach. This method was used for

the design and implementation of the research paper recommendation systems that are

based on the past ratings of an active user(Philip, (PHD), & E.P, A Paper Recommender

System Based on the Past Ratings of a User., 2014).

Figure 2.2- Paper Recommender System.

(Philip, (PHD), & E.P, A Paper Recommender System Based on the Past Ratings of a User., 2014)

2.3.2 Music Recommendation System

Here is another example where the recommender system was used for music

recommendations. Why such systems are needed? Because music is emerging nowadays

and users don’t have the time to search through many collations to find new items. These

music recommendation systems are mostly created in two techniques: collaborative filtering

or content-based. But, the system “Hybrid Content-Based Collaborative-Filtering Music

Recommender”(Castillo, November 6, 2007)is created based on the hybrid method where

both collaborative and content-based techniques are used.

2.3.3 Movie Recommender System

In 1997, Group Lens created the MovieLens recommender system (GroupLens, 1997)which

was a non-commercial system that recommended films to users based on their preferences.

The system was created using collaborative filtering techniques based on movie ratings and

reviews. This system is based on the inputs provided by users. The system uses a variety of

algorithms such as item to item(Sarwar, 2001)and user to user. For the cold start problem,

they used surveys to ask users how much they enjoy watching a various groups of movies

(horror, action, adventure). After the survey, the preferences are recorded and used by the

system to make initial recommendations to its users without them rating movies.

2.3.4 News Recommender System

Bangla News Recommender System (Nandi, et al., 2018)was created using doc2vec. This

unsupervised algorithm can generate vectors for documents or sentences. The algorithm is

like an adaptation of the word2vec which generates vectors for words. The vectors that are

generated from doc2vec can be used for finding similarities between documents.

3 Chapter 3 - Collaborative Filtering

These systems work by calculating the feedbacks that items receive from users in the form of

ratings and exploiting similarities in rating behavior with other several users to determine

how to recommend items. This method has two approaches: neighborhood-based and

model-based.

3.1 Neighborhood-Based

Neighborhood-based collaborative filtering is one of the first algorithms that were

developed for collaborative systems. The base of these algorithms is on the fact that there

are users that have similar tastes, similar patterns, and similar behavior. Example:

1. Assume that we have a user marked as A and we weigh his rating.

2. We compare the weight of user A with other users.

3. Select users that have the same weight or are close to that weight.

4. We combine these weights and based on that we recommend an item to user

A.

As we can see this algorithm uses weighting methods to measure the similarity between two

users. The most common measure for the similarity between two users is the Pearson

correlation coefficient.

𝑊
𝑎,𝑢

= 𝑖∈𝐼
∑ (𝑟

𝑎,𝑖
− 𝑟

𝑎
)(𝑟

𝑢,𝑖
− 𝑟

𝑢
)

𝑖∈𝐼
∑ (𝑟

𝑎,𝑖
− 𝑟

𝑎
)

2

𝑖∈𝐼
∑ (𝑟

𝑢,𝑖
− 𝑟

𝑢
)

2

Figure3.1 -Pearson Correlation Coefficient for weighting.

(I) = the items rated by both users. (ru,i) = the rating of the item (i) by the user (u), and (ru) describes

the mean rating given by user (u).

- Step 2: after the weighting is computed we processed the second formula for

predicting the item to the user:

ρ
𝑎,𝑖

= 𝑟
𝑎

+ 𝑢∈𝐾
∑ 𝑟

𝑢,𝑖
− 𝑟

𝑢()𝑥 𝑊
𝑎,𝑢

𝑢∈𝐾
∑ 𝑊

𝑎,𝑢

Figure 3.2- Pearson Correlation Coefficient for prediction.

(pa,i) = the prediction for the active user (a) for item (i), (wa,u) = the similarity between users

(a) and (u), and (K) describes the set of most similar users

- Step 3: we measure to the extent until there is a linear dependence between two

variables.

𝑊
𝑎,𝑢

= cos 𝑐𝑜𝑠 (𝑟
→

𝑎
 , 𝑟

→

𝑢
) =

𝑟
→

𝑎
 ∙ 𝑟

→

𝑢

||𝑟
→

𝑎
||

2
𝑥 ||𝑟

→

𝑢
||

2

= 𝑖=1

𝑚

∑ 𝑟
𝑎,𝑖

𝑟
𝑢,𝑖

𝑖=1

𝑚

∑ 𝑟
𝑎,𝑖
2

𝑖=1

𝑚

∑ 𝑟
𝑢,𝑖
2

Figure 3.3 -Pearson Correlation Coefficient with cosine similarity.

It is important when computing cosine similarity, negative ratings don’t exist and those items

that don’t have ratings are treated as zero.

Some of the extensions that were created to improve the performances of the

neighborhood-based technique are:

3.1.1 Item-Based

When neighborhood-based collaborative filtering is applied to millions of users and items,

the algorithms do not scale well, due to the complexity of the search for similar items. To

improve this state, the item-based technique was invented where the method proposed the

“item-to-item” technique. Instead of matching similar users, now they match the items that

the user has rated to similar items. The advantages of this technique are a faster system and

better results when recommending items.

𝑊
𝑎,𝑢

= 𝑢∈𝑈
∑ (𝑟

𝑢,𝑖
− 𝑟

𝑖
)(𝑟

𝑢,𝑗
− 𝑟

𝑗
)

𝑢∈𝑈
∑ (𝑟

𝑢,𝑖
− 𝑟

𝑖
)

2

𝑢∈𝑈
∑ (𝑟

𝑢,𝑗
− 𝑟

𝑗
)

2

Figure 3.4 - Pearson Correlation Coefficient for comparing similarities between items.

U = all users who have rated item (i) and (j), (ru,i) = describes the rating of user (u) on item (i), r- = average
rating of the (i) item across users

Now we use the weighting average technique to predict the rating for the item (i) to the user

(a):

𝑃
𝑎,𝑖

= 𝑗∈𝐾
∑ 𝑟

𝑎,𝑗
𝑊

𝑖,𝑗

𝑗∈𝐾
∑ 𝑊

𝑖,𝑗| |

Figure 3.5 - Prediction formula.

With (K) we describe the neighborhood items of (k) rated by (a) that are similar to (i).

During the implementation of the item-to-item method, instead of using Pearson correlation

for similarities, we can use alternatives such as “adjusted cosine similarity”.

3.1.1.1 Significance Weighting

This method is created to multiply the similarity weight by a Significance Weighting factor

that can devalue the correlations based on few co-rated items.

The reason this method was created is to avoid bad predictions. It was very common when a

user was correlated with neighbor’s that were based on very few co-rated items.

3.1.1.2 Default Voting

Another method that helps in dealing with correlations based on few co-rated items is the

default voting method. This method pleases a default value for the rating, for those items

that have not received a rating. Now we can compute the correlation using the set of items

rated by users being matched.

3.1.1.3 Inverse User Frequency

The items that received ratings from all users are not as useful as the less common items

when measuring the similarity between users. For this purpose, Breese introduced the

notion of inverse user frequency, which is computed as fi = log n/ni, where ni is the number

of users who have rated item i out of the total number of n users. To apply inverse user

frequency while using similarity-based CF we transform the original rating for i by

multiplying it by the factor fi. The underlying assumption of this approach is that items that

are universally loved or hated are rated more frequently than others(Breese, 1998).

3.1.1.4 Case Amplification

Was created to favor users that have high similarity to the active user.

𝑊'
𝑎,𝑢

= 𝑊
𝑎,𝑢

∙|𝑊
𝑎,𝑢

|𝑝−1

Figure 3.6 - Case amplification. p = amplification factor

3.2 Model-Based

The way this model differs from the item-based technique is that it uses offline techniques

to process the data. During the runtime, only the learned model is required to make

predictions. It means we use fewer data to make a prediction. The item-based model uses all

the data and is more reliable in predicting but has scalability problems, that’s why this model

is invented to use fewer data.

There are four known approaches for model-based collaborative filtering:

3.2.1 Clustering

In this method, we divide users into groups knows, and clusters. The idea behind this divide

is the assumption that users in the same group also have the same interest. This method

uses one of the three formulas for measuring the distance between two users:

the Minkowski distance, Manhattan distance, and Euclidian distance. The greater the

distance the more dissimilar they are.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 𝑢

1
,𝑢

2()=
𝑞

𝑗
∑(𝑟

1𝑗
−𝑟

2,𝑗
)𝑞

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑢

1
,𝑢

2()=
𝑞

𝑗
∑(𝑟

1𝑗
−𝑟

2,𝑗
)2 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑢
1
,𝑢

2()= 𝑗
∑|𝑟

1𝑗
−𝑟

2𝑗
|

Figure 3.7- Minkowski, Euclidian and Manhattan distance.

The lesser the distance between (u1 – u2) the more similar they are.

3.2.2 Classification

Users are represented as rating vectors. Suppose every rating ranges from 1 to 5, and the

user gives a rating of 5 to a particular item that means she/he likes such items. And the

opposite if it gives a rate of 1 then she/he doesn’t like that item. After the rating is done,

each of the available ratings from 1 to 5 is considered as a class set. This technique uses the

Bayesian method.

3.2.3 Latent Class Model

Assume we have user X and item Y. X and Y are a pair of user/item and are considered as a

co-occurrence. Now, a latent class variable C is associated with each of the co-occurrences

that appear. A set of latent classes is formed (C1 to CK). The problem that appears here is

which latent class is more suitable to be specified to a co-occurrence. The scientists

Hofmann and Puzieha used EX that stands for the “expectation-maximization algorithm” to

estimate the probability.

3.2.4 Matrix Factorization

This method uses different techniques to analyze the rating matrix. It has two goals. The first

goal is to reduce the dimension of the rating matrix, and the second goal is to discover

features of the rating matrix.

This method uses some models such as Latent Semantic Analysis, Latent Dirichlet Allocation,

and Singular Value Decomposition.

In the Collaborative Filtering model, two main problems appear the data sparseness and the

huge rating matrix that are causing low performance to the recommender system. Not all

the users and items contribute to predicting missing values, that’s why they become

unnecessary. This method aims to get rid of such users and to keep the most important one.

The usage of Principle Component Analysis (PCA) helps in dimensionality reduction. It finds

significant components that are known as patterns. The patterns are the users.

3.3 Summary

There are different approaches to building a recommender system, but the collaborative

approach is the most research one, because of its early use from the 90s where the systems

were based on user communities that rated items, and nowadays most of the successful

online recommenders rely on this technique.

The first systems were based on the memory approach and correlation-based algorithms.

Later, various models emerged, such as the model-based approach where various

techniques from different fields were used.

The availability of different test databases in many domains for the collaborative filtering

model favored further the development of this system. Most of these databases are for

movies (Movie Lense) and books.

Nowadays the Collaborative filtering techniques are very advance and are used in practical

applications. But this system cannot be applied in every domain. Example: the car industry

where no buying history exists, and where the ratings should be very detailed and cover all

the details.

4 Chapter 4 - Content – Based Filtering

Until now we described the techniques that the collaborative filtering model is using. To

make a recommendation, the techniques relied on user ratings, not on the item description.

The main advantage of content-based filtering is the usage of the item to make a

recommendation to the user. For example: in the real world if a friend has watched Fast and

Furious 1, then we will recommend to him Fast and Furious 2 and some other movie with

the same genre (action).

This type of recommendation is not available only with collaborative filtering. If we use only

that model the model will recommend only Fast and Furious 2, no other action movies. For

the second part of the recommendation, a content-based model arises. It will recommend a

movie based on the same genre. The usage of both these models including the information

that is available: the item and the user profile (ratings) forms a good recommendation

system.

The content-based model doesn’t rely on many users to make a recommendation. It’s

available to make a recommendation even if a single user is available.

Descriptions of the features and the characteristics of the item such as the genre of a book

or movie, list of directors, actors, are often available in an electronic form. Challenging in this

part are the qualitative features, in domains of quality and taste. For example, the reason a

person likes something doesn’t rely always on the characteristics of the item itself (The

Music Industry).

The content (features, attributes) that is used by the content-based recommender system is

extracted from the metadata that is associated with the item. But this content that is

extracted commonly it’s short and not enough sufficient to define the user’s interest. The

usage of textual features helps in this part. Example: a content-based recommender system

that recommends articles by comparing the keywords of both articles, the present with the

past article that the user has rated.

These kinds of techniques are known as knowledge-based approaches. Some authors say

that the content-based approach is a subset of the knowledge-based model. But we will

focus on the traditional classification where content-based are focused on exploiting the

information from the item’s attributes, where eras knowledge-based recommenders use an

additional utility function to produce recommendations.

Content-based filtering is more complicated than collaborative filtering, because of the

challenges it faces when extracting knowledge from contents. To make a content-based

recommender system we need:

● Content Analyzer: this technique creates a profile for each item. Here we train the

model based on the content.

● User Profiler: creating a user profile. This profile can be just a simple list of the items

that were consumed by the user.

● Item Retriever: in the last method we retrieve the items that were found when

comparing the user profile with the item’s profile.

4.1 Content Representation

To describe items in a catalog the simplest way is to maintain a list of features for each of the

items (known as attributes or characteristics). For example: to describe a book we can use

the genre, author's name, publisher, year and store this information in a database. When the

user will be described its preferences based on this set of features that the recommendation

will be able to match the item's features with the user preferences.

Figure 4.1- Book characteristics.

(ResearchGate S. F., 2020).

How will this work? A user X will enter the author’s name of the book or even the language

that he prefers. Based on these inputs we will be able to check the database and

recommend a book to the user or ask him for additional information such as the genre of

the book. Then the system will derive a set of keywords from those types of books that the

user X has liked in the past and recommend a book to the user. Also compares a

not-yet-seen book with items that the user has liked in the past, to find similarities between

them.

The similarity can be measured in different ways: genre, year, keywords. For example, a book

that is not seen by the user can be compared with books that the user has liked in the past.

If it’s the same genre then the similarity is 1, if not then a 0.

Other options such as keywords are also useful. Measuring the books by their keyword’s

description. If a book is described by some set of keywords, then with the help of Dice

Coefficient we measure the similarity between two books based on their keywords.

2 𝑥 | 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑏
𝑖()∩𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑏

𝑗()|

 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑏
𝑖()| |+| 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑏

𝑗()|

Figure 4.2- Dice Coefficient for measuring keywords.

4.2 Vector Space Model and TF-IDF

When speaking about the information of books, the author and publisher are not considered

as the content of the book but as additional information. However, content-based systems

have been developed for filtering news, e-mail messages. This means that the systems don’t

use the list of features such as author, publisher, but it uses the list of keywords that appear

in a certain document.

There is a naïve approach where we can list all words that appear in all documents, and

describe the document based on those words with 1 (if that word appears in the document)

and 0 (the word doesn’t appear in the document).

The problem with this approach is that every word in the document has the same

importance, although a document that the word appears more often is better when

characterizing a document. Also, long documents will be recommended more because a

word will appear more often.

To solve the challenge, we use the TF-IDF encoding format. TF-IDF is a technique that comes

from a field knows as “information retrieval” and has the meaning of “Term Frequency –

Inverse Document Frequency”.

Team Frequency is used to calculate how often a term appears in a particular document. We

need to take into consideration the length of the document and prevent longer documents

from getting higher relevance weight and normalize the length of the document.

𝑇𝐹
(𝑖,𝑗)

= 𝑓𝑟𝑒𝑞 (𝑖,𝑗)
𝑚𝑎𝑥𝑂𝑡ℎ𝑒𝑟𝑠(𝑖,𝑗

Figure 4.3 - Calculating the frequency and length.

The (i) describes the keyword, and (j) the document. (freq) the number of occurrences of the keyword (i) in
the document (j). maxOthers stands for other words that appear in the document.

The second measure that is combined with team frequency is inverse document frequency.

The aim is to reduce the weight of those words that appear too often in a document. The

idea is to shift the weight of frequent words that are not helpful to give to those words that

appear in only some documents.

𝐼𝐷𝐹
(𝑖)

= log 𝑙𝑜𝑔 𝑁
𝑛(𝑖)

Figure 4.4- Inverse document frequency.

(N) Describe all the documents in the recommender, (n) the number of those documents that

keyword (i) appears.

4.3 TF-IDF versus Doc2Vec and BERT

4.3.1 TF-IDF

Is used as a statistical measure that can evaluate how relevant a word is to a document in a

collection of documents. This is achieved by multiplying two metrics: how many times a

word appears in a document, and the inverse document frequency of the word across a set

of documents(Stecanella, 2019).

It is used mostly in text analysis and in Natural Language Processing for scoring words in

machine learning algorithms. The purpose of inventing this method was the need for

document search and information retrieval.

TF-IDF is calculated by counting how much a particular term appears in a document and the

inverse document frequency of a word which measures the importance of that term in the

set of documents. We take into account also that the longer the document the greater the

possibility of a term appearing more times that’s why TF is calculated: the number of times a

term appears in a document/ the total terms in that document. IDF calculates the total

number of documents / the number of those documents that have that particular term.

4.3.2 Doc2Vec

This method was presented by Mikilov and Lee (Mikilov & Le, 2014). It is based on the

word2vec (Mikolov, Chen, Corrado, & Dean, 2013) that is used for generating representation

of vectors out of words.

The main purpose of doc2vec is to create a numeric representation of the document,

regardless of its size or length. The difference between word2vec and doc2vec is that

doc2vec has one more vector (Paragraph ID). With this method, we give documents unique

keys and we don’t train only the words vector, but also the document vector. For example,

the word vector represents the concept of the word, and the document vector represents

the concept of the document. The doc2vec generates a vector W for each word and a vector

D for each document.

Figure 4.5 - Doc2Vec.

(Mohanty, 2020).

4.3.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin, Chang, Lee, &

Tautanova, 2018), it presented state-of-art to the Machine Learning community by showing

great results in different NLP tasks, such as Questions Answering, Natural Language

Inference, and others.

Bert can learn the contextual relations between words in a text. It has a Transformer that is

separated into two mechanisms: an encoder that is used for reading the input, and the

decoder that produces a prediction for the task(Horev, 2018).

The transformer encoder can read the entire sequence of words at once. It does not read

like others from left to right or from right to left.

Both BERT and doc2vec are created by Google, to handle large data. BERT is a breakthrough

in the Machine Learning field. With its approachable style and fast fine-tuning, it will lead to

a variety of practical applications in the future. BERT code and model is now released by the

research team and it is open source(Google, 2018).

4.4 Improving – Vector Space Model

Typically, such vectors as TF-IDF are very large and sparse. To make them more efficient and

compact we need to remove irrelevant information.

4.4.1 Stop Words

The straightway to reduce the large vector is by removing the stop words. These stop words

include words such as: “the”, “on”, “a”, etc. These words should be removed because they

appear in every document.

Stemming is also a useful technique. It replaces a word with its root word. (went = > go).

Stemming procedures are implemented as a combination of morphological analysis using

Porter’s algorithm (Porter 1980) and with the help of the WordNet dictionaries. Using these

techniques AI improved, but when using syntactic suffix stripping the risk still exists because

the danger of matching a profile with a wrong document is high. For example, words such as

universal and university are stemmed from the universe.

The usage of these techniques reduces the vector size and at the same time improves the

matching process.

4.4.2 Size Cutoffs

Another method that is quite useful in reducing the size of the vector is by using the most

informative words. A study was made in several domains about important words where the

usage of only 50 keywords didn’t cover all features of the document. When using 300

keywords the word itself has limited importance and lowers the accuracy of the

recommender system.

4.4.3 Phrases

The usage of “phrases as terms” does o further improvement to the recommender system.

These are more descriptive for a text rather than a single word alone. Such phrases or

composed words can be: “United Nations” and they can be encoded as dimensions in the

vector space. The detection of these phrases can be done by applying statistical analysis

techniques(Ricci, Rokach, Shapira, & Kantor, Recommender Systems Handbook, 2011).

4.5 Limitations

The approaches such as: extracting and weighting keywords from texts have an important

limitation. It does not take into consideration the context of the keyword and in some cases,

it can have problems catching the meaning of the description. For example, a restaurant that

serves the only steak (steakhouse) may have in their menu description the following “this

menu does not include foods for vegetarians”. In this case, the vector that will be generated

will give a huge weight on the word vegetarians and will produce a match with the user that

is searching for a vegetarian restaurant.

4.6 Similarity-Based Retrieval

Items in collaborative filtering recommender systems are described as “items that are similar

users liked”. In content-based recommender systems, the description is “items that are

similar to those items that the user liked in the past”(Patel, 2013).

As we can see the job of the recommender systems in both models is to recommend an item

that the user has not seen, with the hope of them liking it.

4.6.1 Nearest Neighbors

How can we know that a certain document will be in the interest of the user? A simple

method is by checking if he has liked similar documents in the past.

To implement this method, we need two pieces of information: a history of what the user

has liked/disliked in the past, and a measure that captures the similarity between two

documents. The first one can be provided either by the user interface or by monitoring the

user’s behavior. The second one is done with the help of cosine similarity for measuring the

similarities between two documents.

For example, we have a pack of 5 documents that are similar. If the user has liked 4 of them,

then the possibility of him liking the fifth one is very high.

The method is known as kNN (k-nearest-neighbor). Such methods were used starting from

2000 in news recommendations where the short-term interest of the user was very

important(Yang, Adeniyi, & Wei, 2016). When a new story arrives, the system is able to

check if the story is as similar as those the user has liked in the past, or if it’s a follow-up

story to a recent event then it will recommend it to the user. Also, when implementing such

methods, the system will be able to prevent documents or news that the user has seen

already.

This method was implemented as a part of a broader system for the user profile technique.

The system induced both: short-term interest and long-term interest of the user(Billius &

Michael, 2000). The short-term technique provides the user information’s on topics of

recent interest. For the long-term technique, the model collected information about the

user over a long period of time (months, years) and was able to identify informative words in

documents with the help of TF-IDF and recommend those documents or news that had the

highest score in the collection.

The important thing in this method is to combine both the short-term and the long-term

interest. A simple solution was proposed: first, we do a search on the short-term model: if a

document (neighbor) was not found, then the systems continue to the long-term model.

The kNN method has many advantages: it is adaptive, is simple to implement, and is able to

make recommendations based on a small number of ratings. But if we compare kNN with

other sophisticated techniques we receive a lower score.

4.6.2 Relevance Feedback – Rocchio’s Method

This method is also based on the vector-space model. During a search for an item by the

user, despite entering the keywords they were able to give feedback (rate) of the items they

received whether those items were relevant. Based on the feedback the system could

improve the retrieval results in the upcoming searches. This system is known as the SMART

system.

The system did not exploit additional information, but it allowed the user to interact with

the document (rate it) and tell the system whether the result is good or bad.

Why this approach is needed? Without the feedback, the systems will only rely on the

individual’s capability and the quality of the keywords that they will input. The typical search

query on the web consists of only two keywords on average.

After the document is rated by the user, the main idea is to put those documents into two

groups: G+ (the documents that the user liked) and G- (the documents that the user

disliked). Then, calculating the average vector of these two categories.

Figure 4.6 - Two groups and the search query.

(Manning, 2008)

After receiving a good feedback, the document is moved towards the group of relevant documents.

Nowadays the feedback method is used in various domains. It is has shown that despite its

simplicity it can lead to improvement and better performance of the recommender system.

But, to build a good model, the system will rely on a certain number of ratings and user

interactions.

The gathering of ratings can be done in many forms. For example: if a user is recommended

with 5 documents, a click on one of those documents can be calculated as a positive rating.

The problem part is what to do in scenarios when the user has read the document and was

disappointed.

Another technique is to rely on the so-called blind feedbacks. Example: assume the user got

a recommendation of 10 documents. If none of those documents received a bad review

then we consider them relevant items, without the user giving them positive feedback, but

in the idea that they didn’t receive either bad feedback.

The point is to learn the desired preferences of the users with their low interaction.

Nowadays web users are very impatient and are not willing to give feedback on

recommended items.

Content-based recommender systems that are based on the query approach are very similar

to modern search engines (Google). Such tech giants like Google, Yahoo offer many other

features (email, document management, and manipulation), and based on these features

they can view the user’s behavior and learn from it, to improve their recommender system.

4.7 Probabilistic Methods

These methods are based on classes such as “like” and “dislike”. When formulating a

recommender system as a classification problem then various techniques can be applied

from the supervised machine learning techniques.

Such approaches are based on the naïve Bayes assumption of conditional independence and

have been successfully deployed in content-based recommender systems.

𝑃 𝐵() = 𝑃 𝐴()𝑃(𝐴)
𝑃(𝐵)

Figure 4.7- Naïve Bayes classifier.

(A|B) is the probability of A being true given that B is true, (B|A) is the probability of B being true if

A is true, (A) probability of being true, (B) the probability of being true

Classifiers are also used in the collaborative-filtering recommender systems to determine the

membership of the user into a cluster of users that has the same preferences, where eras in

the content-based approach the classifiers are used to determine if a certain document is in

the interest of the user.

When using the naïve Bayes classifier, we need to take into consideration that not every

individual event is conditionally independent because there are co-occurrence terms such as

New and York (New York) or Hong and Kong (Hong Kong).

Despite these limitations in co-occurrence words, the Bayes classifier has shown it is useful

in text classification.

The Bayes classifier despite its good accuracy is also able to improve because the

components of the classifier can be easily updated and can absorb data when they are

available. However, as with all other techniques, a certain number of training data (ratings) is

required to provide precise recommendations.

The cold-start problem is also present in such content-based approaches where some sort of

feedback is needed. There are ways to deal with this, such as; asking the user to provide a

list of words for each category.

4.8 Other Classifiers

When we view the content-based recommender system as a classification problem, then

various other techniques appear and are available to be implemented. The purpose is to find

a linear model to discriminate documents that are relevant and non-relevant.

There are sketches where the documents are characterized by just two dimensions. If only

two dimensions exist, then the classifier can be represented with just one line.

Figure 4.8 - A classifier with one line and two dimensions.

(ResearchGate, 2008)

Various challenges can appear when using such linear classifiers. For example noise

documents. This challenge appears when there are noisy features that can mislead the

classifier. Because of these features’ documents may not be near the cluster they belong to.

4.9 Explicit Decision Models

There are two other techniques: decision trees and ruled induction; which are used for

building a content-based recommender system. These techniques are different from other

techniques because of the generation of explicit decision models in the training phase.

Such techniques are also useful in other domains such as data mining. When they are used

in the recommendation system, the features of the item are labeled with the inner nodes of

the tree, and the nodes are used for the partition of the text examples, for example: for the

existence or nonexistence of a keyword in a document.

The determination of whether a document is relevant can be done in a very efficient way

with such classification trees, which can be constructed from the training data, without the

need of using domain knowledge. Decision trees are well understood, can be applied in

various domains, and are easy to be interpreted.

The main issue when applying such techniques (decision trees) lies in the usage of many

features. For example: in content-based recommender systems we use TF-IDF for document

representation. Decision trees are useful when there are small numbers of features, in which

case we should be using meta-data features such as name, genre, and not use TF-IDF for

document representation.

Figure 4.9 - Decision Tree example.

(Geeksforgeeks, 2019)

The reason for this limitation lies in the splitting strategy of the decision tree. Due to large

information, it can lead to small decision trees (Pazzani, Muramatsu, & Billsus, 1996).

For this reason, content-based recommender systems that are created based on the decision

tree model are used in classical scenarios and are used in combination with other

techniques and not as a core technique. Example: to determine with user model features are

most relevant for providing better accuracy or to compress in-memory data structures.

Rule induction is also a method that is used for extracting decision rules from the training

data. This method has been used for e-mail classification.

Both of these methods; decision tree and rule induction are very successful and have been

used in subproblems such as e-mail classification, for advertisement personalization, or even

in some cases where the item has just a few features. As we described previously these

techniques have two main advantages: decision rules can serve for generating explanations

for the recommendations and other domain knowledge can be incorporated into the

models.

4.10 Feature Selection

These techniques that we described previously, rely on the vector representation and in the

weights of TF-IDF. Document vectors if used in a very straightforward way tend to be very

large with thousands of words appearing in the corpus, even with the removal of the

so-called “stop-words” and the steaming technique.

When used in applications, such large vectors cause problems in many areas: slow

performances, memory full, and the effect of overfitting. For example, we may have

documents labeled as “hot”. During the training phase, this noisy data will lead the classifier

into describing these documents as very interesting for the user. Overfitting appears when

only a small number of training documents are available.

To avoid such problems, it is desirable to use only a subset of all the terms that appear in the

corpus of classification. This process is known as “feature selection”. The main idea is to

choose just some features and not all of them.

The removal of irrelevant features can lead to better results and accuracy. Other techniques

and strategies are the removals of those words that are too rare or that appear too often

into a document.

How do select features that will improve the accuracy of the recommender system?

The optimal feature can be found by training the classifier on every feature and evaluate its

accuracy. After the implementation, a list should be formed of “good” keywords. The

measurement of determining such keywords is done by the X2 test.

𝑥2 = (𝐴+𝐵+𝐶+𝐷)(𝐴𝐷−𝐵𝐶)2

(𝐴+𝐵)(𝐴+𝐶)(𝐵+𝐷)(𝐶+𝐷)

Figure 4.10- X2 test.

The x2 test is a standard statistical method that is used to check if two events are

independent. Based on this idea, in the context feature, we should analyze into the training

data, whether classification outcomes are connected with specific term-occurrences. If a

dependency for a term is identified, then we will include this term into the vector for

classification.

Figure 4.11 - Contingency table of x2.

(Jannach, Zanker, Felfering, & Friedrich, 2011)

(t) Is the term. (A) Describes the number of documents that contain the term “t”. (B) Describes those
documents that are relevant, but don’t have the term (t). (C) and (D) describe all those documents that are

irrelevant.

The creation of contingency tables enables the system to check if a term is relevant or

irrelevant to a document.

Fisher’s discriminant is also a technique that is used in information retrieval.

4.11 Limitations

The content-based recommender system has its limitations. This led to the creation of the

hybrid-based recommender system that is created by using advantages of other

recommender systems and their models.

Example of limitations:

● Recommending web pages to users. The problem that appears in this

scenario is that analyzing a web page only by its content is not enough. We

need to consider the usability, check hyperlinks, the quality of the page, and

others.

● In other scenarios where keywords are used for the characterization of

documents, the recommender system is limited to determine whether the

document is a well-written article or a poor one.

● There are also hypertext documents that have multimedia elements (images,

audio, and video). These contents are not considered and not taken into

account by the content-based recommender system. The research in the

extraction of these features is still in an early stage.

● These recommender types tend to propose more of the same items, such as:

in a newspaper if an event has happened, the user may already read an

article for that event, but the system will recommend other news for that

same event that is created in a different context. To avoid this problem the

system should increase the serendipity of the items, to include some random

items that the user might be interested in.

● The cold-start problem is also present in the content-based approach. Before

the collaborative approach that requires a lot of ratings, here we need at least

a small portion of ratings.

Challenges exist. Most of the learning techniques require a certain amount of training data

to achieve better recommendations. The border between content-based recommender

systems and other system is not strictly defined. Pure content-based recommender systems

are rarely found in the e-commerce industry. In many cases, they are used in combination

with other systems.

5 Chapter 5 - Hybrid Recommender Systems

The previous two recommender systems that we described: collaborative and content-based

follow different paradigms to make recommendations. They produce good results that are

personalized based and perform successfully in various domains. For example collaborative

model uses the item ratings and the community data to make recommendations, the

content-based model relies on the features of the items and textual descriptions. Each of

these models has its pros and cons, starting from the data scarcity, to the cold-start problem

and others. However, none of these models is great enough to perform on its own with good

results in the real-world.

To overcome such problems and limitations, and to be practical and useful in the real world,

researchers created a new model that is known as the hybrid system. This system is created

by combining the strengths of other models. Even the word “hybrid” has its origin in the

Latin noun “hybrida” which stands for mixed origins.

As we mentioned previously, a hybrid recommender system is a combination of several

algorithms.

Figure 5.1 - Hybrid recommender system.

(Singla, 2019)

Most of the practical recommender systems that exist are hybrid-models, but in the

theoretical approach, not a lot of work has been focused on how to combine different

algorithms. The Netflix prize was such an example where to increase the accuracy of the

system, they included different algorithms into the system.

When forming such hybrid systems, the task of the collaborative model is to determine

similar items to the user by looking into their rating history, and the content-model will be

recommended much of the same by looking into the features of the items that the user has

liked.

5.1 Hybridization Design

Hybrid systems are very unique in their design. We will discuss three based designs: pipeline,

monolithic, and parallelized hybrids.

5.1.1 Monolithic

To create such a design, we need to incorporate several recommendation strategies into one

algorithm. Every strategy contributes in its way when analyzing the data. The input is

analyzed by the hybrid system that is formed from different strategies and outputs the

results (Figure 5.2).

Figure 5.2- Monolithic design.

(Jannach, Zanker, Felfering, & Friedrich, 2011)

5.1.2 Parallelized

This design requires two separated recommender systems which are combined into a bigger

system. Based on the input these recommenders receive they work independently of one

another and produce separated results.

Figure 5.3- Parallelized design.

(Jannach, Zanker, Felfering, & Friedrich, 2011)

5.1.3 Pipelined

In the pipelined design when two recommender systems are joined together, the output of

one recommender helps as an input for the other recommender.

Figure 5.4- Pipelined design.

(Jannach, Zanker, Felfering, & Friedrich, 2011)

5.2 Hybridization Techniques

As we discussed above, there is three main design for building a hybrid system where two of

those design is created by two or more recommenders and just one of them; the monolithic

design is built by just one recommender. This design is created via feature combination or

feature augmentation.

5.2.1 Feature Combination

Is a monolithic recommendation component that for input uses a diverse range of data.

Example: combines collaborative features (likes and dislikes of users) with content features

(features of items).

5.2.2 Feature Augmentation

Is also a monolithic design that does not simply combine and process several inputs, but can

take it to the next level by applying complex transformation steps. The output of one

recommender is used as an input for other recommenders. In this method, the input it

receives from other recommendations treats it as a feature. It has similarities with the

stacking technique that is used in a classification where the outputs of one classifier as used

as features for the next one.

5.2.3 Weighting Average

The weighting average technique aims to find the weights that have results and are very

accurate. These weights are from the outputs of content-based and collaborative filtering

models. In some cases, the system weights both models equally. When both of the models

recommender the same item, then that item is recommender to the user.

5.2.4 Switching

In this technique, the algorithm can switch between different recommender systems based

on the current needs. For example: in the early phase it can use the content-based approach

to avoid the cold-start problem, then in the late phases where ratings will be available it can

switch to the collaborative model. Also, the system will pick the recommender system that

will provide the most accurate items at a given point in time.

5.2.5 Cascade

This technique refines the recommendations given by another recommender system. The

training process of one recommender system is biased by the output of other

recommenders, and the overall results are combined into one output.

5.2.6 Meta-level

In this technique, the model used by one recommender system helps as an input for another

recommender system. A typical example is the combination of a content-based and

collaborative system. Here, the collaborative system is modified so it can be able to use the

content of features for the determination of peer groups. Then with the rating matrix is able

to recommend items and make predictions. Note, the collaborative system first uses the

modified version of itself by analyzing the content features to determine the peer groups,

and only, in the end, it uses the rating matrix for a recommendation. These systems are

known as “collaboration via content”.

5.2.7 Mixed

This technique presents to the user recommendation from several models at the same time.

This system doesn’t combine the scores from various recommenders as other techniques do.

These recommenders are considered neither monolithic nor ensemble-based, but they are

classified as a category of their own. This model is mostly used in cases where the

recommendation system is a composite entity where multiple items are recommender as a

related set.

5.3 Summary

Hybrid recommender systems are used for two main reasons: to leverage the power of

multiple data sources and to improve the performances of recommender systems. The

motivation to create and evolve such a recommender system is the desire to use the

strengths of content-based and collaborative filtering systems. Some of them were good in

the cold-start problem, and some when more data was available.

6 Chapter 6 -Building the Recommender System

This section will give an overview of the system, how it was created, the system framework

and requirements, and basic conditions.

6.1 System Requirements

During the creation of the system, we used the Anaconda Environment (64 –bit) with Python

version 3.7. Anaconda is created by Continuum Analytics, and it is used a lot by Data

Scientist because it is a Python distribution with lots of libraries available.

This environment is popular because it has a lot of tools that are used in data science and

machine learning. It has its package manager known as “conda” where we install the

libraries, but the “pip” manager is also available.

Recommended requirements:

● Processor: Intel ® Core ™ i3-3220 CPU @3.30Ghz

● RAM: 8.00 GB

● 64-bit Operating System

● Storage: 10GB +.

● Operating System: Windows 10.

6.2 Libraries

For the creation of the content-based recommender system we used different software

libraries, such as:

6.2.1 Pandas

It is a library that is used for the manipulation and analysis of data. It is written for the

Python programming language it is used like Excel, with tables knows as Data Frames, it has

rows and columns known as Series, and many more functionalities that help in data

processing and manipulation. This library relies a lot on NumPy. Pandas is already

pre-installed in the Anaconda environment, but without this environment, we can install it in

CMD with the following command: “pip install pandas”

6.2.2 NumPy

It is a powerful open-source library. It’s used a lot for array computing and metrics. It has a

large collection of mathematical functions that can operate with the arrays. It’s one of the

most used libraries in python along with Pandas.

6.2.3 Re

Re is known as a regular expression and it is used to identify patterns in a sequence of

characters. Mainly is used for the manipulation of textual data, in the field of text mining,

pattern identification, and input validation.

6.2.4 Plotly

It is an open-source library, interactive with the main purpose of creating visual data.

Supports 40 unique chart types, starting from statistical, financial, scientific, and 3D cases.

We can create beautiful web-based visualization that can be displayed in the Jupyter

Notebook.

6.2.5 Cufflinks

It is a third-party library that works with Plotly. When we use cufflinks all the data frames in

Pandas have a new method known as iplot.

6.2.6 NLTK

Stands for Natural Language Toolkit, and it is created from different libraries of Natural

Language Processing. It is used mainly for: converting text to lower case, word tokenization,

removal of stop words, word frequency, and others.

6.3 Dataset

NIPS dataset is used as data for the system to generate. Neural Information Processing

Systems (NIPS) is one of the top machine learning conferences in the world. It covers topics

ranging from deep learning and computer vision to cognitive science and reinforcement

learning.

This dataset includes the title, authors, abstracts, and extracted text for all NIPS papers to

date (ranging from the first 1987 conference to the current 2016 conference). I've extracted

the paper text from the raw PDF files and am releasing that both in CSV files and as an

SQLite database(Hamner, 2017).

Figure 6.1 - The dataset.

As we can see in (Figure 28) the dataset has 7241 rows and 7 columns. For the

recommendation system, we are going to use the id, title, and paper_text. Other columns

such as event_type, year, pdf_name, abstract, will be dropped because event_type and

abstract have no data, and year with pdf_name are not useful for us because we will not

search based on the year or the pdf name.

6.4 Data Cleaning

Cleaning the data is very important for a Data Scientist. According to IBM Data Analytics

(Analytics, n.d.) The data scientists spend 80% of their work cleaning the data. To build the

Matrix we will use the paper_text column, that’s why it’s important to clean that column.

The “Stop Words” method will be used. Stop Words are those words that in the field of

natural language have little meaning, such as: “an”, “is”, “the”, and others.

Stop Words are removed before we create the model, because it will occur in abundance,

and will provide very little information if used for classification.

There are different libraries for removing stop words such as NLTK, SpaCy, Gensim, and

others. We used the NLTK library for our system.

NLTK is one of the oldest libraries, and it is used very commonly. This library works in a way

that it divides the text into words, and if a word exists in the NLTK list, it will remove it.

Figure 6.2 - Most used words in column paper_text before using stop words.

Figure 6.2 describes the top fifteen words used in NIPS Papers. We see that these stop words

such as the, of, and, in, to, are used a lot. The word “the” is used 1.9 million times.

Figure 6.3 - Most used words in column paper_text after using stop words.

Figure 6.3 shows us that the words: the, as, in, to, is, and others, no longer exist and are

removed from the dataset. With the removal of these words, the matrix will be smaller and

the system will be faster for generating recommendations. Most used words now are

learning, model, data, and algorithm. These words are very useful for the model.

Figure 6.4 - The function that is used for stop-words removal.

First, we define a function with def. With CountVectorizer we get the words model, where

the text is clean, removing non-alphanumeric characters and stop words. With

vectorizer.Transform we have a matrix, where specific texts are represented by rows, and

words are represented by columns. All words and texts that exist in the content.

Sum_of_words it’s just a vector that has the sum of each word that exists in the content. In

the end, we make a list of tuples that contain the words.

The same method is applied for finding bigram and trigram words. A bigram is a two-word

sequence of words, for example: of the, in the, to the, and the, is the, and others. Some

examples of trigram words that we found in the corpus: in this paper, to, where is the, based

on this paper we, the set of, and others.

6.5 TF-IDF

Stands for Team-Frequency – Inverse Document Frequency. It is using Machine Learning and

Text Mining as a weighting factor for features. The weight increases as the word frequency in

a documented increase.

This means that as the weight increases, the more that word occurs in the document.

As we can see not all words that appear in the corpus of documents have the same weight.

But what if we have documents that describe cats. Then many of those documents will have

in their content the word “cat” and it will have a high weight. In such cases, the TF-IDF

comes into place.

It assigns weight to each word according to this formula:

𝑊
𝑖,𝑗

= 𝑡𝑓
𝑖,𝑗

𝑋 log 𝑙𝑜𝑔 (𝑁
𝑑𝑓

𝑖
)

Figure 6.5 - Weighting formula.

(W I j) it describes the weight of the word (I) in the document (j), (d fi) describes how many

documents contain the term (i), and the (N) describes the total number of documents.

From this, we understand that the weight of the word in a document is greater if it appears

more often in that particular document, and less often in other documents.

Figure 6.6 - TF-IDF code in the system.

First, we import the TF-IDF Vectorizer from sklearn. Then we define a variable tf where we

have the Vectorizer with ngram and the stop words. With tfidf_matrix we create our matrix

based on the column paper_clean. This column has all the unnecessary words removed such

as “stop-words”. At the end with .shape, we see that the dataset contains 7.241 papers

which are described by 2.399.6061 words.

6.6 Cosine Similarity

It is a metric that is used for measuring the similarity between two or more items. Measures

the cosine of an angle between two vectors that are represented in multi-dimensional

space. With this method, we can measure the similarity of a document of any type. We can

view the cosine similarity between two documents with the following formula:

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑥, 𝑦) = 𝑥 ∙ 𝑦𝑇

𝑥| || |• 𝑦| || |

Figure 6.7 - Cosine Similarity for two documents.

The cosine similarity takes a value between -1 and 1. The higher the value the more similar

the documents are. If we get a value of -1 then there is no similarity between those two

documents. In our case, we got values such as 0.7554, 0.8232, and others.

cosine_similarity = linear_kernel(tfidf_matrix, tfidf_matrix)

Figure 6.8 - Cosine Similarity code.

6.7 Making a Recommendation

After the creation of the Matrix, and then the cosine similarity now we have the scores of

the documents and their similarities. It is time to find the index of that score and converted

it to its title.

Figure 6.9 - Recommendation function.

As we mentioned above, first we get the indexes, then convert them to the title column,

then we list the top sixteen papers that are similar to our particular search. With the

following search: “recommender_system ('Predictive Indexing for Fast Search')” the results

will be:

Figure 6.10 -Results of the system.

7 Chapter 7 - Evaluation of Recommender Systems

A proper evaluation is very crucial for the system, to understand the effectiveness of the

recommendation algorithms. The evaluation of the recommender systems is multifaceted,

meaning we cannot capture the whole design with just a single criterion. An incorrect

evaluation might lead to underestimating or overestimating the accuracy of the algorithm.

Recommender systems can be evaluated in two ways: online and offline. In the online

method, user reactions are measured and user participation is essential in this method. For

example: in evaluating the news recommendation systems, the evaluator might look at the

clicking rate in the articles that were recommended to the user. This method is known as

A|B testing and measures the impact of the recommender system on the user. So, what is

the most important thing here? Increasing the clicking rate of the user on the items.

As we mentioned above, using the online evaluation requires user participation, and this

method is not feasible to be used in benchmarking and research. On the other hand, gaining

access to a large dataset that has user conversion data is very challenging and one might not

get full access, but only access into a particular part of the system.

Such access, limit the evaluation of the whole algorithm in different domains because

evaluating an algorithm in many domains with different types of data is more useful and

accurate. Due to this restriction, offline methods are created that use historical data. The

offline method is mostly used when evaluating recommender systems for research and

practice perspectives.

When using the offline methods, the accuracy of the algorithm cannot be verified fully, and

we often cannot provide the full picture of the clicking rate of the algorithm. In this case,

secondary measurements come into play. The most important part is the design of the

evaluation system. It is crucial to design it carefully so it can be able to truly reflect the

effectiveness of the algorithm. When trying to design an evaluation system we might face

several issues:

● Evaluation Goals:the usage of accuracy metrics for evaluating a recommender

system, doesn’t give a complete picture of the user experience. That’s why including

secondary components such as novelty, trust, and serendipity is useful for the user

experience. These metrics have both short-term and long-term impacts on the

clicking rates.

● Experimental Design: even if we want to use the accuracy metrics, we have to take

into consideration the design of the system, because it might lead to overestimation

of the accuracy metric. For example: if we use the same set of ratings both for

creating the model and late for evaluation of the model then the clicking rate will be

highly overestimated.

● Accuracy Metrics: despite the secondary metrics that exist, the accuracy metric is

the most important one when evaluating a recommender system. There are metrics

such as mean absolute error (MAE) and mean squared error (MSE) that are used

commonly in the evaluation process.

7.1 Types of Evaluations

The evaluation of systems is done in three types: user studies, online evaluations, and offline

evaluations that include historical data. The user studies method and the online evaluation

method, need user interaction to evaluate the system. They are not the same, and they do

have differences in the technique of how the user is included in the evaluation system.

7.1.1 User Studies

This evaluation method includes test subjects that are used for interacting with the system

and performing specific tasks. Feedback is collected from the users either before the

interaction or after. The collection of this data in later stages is used to make inferences

about the likes and dislikes of the user. For example we can ask a user to interact with the

system in a particular site and give feedback about the items he gets recommended.

This approach later is used in judging the effectiveness of the algorithm. Another example:

users can listen to different songs and in the end, they should provide ratings to each song.

When using this technique we can collect information about how the user interacts with the

system. Different scenarios can be tested to make changes either in the user-interaction or

into the algorithm or changing the user-interface. But there is one limitation. If the user is

informed that he is tested, then his action and behavior might be affected. Including a large

group of the user for testing purposes is quite hard. When asking users for participating in

such evaluation systems, most of them will like to participate in their field, for example: in

the song evaluation recommender, the testing participants will be mostly musicians. So not

all users are from the general population and in the end, we cannot fully trust the results we

get from this evaluation method.

7.1.2 Online Evaluation

This method also includes the user interactions but mostly the users are real users and the

system is fully deployed online, meaning they are not there only for testing purposes. In this

approach, users are using the system directly and are sampled randomly where various

algorithms can be tested in different samples of users. As a metric typically conversion rate is

used. This metric measures the frequency of which items are selected by the user. As we

described above this method is known as the A|B testing and the idea is to compare two

algorithms in the following way:

1. Having two groups of users (A and B).

2. Using one algorithm for group A and the other for group B and keeping the

conditions similar in both groups.

3. In the end we compare the results (conversion rate) of the two groups.

Such an approach is good for testing the performance of the system in a long-term way. We

are also able to not divide the users into groups, but by giving users both algorithms and

keeping track of the results we get by seeing from which algorithm the result came.

The main disadvantage of the online evaluation is that it requires a large portion of users to

be interacting with the system. Implementing this method into the startup phase is not

required. Such tests are only available to the owners of the commercial entity, meaning

scientists and other researchers don’t have free access.

7.1.3 Offline Evaluation

This method works with historical data such as ratings. In some cases, in the data, a

timestamp is included to show when the item was rated. Historical data we can find online,

but the most knows in the Netflix Prize dataset. This dataset was published because of the

online context that Netflix arranged and from then it still has been available online for

testing algorithms. The advantage when using a historical data set is that it doesn’t require

access and interaction from the users.

The offline method is the most used technique to evaluate the recommender systems

because many frameworks and evaluation measures have been developed for such cases. A

disadvantage of this method is that it doesn’t measure how the user will behave with this

system. When using historical data, the problem is that the data might evolve (new data)

and the current predictions that will be made by the algorithm might not include predictions

of the future. Despite these disadvantages that exist, the offline method is still one of the

most used when testing algorithms.

7.2 Goals of Evaluation Design

Some general goals that are very important in evaluation design are accuracy, diversity,

robustness, scalability, and others. We will describe each of them in detail.

7.2.1 Accuracy

It is one of the most fundamental measures when evaluating recommender systems. This

method is formed by two main components:

● Designing the Accuracy Evaluation:this component describes to us that we cannot

use the same rating matrix for both pieces of training the model and accuracy

evaluation. If we do so then we will overestimate the results. So it is very important

to use a different set of entries for training and accuracy.

● Accuracy Metrics: This is used to evaluate either the accuracy of the ratings from

specific users or the accuracy of top recommended items predicted by the system.

The technique uses mean squared error and root mean squared error.

𝑀𝑆𝐸 = (𝑢,𝑗)∈𝐸
∑ 𝑒

𝑢𝑗
2

|𝐸|

Figure 7.1- Mean squared error.

(u) is the user, (j) the item, (E) is the set of entries.

𝑅𝑀𝑆𝐸 = (𝑢,𝑗)∈𝐸
∑ 𝑒

𝑢𝑗
2

|𝐸|
Figure 7.2- Root mean squared error.

Some of the measures are designed to maximize the profit for the merchant. The main

problem with this method is that it cannot measure the real effectiveness of the

recommender system. For example, a recommendation might be accurate, but in the real

world, the user may buy that item anyway.

7.2.2 Coverage

With coverage, we understand the percent of items that were used in the training data that

the algorithm was able to the recommender. That means the recommenders not able to

include all the items in the prediction accuracy. This limitation of the recommender system

exists because the rating matrix is sparse. In practical scenarios, the system often has 100%

coverage. There are two known ways of coverage: user-space coverage and item-space

coverage.

The user-space coverage is used to measure the fraction of users in which k ratings may be

predicted. We should give a value to k, and if the list of recommended items is lower than

that value then the recommendation is not meaningful. For example, for a user that has

rated just two movies, it’s hard to mutual that user with other users.

Item-space coverage measures the fraction of the items that the recommender can predict.

For example: if we have a system that has lower item coverage then this limits the

recommender to recommended items.

7.2.3 Confidence

We can define this as how much the system trusts its recommendations. As we said in the

previous sections that when a large amount of data are available then the collaborative

system can make better recommendations, similarly the confidence of the system also gets

higher. For example: if the recommender system recommends to the user two movies, one

with high confidence, and the other with low confidence then the user might be affected

and will add the first movie into the watching list, and for the second movie he will do more

research or will ignore it.

7.2.4 Trust

While the confidence part had to do with the system trust in its ratings, with trust we refer

to how much the user trusts the system that is recommending items to him. As a start, the

system should recommend to the user items that the user is already familiar with. This way,

the user may not benefit from the items but the system will benefit from the user because it

will gain his trust. Another method of getting trust is by describing to the user how you

recommended the item to him. If we do not restrict ourselves to just one method, then we

can try different methods and grow the credibility of the system. But how can we check the

trust of the system? One method is by asking users for their feedback on how much they

trust the system. Another method is by checking users. After the user has used the system

one time, and it returns then we can assume that he has trust in the system. Measuring trust

in the offline experiment is unclear because trust is built through the interaction of the users

with the system.

7.2.5 Novelty

Represents those items that the user hasn’t seen. In those applications that require a novel

recommendation, we can filter all the items that the user has rated and we will know which

items he has not seen. But in some cases, the user has seen the item but didn’t give

feedback and we may recommend to him some items that he has already seen in the past.

Another method is by asking the user whether he has seen a particular item. We can gain

some novelty in offline experiments. By splitting the data into the specific point of times,

hide all purchases that the user has made in a specific time, then test what items the system

will recommend.

To implement this method we need to carefully model the hiding processes of items. When

using novelty we need to take into consideration the accuracy, because the user will get

irrelevant items recommender and they may be worthless. Novelty is better to be

considered into relevant items.

7.2.6 Serendipity

With serendipity, we measure how surprising is the recommendation system. For example, a

user has watched movies where the actor was Brad Pitt. Based on this information the

recommender system will know that this user may be a fan of this actor and he will

recommend to the user a movie where Brad Pit is acting. But random recommendations are

more surprising so we need to make a balance between accuracy and serendipity. We can

think of serendipity as new information from the user. For example a new movie appears

(The Joker), and if the user rates this movie as 4 or 5 then he likes it. Based on this feedback

we will recommend to him more movies when Joaquin Phoenix is acting.

To evaluate the serendipity of a recommender system we use user studies. Asking the user

which of their recommended items are unexpected to them. Then we can see if the user

liked these recommendations, which will make the system more successful and

serendipitous. But we need to take into consideration that too much serendipity is bad for

the system because in the starting phase the user may like the new unsuspected movies but

later he may discover that the recommendation system is inappropriate and will stop using

the system, that’s why checking the score of the serendipity is suggested.

7.2.7 Diversity

It’s just the opposite of similarity. We have seen that suggesting similar items to the user

may not be always useful. Example: suggesting a vacation place to a user. If you suggest five

hotels in the same location it may not be quite useful versus suggesting five hotels in five

different locations. The user will have more possibilities in searching about the locations and

requesting more details.

To measure the diversity we use the item to item similarity that is based on the content of

the item. This measure is not the same as the similarity measure that is used to recommend

items to the user.

7.2.8 Utility

It is very important for e-commerce websites. Many of these websites use a recommender

system to improve their revenue (selling more). Based on this, we can judge a recommender

by the revenue that they generated for a particular website. For these recommenders,

measuring the utility is more important than measuring the accuracy of the recommender.

The utility can be measured either by the recommendation system or by the owner of the

system. In some cases where we have items that get rates, we can use the ratings to

measure the utility. For example: if a user rates a movie as five stars then we assume that

this movie has excellent utility versus a movie that is rated with four stars.

We can assign both positive and negative utilities to a particular recommender system. For

example: if some items that are recommended to the user are offensive then we rate that

system with negative utility.

7.2.9 Risk

Risk is also available in the recommendation system. For example: when recommending

stocks to users, the user may like the stocks to be risk-averse and will prefer stocks that have

a low risk. On other hand, some users may be risk-takers and want stocks that have higher

risks so they can gain more profit. To evaluate risk systems we consider not just the utility

but also the utility variance.

7.2.10 Robustness

With robustness, we understand how much the recommendation system is stable against

fake information that is added into the system to influence the recommendations. Many

people rely on the recommendation system for their decision, and influencing the system to

change ratings may be very profitable for certain people. Example: a website that

recommends hotel rooms (booking.com).

An owner of some hotels may want to boost their rating for their hotel and they will inject

fake users to rate their competitors negatively.

These attempts to influence the system are known as “attacks”. These attacks occur when

coordinated users inject fake information into the system to benefit themselves. When

evaluating these systems, we need to write a complete description of the attack protocol,

because the system is very sensitive to these protocols.

Creating a system that is immune to these attacks is nearly impossible. We need to simulate

attacks to see how our system will be affected. But it is hard doing an attack on a real system

that is online. It’s more beneficial to analyze the data that the online system gathered and

identity attacks that have occurred in that system.

Another type of robustness is the stability of the system against a large number of requests.

This is very important for system administrators, who want to avoid system malfunction. This

depends a lot on the infrastructure such as database, servers, and the scalability of the

system.

7.2.11 Privacy

In some systems, such as collaborative filtering, many users willingly disclose their

preferences over items, to get better recommendations. But we need to consider that the

privacy of users is very important and their data should stay private, to avoid third-parties

from using the recommender system to get their data and gain benefits. For example, a user

is interested in the field of Artificial Intelligence and has bought the book “Life 3.0: Being

Human in the Age of Artificial Intelligence”. Now, when the spouse of that user will use the

system, to buy a present, she may get a message such as “people who bought this book, also

got interested in”. These kinds of scenarios reveal sensitive information about the user.

To avoid such scenarios, it is appropriate to define different levels of privacy. By focusing a

lot on privacy, we may affect the accuracy of the recommender system. We need to do such

modifications about privacy that the system with or without that modification will be able to

recommender the item with the same accuracy.

7.2.12 Adaptivity

Nowadays recommender system operates in those settings where trends are changing

rapidly, and there are more and more items available in the market. Such examples are:

news recommender systems, where a big event might occur (volcano explosion) and users

will be interested in the phonemes of volcanos, and the system should be able to dig in the

past and find articles that are related to volcanos and suggest those articles to the users.

The evaluation of adaptivity is done with offline techniques, simply by analyzing how much

information does the system needs before we recommending an item to the user.

Another type of adaptivity can be the rate of the system for adapting to the user’s

preferences, or the changes of preferences in his profile. For example: when a user rates a

certain item, he will also expect that the system will change its recommendations. If the

system doesn’t change, then the user will think that the rate he did, didn’t affect the system

and it is useless, and this may impact the user to not provide ratings in the future.

7.2.13 Scalability

Recommender systems are built to help and guide users through large collections of items.

When building such systems, it is very important to scale them. An algorithm when trying to

find items for the users through this dataset will trade accuracy and coverage over speed.

The growth of the dataset has an impact on the speed of the algorithms. Many algorithms

are slowed down or are required to get more resources (power and memory).

To measure scalability, we use growing data sets, and we view how the data will affect the

speed and system resources when trying to finish the task. The important part is to view

how the accuracy will be affected and what kind of other types of compromises the

scalability will dictate. The speed of the recommender system is also important and we can

measure that by viewing how many recommendations the system can provide per second.

8 Chapter 8 – Evaluating the System

Every recommender system needs a proper design of the evaluation system. The evaluation

method is done either with online methods or offline methods. Since the online evaluation

requires user’s activity and participation, we used the offline methods that are often used in

benchmarking and research. To have a clear picture of the design of the recommender

systems, the evaluation cannot be based only on single criteria. Taking into consideration

this, we designed the evaluation process with different techniques such as: precision and

recall, novelty, serendipity and diversity.

8.1 Precision-Based Metrics

8.1.1 Precision and Recall

Evaluation plays a huge role in estimating the performance of a recommender system. To

evaluate our recommender systems we have used the method of Precision and Recall. These

evaluation metrics are often used by Data Scientists to evaluate the accuracy of their system.

With this method, we can measure the classification model’s accuracy.

- Precision is the measure of how many observations our model correctly predicted

over the amount of correct and incorrect predictions.

Precision is calculated with: Precision = TP / (TP + FP). TP means True Positive and FP

means False Positive.

For example: if we measure cars versus bikes, precision will measure the number of

correctly predicted cars divided by the cars that are correctly labeled as cars and

bikes incorrectly labeled as cars.

- Recall is the measure of how many observations our model correctly predicted over

the total amount of observations.

Recall is calculated with: Recall = TP / (TP + FN). FN means false negative.

For example: in the example of cars and bikes, recall measures the number of cars

labeled correctly divided by the total amount of cars present(Santos, 2020).

8.1.2 Implementation

The Precision and Recall method mentioned above is the classical method. Due to a lack of

data in our dataset we were not able to implement the classical method of precision and

recall. By believing that every recommender system should be tested in accuracy and by

taking into consideration our deep desire to test the accuracy of our recommender systems,

we went for a logical method of precision and recall.

In our system, we measure the similarity between papers. In this example, we will measure

the similarity between the first paper versus the second paper, third paper, and fourth paper.

This list of papers is based on the results we got from the recommender system. In the end,

we will see if these papers have similar words and which paper has the most similar words

with the first paper. If both papers have common words then it is likely they can be very

similar. So we would compare them based on their common words.

The process starts with exporting the paper_clean column from the recommender system

into a CSV format. Then we split these four papers and put them into empty text documents.

Then we declare an empty string and with the help of a for loop, we stripe the line and

convert the text in lowercase. The purpose of this conversion in lowercase is to be sure all

the text is in lowercase so we can compare it. This process is done with all four papers.

In the second phase we remove the stop words such as (to, that, and, this, etc.) After we

clean the text, in the third phase we search for common words between the two papers.

Based on the results we got, paper one/two have 135 common words, paper one/three have

134, and paper one/four have 104 common words.

In the end, we calculate the accuracy metrics with precision and recall..

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐶𝑜𝑚𝑚𝑜𝑛 𝑤𝑜𝑟𝑑𝑠
𝑃𝑎𝑝𝑒𝑟 1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑚𝑚𝑜𝑛 𝑤𝑜𝑟𝑑𝑠
𝑃𝑎𝑝𝑒𝑟 2

Figure 8.1–Paper 1 vs Paper 2

Figure 8.2 – Paper 1 vs Paper 3

Figure 8.3 – Paper 1 vs Paper 4

In conclusion, we see that in figures 8.1, 8.2, and 8.3 we have recall results and precision

results. Based on those results, we conclude that the paper with the most similar text to

paper one is paper two with a recall score of (0.08353), then paper three (0.08292) and

paper four(0.06435).

8.2 Other Metrics

By considering that different applications have different needs, where many characteristics

are added to the recommender system, the evaluation method goes beyond accuracy and

precision. It is important to include alternative metrics and integrate them into the

evaluation process.

8.2.1 Novelty

The novelty method is based on the like hood of the user receiving items that they are not

aware of and that they have not seen before. This is very important, because the user may

discover important items that they did not know previously. Taking into consideration this,

we concluded that in content-based recommender systems the novelty is low because the

system recommends items that tend to be somewhat obvious. The best way to measure

novelty is through online experiments, where the user will be asked the question of whether

they were aware of that item previously.

8.2.2 Serendipity

Serendipity has to do with measuring the level of surprise in recommended items. Is the

recommender able to recommender unsuspected items? Serendipity has a stronger

condition versus novelty. Serendipity in content-based recommender systems has a low

score because their systems rely on the context of the items that previously were rated by

the user.

8.2.3 Diversity

The notion of diversity stands for those types of recommender systems that suggest diverse

items to users. The recommended items should be as much diversity as possible. For

example, if a user receives a recommendation of the top three movies and all three movies

are of the same genre and have similar actors, the user may dislike the top choice and there

is a great chance that he will skip all of them. But if we present different types of movies,

that increases the chance of the user selecting one of them.

Knowing that content-based recommender systems provide obvious recommendations

because of their use of the content, may reduce the diversity of the recommended items

which is undesirable by the user.

9 Chapter 9 - Conclusion

9.1 In Summary

In this thesis, we tackled the problem of recommending computer science publications to

users. We described the importance of feature selection and its big impact and role within

the processes of the recommendation system. Although it is possible to use any kind of

representation data, the common approach is to use data that are not available in a variety

of domains. There are cases when items have multiple fields that describe the various aspect

of the item. For example, in our recommender system, we had seven fields for a paper, but

we only used three of them. The purpose of feature selection is to ensure that only

important and informative words are in the vector-space representation. In some cases, very

good recommenders suggest that a size cut-off is needed to remove some noisy words that

can result in overfitting. This is often used in small datasets where the number of items is

small and there is a great tendency for the model to overfit. In feature informativeness, we

have two parts: feature selection and feature weighting. The feature selection part

corresponds with the removal of words that was implemented in the recommender system

with the method “stop_removal_words”, and feature weighting aligns with giving greater

importance to words by using the inverse document frequency. These two types of feature

selection belong to the unsupervised method, where the supervised method has to do with

user rankings.

In Chapter 3 we described that Collaborative systems do not use item attributes when

computing predictions. This is a huge downfall because if Chris likes Spider-Man then there

is a huge chance he may like a movie from the same genre, such as Justice League, Black

Panther, and others. In such cases, the content-based systemdoesn’t need user ratings to

make a recommendation, instead, it recommends items by relaying at the own user rating

and the attributes of the item.

By creating a content-based recommender system, we concluded that these systems are

depended on two sources of data:

1. Description of items: for example, a text description for a particular item.

2. User profile: this source is generated by the user’s feedback about particular items,

either by rating the item or by the user’s action.

In this scenario, we create the similarity between two publications based on the text

attribute, put them into a vector-space representation, and by using inverse document

frequency we weigh the documents.

To find similarities between the documents we used a similarity function. Cosine similarity is

a great function and is often used in the text-domain. The usefulness underlines in making

predictions for particular items (in this case documents), where we don’t have a lot of

information about the user's preferences.

Our results show that the content-based approach has user independence because the

recommender can suggest items by analyzing only a single user profile and the items. It has

transparency because the items are recommender from a feature-level basis. And the most

important one is that has no cold start problem because new items can be recommended to

the users without other users rating the item.

9.2 Advance Topics

9.2.1 Evolution

“In the last fifty years, science has advanced more than in the two thousand

previous years and given mankind greater powers over the forces of nature than

the ancients ascribed to their gods.”– John Boyd Orr(Aggarwal, 2016)

Recommendation systems are evolving in multiple directions. There are three phases of the

evolution of recommender systems:

● Phase 1: General Recommendations

● Phase 2: Personalized Recommendations

● Phase 3: Futuristic Recommendations

In the first phase, we have a system such as collaborative filtering, user-based

recommendation systems, and items-based systems. These are the earlier generation of

recommender systems.

In phase two, we have an explosion in information, where people started using the Web

more often and leaving digital footprints such as clicks, browser history, search patterns, and

others. Companies started looking to what kind of items the user likes, and which features of

the item are making the user look for it. In this phase, the so-called content-based

recommender systems were created.

Currently, we are in the earlier stages of the third phase. In this phase, ubiquitous

recommender systems are created. Such systems can recommend items to the user in

real-time, based on the location of the user, their mood, sleep cycle, and others.

The main purpose in this field should be to create a sophisticated recommender system that

will be able to predict the user’s next move and make suggestions without him asking for it.

9.2.2 Group Recommender Systems

These types of recommenders are very interesting and challenging because of their

objectives and goal. In this type of recommender system, we have to deal with a group of

users, not a single user. Such cases and needs appear in many areas, for example: when

watching a movie with a group, playing music in a fitness center, travel recommendation to a

group of tourists. The earliest systems, take into consideration the user's individual needs

and aggregate them into a group of preferences. But the need in this field is to create

recommender systems that are not just based on the sum of user’s individual preferences,

but also considering user’s interaction.

9.2.3 Privacy in Recommender Systems

Many of the recommender systems are based heavily on user feedback, whether is implicit

or explicit. The problem underlines in the feedback part because they contain significant

information about the user’s interest, and such information might reveal their political

opinion, sexual orientation, and some personal preferences. Such privacy concerns are

significant and in recent years the privacy topic has exploded in a variety of many data

mining areas.

Bibliography

Achakulvisut, T., Acuna, E., Ruangrong, T., & Kording, K. (2016). Science Concierge: A fast

content-based recommendation system for scientific publications. PLoS ONE, 11(7):

e0158423.

Aggarwal, C. C. (2016). Recommender Systems. Yorktown Heights, NY, USA: IBM T.J. Watson

Research Center.

Analytics, I. D. (n.d.). Data Analytics. Retrieved from IBM:

https://www.ibm.com/analytics/data-science

Billius, D., & Michael, P. J. (2000). User Modeling for Adaptive News Access. Kluwer Academic

Publishers, 147-180.

Breese, J. S. (1998). Proceedings of the Fourteenth Conference on Uncertanity in Artificial

Intelligence. Madison, WI. .

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments.

https://doi.org/10.1023/A:1021240730564, User Model User-Adap Inter 12,

331–370.

Castillo, D. S. (November 6, 2007). Hybrid Content-Based Collaborative-Filtering Music

Recommendations. 6-60.

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. (2020). Artificial Intelligence

and Machine Learning Applications in Smart Production: Progress, Trends, and

Directions. MDPI, 1-26.

Das, A. D. (2007). Google news personalization: scalable online collaborative filtering. New

York.

Devlin, J., Chang, M.-W., Lee, K., & Tautanova, K. (2018). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv.

Dron, J. (2009). Self-Organization in Social Software Learning.

Geeksforgeeks. (2019). Decision Tree Introduction with example. Повратено од

https://www.geeksforgeeks.org/decision-tree-introduction-example/

Gipp, B., Beel, J., & Hentschel, C. (2009). Scienstein: A Research Paper Recommender

System. Conference Paper (стр. 1-7, PaperID: 213 1). Virudhunagar, India: IEEE.

Google. (2018). Повратено од GitHub: https://github.com/google-research/bert

Gorakala, K. S. (2016). Building Recommendation Engines. Birmingham, B3 2PB, UK.: Packt

Publishing Ltd.

GroupLens. (1997). MovieLens. Wikipedia.

Hamner, B. (2017, 12 05). NIPS Papers. Retrieved from Kaggle: https://www.kaggle.com

Horev, R. (2018). BERT Explained: State of the art language model for NLP. Towards Data

Science.

Jannach, D., Zanker, M., Felfering, A., & Friedrich, G. (2011). Recommender Systems. 32

Avenue of the Americas, New York, NY 10013-2473, USA: Cambridge University

Press.

Jannach, D., Zanker, M., Ge, M., & Groning, M. (2012). Recommender Systems in Computer

Science and Information Systems – A Landscape of Research. EC-Web 2012 (стр.

76–87). Verlag, Berlin, Heidelberg: Springer.

Lenhart, P., & Herzog, D. (September 16, 2016, Boston, MA, USA). Combining Content-based

and Collaborative Filtering for. (стр. 1-8). Boston, MA, USA: CBRecSys@RecSys.

Manning, D. (2008). Introduction to information retrieval. Cambridge.

Mikilov, T., & Le, V. (2014). Distributed Representations of Sentences and Documents.

arXiv.org.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space. arXiv.org.

Mohanty, A. (2020). Doc2Vec: An Extension To The Word2Vec. Medium, 1-2.

Nandi, R. R., Zemam, A. M., Muntasir, A. T., Summit, H. S., Surov, T., & Rahman, J. U.-r. (2018).

Bangla News Recommender system using doc2vec. ResearchGate, 1-8.

Oladapo, F. B. (n.d.). A RESEARCH PROPOSAL ON PAPER RECOMMENDATION SYSTEMS.

Retrieved from www.academia.edu:

https://www.academia.edu/4041704/Content_Based_Recommendation_Systems

Patel, H. (2013). Seminar on Recommender systems using Hadoop. U-News, 1-3.

Pazzani, M., Muramatsu, J., & Billsus, D. (1996). Syskill & Webert: Identifying Interesting Web

Sites. AAAI/IAAI, Vol. 1.

Philip, S., (PHD), S. P., & E.P, M. (2014). A Paper Recommender System Based on the Past

Ratings of a User. International Journal of Advanced Computer Technology (IJACT),

Volume 3 - Number 6.

Philip, S., Shola, P., & John, O. A. (2014). Application of Content-Based Approach in Research

Paper Recommendation System for a Digital Library. (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 5, No. 10.

Puleston, E. (2012, 08 21). User Ratings.

ResearchGate. (2008). A linear classifier separating two classes. Retrieved from

https://www.researchgate.net/figure/A-linear-classifier-separating-two-classes-of-poi

nts-squares-and-circles-in-two_fig1_23442384

ResearchGate, S. F. (2020, 11 26). Characteristics of the books analyzed. Retrieved from

https://www.researchgate.net/figure/Characteristics-of-the-books-analyzed-The-leng

th-of-each-book-L-is-measured-in-millions_fig1_264425089

Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems Handbook - Second Edition.

New York, US: Springer.

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2011). Recommender Systems Handbook.

Springer Science+Business Media, LLC, 233 Spring Street, New York,: Springer .

Santos, M. (2020, May). Explaining Precision vs. Recall to Everyone. Повратено од

https://towardsdatascience.com/.

Sarwar, B. (2001). Item-based collaborative filtering recommendation algorithms. ACM.

Sejnowski, T. (2015). Neural Information Processing Systems. Retrieved from NIPS:

https://nips.cc/

Singla, L. (2019). Why Building a Recommendation Engine is a Good Strategy for Your

eCommerce Business? Netsolutions, 1-3.

Stecanella, B. (2019). What is TF-IDF? MonkeyLearn, 1-3.

Suresh, G. K. (2015). Building a Recommendation with R. 35 Livery Street Birmingham B3

2PB, UK: Packt Publishing.

T, A., DE, A., & T, R. (2016). A Fast Content-Based Recommendation System for Scientific

Publications. PLoS ONE, 11(7): e0158423.

Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. (2018). A content-based recommender

system for computer science publications. Elsevier, 1-9.

Yang, Y., Adeniyi, D., & Wei, Z. (2016). Personalised news filtering and recommendation

system using Chi-square statistics-based K-nearest neighbour. 1-20.

