

THESIS TITLE:

Analysis and comparison of NoSQL Databases to Relational

Databases

Supervisor:

 Asst. Prof. Dr. Xhemal Zenuni

POST GRADUATE STUDIES- SECOND CYCLE

Candidate:

Raif Deari

Tetovo, 2018

3

Declaration of originality

I hereby confirm that this thesis is my own work and that I have not sought or used inadmissible

help of third parties to produce this work and that I have clearly referenced all sources used in

the work. I have fully referenced and used inverted commas for all text directly or indirectly

quoted from a source. This work has not yet been submitted to another examination

institution.

 Raif Deari

4

Proofreading declaration

I hereby confirm that this thesis has been correctly proofread and that it meets all the linguistic
requirements prior to the publication phase.

In Tetovo, on 11.07.2018

Proofreader: Kujtim Ramadani

5

Abstract

The aim of this master thesis is to make a comprehensive analysis and comparison

between NoSQL and relational databases. We review and evaluate data storage and data

management principles of each type of concerned databases. In addition, we evaluate the

performance of CRUD operations using different scenarios on MongoDB and MySQL as

representatives of two respected data models. The results give insights to advantages and

disadvantages of each database model.

6

Contents

Declaration of originality .. 2

Abstract ... 5

List of tables .. 9

List of Figures ... 10

Introduction ... 12

Rows, Columns and Tables... 14

Constraints .. 15

ACID- Atomicity, Consistency, Isolation and Durability .. 15

ACID alternatives in NoSQL- Defining BASE and CAP Theorem ... 16

Background and Related Work ... 19

Key-Value Databases (Redis and Oracle) ... 19

Redis ... 20

Oracle NoSQL .. 22

Document Databases (Mongo DB and Couch DB) .. 25

Mongo DB .. 25

Couch DB.. 26

Column- based Databases (Cassandra and HBase) .. 28

Cassandra .. 30

7

HBase .. 31

Criteria of Analysis ... 32

Data Modeling .. 32

Entity Relationship Model .. 32

Different Data Models for NoSQL Databases .. 33

Data Model of Key- Value Stores ... 34

Data Model of Document Databases .. 35

Data Model of Column- oriented Databases ... 35

Data Modeling Techniques ... 36

Conceptual Techniques ... 37

General Modeling Techniques .. 39

Hierarchy Modeling Techniques... 42

Scalability ... 46

Scalable Relational Database Management Systems .. 48

Experimental Work ... 50

Test Mode One: Single Insertion, Read, Update and Delete .. 50

Test Mode Two: Concurrent Insertion, Read, Update and Delete .. 51

Test Mode Three: Read, Update and Delete from multiple tables/collections 52

Benchmarking Results .. 53

Data Insertion .. 53

8

Update ... 57

Read .. 59

Delete .. 60

Update from multiple tables/collections ... 62

Read and Delete from multiple tables/collections .. 63

Conclusion .. 65

References ... 67

9

List of tables

Table 1, ACID vs. BASE Properties ... 17

Table 2, Different types of databases .. 34

Table 3, RDBMS vs NoSQL Databases ... 36

Table 4, Hardware Configurations .. 50

Table 5, Table of measurements for Insert operation ... 57

Table 6, Table of results for Selection .. 60

Table 7, Table of results for Delete Operation ... 62

10

List of Figures

Figure 1, Row in Relational Databases ... 14

Figure 2, Column .. 14

Figure 3, Table in Relational Databases ... 14

Figure 4, Ruby with NoSQL ... 20

Figure 5, NoSQL structural requirements ... 23

Figure 6, Oracle Big Data Appliance .. 24

Figure 7, Oracle NoSQL Architecture .. 24

Figure 8, Different Key- Value groupings .. 26

Figure 9, CouchDB storage type ... 27

Figure 10, One-to-one relationship ... 32

Figure 11, One-to-many relationship .. 33

Figure 12, Many-to-many relationship ... 33

Figure 13, Application Side Joins ... 38

Figure 14, Atomic Aggregation .. 39

Figure 15, Index Tables .. 40

Figure 16, Query example ... 41

Figure 17, Query Results .. 41

Figure 18, Composite key query example .. 42

Figure 19, Composite key query results ... 42

Figure 20, Tree Aggregation ... 43

Figure 21, Nested Sets .. 44

Figure 22, Nested Documents- Numbered fields .. 45

file:///C:/Users/User/Desktop/Raif%20Deari%20Thesis%20Final.docx%23_Toc517941026
file:///C:/Users/User/Desktop/Raif%20Deari%20Thesis%20Final.docx%23_Toc517941027
file:///C:/Users/User/Desktop/Raif%20Deari%20Thesis%20Final.docx%23_Toc517941028

11

Figure 23, Nested Documents- Numbered fields .. 45

Figure 24, Vertical vs Horizontal Scalability ... 47

Figure 25, Single Insertion in an empty database Mongo DB vs MySQL 53

Figure 26, Concurrent Insertion in an empty database Mongo DB vs. MySQL 54

Figure 27, Single Insertion in Mongo DB in a populated database .. 55

Figure 28, Single Insertion in MySQL in a populated database ... 56

Figure 29, Single Update Mongo DB vs MySQL... 58

Figure 30, Concurrent Update Mongo DB vs. MySQL .. 58

Figure 31, Concurrent Select Mongo DB vs MySQL... 59

Figure 32, Single Record Reading .. 60

Figure 33, Data Deletion Mongo DB vs MySQL ... 61

Figure 34, Data Deletion MySQL ... 61

Figure 35, Data Deletion Mongo DB .. 62

Figure 36, Update from multiple tables/collections .. 63

Figure 37, Read from multiple tables/collections ... 63

Figure 38, Delete from multiple tables/collections ... 64

12

Introduction

NoSQL Databases are a new generation of databases. They are mostly non-relational and

mainly developed for applications, which require data management where relational databases

do not fulfill the requirements.

These so-called new generation databases are usually referred to as NoSQL (Not-Only-SQL) and

in the subsequent text, the NoSQL acronym will be used to refer to this category of databases.

NoSQL usually refers to databases, which meet the needs of modern developments in business

and information technology. These new developments need scaling to previously never-

thought levels while remaining always available with a respected speed (Datastax, 2017). The

same source states that “By all accounts, the consensus of IT professionals and industry

database experts seems to be that NoSQL is here to stay”.

Apart from that, NoSQL meets the needs of modern business in timely fashion; it provides a

very flexible data model, being horizontally scalable while also supporting a distributed

architecture. However, there are two main questions, which should be answered in the case of

NoSQL: When and why should NoSQL Databases be used? - These questions are very important

since they help us decide whether a relational solution is sufficient for an application or NoSQL

should be used instead.

In (Datastax, 2017), authors state that among the main reasons why NoSQL is finding an ever-

growing use among modern day businesses is that of Big Data which is becoming a synonym to

NoSQL thus being its main “advocate”.

According to “ (Storey & Song, 2017)” big data refers to large amounts of data captured by

organizations in a structured or unstructured format so that data-driven analysis, decisions or

actionable insights can be obtained.

Big Data as a concept is older than NoSQL Technologies since it mainly refers to the traditional

enterprise data, which mainly includes customer information and transactions.

13

Other types of Big Data include machine-generated data and “social data”. Machine-generated

data include streams of information from sensors, logs, equipment and other while Social data

include customer feedback, blogging sites such as Twitter or social media platforms; these data

are user-generated and mainly unstructured. The main characteristics of Big Data as explained

by (Datastax, 2017) include volume, velocity, variety, and value.

Volume is the amount of data, which is generated, and it is in larger amounts from traditional

data. In (Datastax, 2017) authors explain it by taking the example of a single jet engine which

generates 10 terabytes of data in 30 minutes of its operation; with 25,000 flights per day the

amount of data reaches petabytes.

Velocity is the frequency of data and it is characteristic of social media sites whose data is

mainly streams of characters where the data is transmitted with high frequency, thus making

an important characteristic of big data.

Variety is another important characteristic of Big Data and it is the main point of differentiation

from traditional data and one of the more important reasons why Big Data and NoSQL have

almost become synonyms of each other.

Traditional structured data tends to be relatively well defined and has a schema, which changes

either slowly or never. While in contrast to it, non- traditional data formats influenced by the

digital- economy trends represent a fast- changing ever-growing type of data, which goes well

with the ability of NoSQL to handle unstructured data.

The last attribute of Big Data is the economic value. This last attribute incorporates the first

three since not all the data collected may be economically valuable; however, the big amount

collected in high velocity with a high variety makes possible to identify economically valuable

data.

In this thesis, the main point of focus will be the analysis of differences between NoSQL

Databases Relational Databases, while other points of interest will be the types of NoSQL

Databases and their ability to fulfill the expectations in scenarios where NoSQL Databases can

be used.

14

Nowadays huge amounts of data are generated daily. This data comes from the ever-growing

and data intensive way of how organizations are set up. Management of this data was done

entirely using Relational Databases which provide a centralized system of control, redundancy

control and inconsistency elimination however with drawbacks and limitations such as

performance, ease of maintenance or system scalability of which the last one has become a

primary factor for looking at other data storage alternatives such as NoSQL Databases.

NoSQL Databases mostly start as development of practitioners looking fit special requirements

when faced with the above-mentioned limitations while nowadays these databases can be seen

as replacement of relational databases.

To better understand the differences of these two types of databases the following sections

gives a briefing on Relational Databases, their features, and their approach towards managing

data while making analogies with NoSQL Databases.

Relational Databases are described as databases based on the relational model introduced by F.

Codd, working with a support for SQL (Standard Query Language) (Rafique, 2013). The main

feature of Relational Databases is the support of a strong and strictly regulated schema built on

basis of: storage of data in tables (rows and columns), usage of keys and data integrity

constrains.

Rows, Columns and Tables

The relational database model represents data with tables, known as relations. Every relation

has a certain number of attributes, represented by columns of the table, where every column

has its own atomic type such as an integer or string.

Figure 1, Row in Relational Databases

Figure 2, Column

Figure 3, Table in Relational Databases

15

Rows of the table are called tuples; every tuple has its components, which must belong to the

same atomic type as its attribute.

Constraints

Constraints are database integrity rules to maintain database consistency. Constraints are used

to limit the type of data, which can be inserted into a table, this ensures data accuracy and

reliability. Constraints can be implemented in different levels (column level or table level), some

of the most commonly used constraints are:

• Not Null Constraint, which ensures that columns do not have a null value.

• Default Constraint, which ensures that a default value is inserted when the user

specifies none

• Unique Constraint, which provides with a guarantee that all the values are different

• Primary Key, which uniquely identified each row in a table.

ACID- Atomicity, Consistency, Isolation and Durability

One of the most important concepts in Relational Databases is ACID, which are a set of

properties that a system must maintain to achieve and ensure accuracy, completeness and data

integrity.

Atomicity is an attribute of relational databases, which states that a transaction should either

go through and execute completely or not execute at all. If one part of the transaction fails to

complete, it fails completely. Atomicity treats every transaction as an atomic unit, and states

that there should not be a state in the database during the transaction, which is left partially

complete.

Consistency requires that the database remains in a consistent state after any completed

transaction, and there should not be any adverse effect on the data residing in the database. If

the database has or is in a consistent state before the transaction, it should remain so after it.

16

The virtue of isolation means that every single transaction is executed independently of the

other transactions regardless of other conditions such as accessing the same database at the

exact same time. Therefore, no transaction affects the existence of any other transaction.

Durability is a property, which ensures that the database is durable enough to hold all its latest

transactions even if the system fails or restarts. When a transaction completes and changes

some certain data in a database and commits, then the database will hold the modified data.

ACID alternatives in NoSQL- Defining BASE and CAP Theorem

The ACID Model, which databases need to fulfill to guarantee Data Atomicity, Consistency,

Integrity, and Durability, is a very important model, which is followed by all Relational

Databases and some NoSQL ones.

To fulfill ACID properties, NoSQL Databases use another process described in (Pritchett, 2008),

as ACID divided in two steps or a two phase commit (2PC), where each transaction is pre-

commit and waiting for a commit allowance and if this allowance is achieved then the commit

goes through. If for any reason, any of the databases involved with the action vetoes the

commit than all databases are required to roll back the transaction.

Apart from ACID, there are other approaches, which try to achieve the same properties ensured

by ACID, but with a different mindset, one of them being BASE (Basically Available, Soft State,

Eventually Consistent).

Dan Pritchett (Pritchett, 2008) in his publication in ACM Magazine states that: “BASE is

diametrically opposed to ACID. Where ACID is pessimistic and forces consistency at the end of

every operation, BASE is optimistic and accepts that the database consistency will be in a state

of flux. Although this sounds impossible to cope with, in reality it is quite manageable and leads

to levels of scalability that cannot be obtained with ACID”.

Data Availability is achieved through support for partial failure, since NoSQL is distributed and

there is no single point of failure. If one of the databases fails you must deal with only a

percentage of users not being able to complete transactions.

17

The table below shows conceptual differences between the Relational and NoSQL approaches

towards the same goal (Chandra, 2015).

ACID (Relational Databases) BASE (NoSQL)

Strong consistency Weak consistency

Isolation Last write is saved

Robust database Simple database

SQL Support Distinctive for different types

Available and consistent Available and partition- tolerant

Scale- up Scale- out

Shared Parallel

Table 1, ACID vs. BASE Properties

Another approach is CAP Theorem (Consistency, Availability, and Partition Tolerance). Eric

Brewer on his paper “CAP Twelve Years Later: How the “Rules” Have Changed” on CAP

Theorem states that only two of the three can be supported and guarantee. In the cases where

we have horizontal scalability strategies, developers are forced to choose between consistency

and availability (Brewer, 2012).

The above-explained concepts are a basic package of concepts for Relational Databases and

their key characteristics while the following section introduces to some key differences

between them (Relational Databases) and NoSQL Databases.

The foremost essential difference between the two technologies is that Relational Databases

have a structured and well- organized approach to data management, while NoSQL goes by the

unstructured approach. This comes because of the fact that relational databases were built at a

time where data was fairly structured and defined by their relationships, in the other hand

NoSQL is especially designed to handle unstructured data, which makes up the majority of the

data, which exists nowadays.

18

Another significant difference between these two database models is the ACID compliancy,

which is strictly implemented in Relational Databases while the implementation in NoSQL

Databases is less-to-none.

The data model is another difference of the two systems. In the case of Relational Databases,

the data model is pre-defined and strict on the requirements, which should be fulfilled. NoSQL

Databases in the other hand, have a less organized data model since NoSQL at its creation is

described as a schema-less system. Another factor contributing to the difference in the data

model is the wide range of NoSQL Databases where different data models are developed and

implemented for different use cases.

The following chapter will give a better clarification on these differences since in it we explain

the different divisions of NoSQL Databases, while also introducing different database “vendors”

in each category.

19

Background and Related Work

Relational Databases or the relational model is a single model without divisions as we will see

later in this chapter for NoSQL Databases, however Relational Database Management Systems

between them have small changes on their approach towards managing data. They all support

a standard query language (SQL) and all must be ACID compliant.

NoSQL on the other hand is different since there are a huge variety of technologies within the

concept of NoSQL (Bugiotti & Cabibbo, 2013). This variation comes because of the nature of

NoSQL, which as mentioned in the first chapter “started as a development of practitioners for

specific needs”.

The following categorization of NoSQL Databases is the one, which comes up more often across

studies (Cattell, 2010) (Bugiotti & Cabibbo, 2013):

• Key- Value Databases

• Document Databases

• Column- based Databases

• Graph Databases (not discussed in this thesis)

The following section introduces these categories. We also look at the representatives from

each of these categories such as Oracle and Redis for Key-Value Databases, Mongo DB for

Document Databases and HBase and Cassandra for Column-based Databases.

Key-Value Databases (Redis and Oracle)

Key- Value Databases in simple terms are NoSQL Databases, which in their essence have the

ability to store data, called a value inside a key. This data can later be retrieved only if we know

the exact key used to store it (Redis, 2017). Another more detailed definition of Key-Value

Databases is “a non-relational database design or data structure that maps from arbitrary

names (keys) to arbitrary objects” (Beltrame, 2013).

Key- Value Databases allow the application developer to store schema-less data. This data

usually consists of a string, which represents the key and the actual data, which is considered to

20

be the value in the “key-value” relationship. The data itself is usually some kind of primitive

data type found in programming languages (a string, an integer an array) or an object that is

being marshaled by the programming languages bindings to the key value store. This replaces

the need for fixed data model and makes the requirement for property-formatted data less

strict (Seeger, 2009).

The following example explains this in a practical way. It is the case where the “pstore” library is

used using Ruby.

Figure 4, Ruby with NoSQL

In the above example, we see a key value store called “data-file.pstore” where we have added

two objects (single_object and hierarchy_object). The first one is a simple object or a string,

while the second one is of a more complex data type. It is a hash, which contains arrays of

strings. Even though the syntax differs across key-value databases, they all work with similar

concepts.

Now that the general concept of Key- Value Databases is explained, some top database systems

of this category are reviewed. In this category, Redis, Oracle (Key- Value), and Amazon’s

Dynamo DB are amongst most popular.

Redis

Redis as described by the developers (Redis, 2017) is a “very simple database”, which

implements a dictionary where keys are associated with values. The interesting thing about

21

Redis is that keys can be associated to values which are not only string, but they can be lists or

sets with many server- side operations associated to this data types.

When it comes to data storage, Redis takes the whole dataset in memory while dumping it on

disk asynchronously from time to time. The developers describe this asynchronous dump to a

user specific desire since it can be set after many changes are made or after an amount of time.

Redis also supports the master- slave replication to achieve maximum consistency since the

asynchronous data save becomes an issue if a system crash occurs. Issues or drawbacks which

Redis can have is the amount of RAM it requires since it only dumps the data when told so.

The usage of an asynchronous saving model can also become a deal breaker when we deal with

sensitive data as in cases of banks where the reliability should never be compromised even in

cases when the server goes through states such as a power loss or other possible technical

faults.

This drawback in cases of high data sensitive data becomes an advantage in the other side of

the spectrum when we deal with “not-so-important” data, since Redis is a very high-

performing platform in this case.

In today’s web, the biggest data generators are social media platforms, which fall in the

category of “not-so-important” data since it is never a big deal if the last status update is not

saved or a tag in a single picture is not there, while it is of vital importance to deliver high

speeds to the user without the backend slowing down due to unneeded transactional integrity.

Redis can perform over 100,000 operations (write, read, increment) per second with a normal

Linux box with 50 concurrent clients (Seeger, 2009).

As of November 2017, Redis is ranked as the top Key- Value Database while it is ninth overall

among all the other types of Relational and NoSQL Databases with a benchmarking score of

121.18 in DB Engines Ranking (DB-Engines, 2017).

22

Oracle NoSQL

Oracle being the leader it is on Relational Databases has its own NoSQL System and it is called

Oracle NoSQL.

Oracle’s NoSQL database is based on Berkeley DB and it comes as part of what Oracle calls the

“Oracle Big Data Appliance”, which comes as a Big Data Platform which according to (Oracle,

2013) has three main infrastructural requirements: Acquisition, Optimization and Analysis of Big

Data.

• Acquisition of Big Data

Acquisition phase of Big Data has completely changed from the days before NoSQL. Since big

data refers to streams of data with high velocity and variety, the infrastructure required to

support the acquisition of big data must deliver:

• Low and predictable latency

• Handle high transaction volumes (mostly in distributed systems) and

• Support dynamic data structures.

Nowadays NoSQL databases are used for acquiring and storing big data since they are very well

suited for dynamic data structure and are highly scalable systems.

A good example on how NoSQL works in accord with the infrastructural requirement of

acquisition is the example of social media, which may often change as applications; however,

the underlying structure does not change and is kept simple usually with the key-value mindset

where a key point identifies the data point, and then a content container holds the relevant

data.

• Organization of Big Data

Organizing data or in classical terms Data Integration, is a process in which data warehouse try

to organize data to its initial destination location to save time and money by not moving large

volumes of data.

23

Oracle describes this quality as: “The infrastructure required for organizing big data must be

able to process and manipulate data in the original storage location; support very high

throughput (often in batch) to deal with large data processing steps; and handle a large variety

of data formats, from unstructured to structured” (Oracle, 2013).

• Analysis of Big Data

During the organization phase, data is often moved or distributed, thus the process of analysis

has to have the ability of handling data analysis in distributed environments.

For analyzing Big Data, the infrastructure should also be able to handle deeper analytics such as

statistical analysis, or data mining on different data types, stored in different systems.

Other important features, which must be supported, are the ability to scale to very large data

volumes, keeping short response times while also being able to make automated decisions

based on the given analytical models.

Oracle combines all these requirements to create a system of services, which incorporates big

data with its own NoSQL Database (Oracle NoSQL) and technologies such as Hadoop. This

makes possible a complete integrated solution to address the full spectrum of enterprise big

data requirements.

Figure 5, NoSQL structural requirements (Oracle, 2013)

Oracle has created a big data appliance, which is an engineered system that combines

optimized hardware with software to deliver complete and easy-to-deploy solution for data

24

storing purposes. The so-called Big Data Appliance of Oracle combines open source software

with specialized software to address enterprise requirements as seen on figure 6.

Figure 6, Oracle Big Data Appliance (Oracle, 2013)

In their paper “Oracle: Big Data for the Enterprise” they describe it as “a general-purpose

database, enterprise class key value store adding an intelligent driver on top of distributed

Barkeley DB” and that this added intelligent driver “keeps track of the underlying topology,

shards the data, and knows where data can be placed with the lowest latency”.

Oracle NoSQL differs from many other NoSQL databases in the fact that it is easier to set up,

configure and manage, it also supports a wide set of workloads and delivers what they call

enterprise- class reliability. The architecture of Oracle NoSQL Database looks as below:

Figure 7, Oracle NoSQL Architecture (Oracle, 2013)

The primary use cases for Oracle NoSQL are low latency data capture and fast querying of the

data typically by key lookup, as of November 2017 (DB-Engines, 2017), Oracle NoSQL has a

25

score of 2.78 and stands as the 12th key- value database while it is 77th in the overall ranking

always by DB- Engines rating.

Document Databases (Mongo DB and Couch DB)

Document Databases are NoSQL databases, which use documents to store data. Documents in

Document Databases are structured depending on the implementation, but their usual

structure comes in a form of XML (Extensible Markup Language), JSON (JavaScript Object

Notation) or YAML (YAML Ain't Markup Language).

They all have in common the semi- structured nature meaning that the document does not

have to conform to any static schemas nor tables; instead, they use tags and other methods

that allow related documents to contain different keys and values (Omji, et al., 2018).

In some types of Document Databases, usage of references like the ones used in SQL or

Relational Databases is possible (mishra2018).

Two of the most popular NoSQL Document Databases are Mongo DB and Couch DB, databases

that we will discuss in the following section.

Mongo DB

Mongo DB is a document- oriented NoSQL Database written in C++ and developed by 10gen.

From their website, we can understand that Mongo DB is focused on the ease of use,

performance and high- scalability.

Mongo DB is organized in documents which use the binary form of JSON called BSON or Binary

JSON. When users enter data, in Mongo DB they use JSON, which is then converted to BSON,

and when at the other end this data is retrieved another conversion from BSON to JSON

happens, meaning that BSON is only used for internal purposes and the user never faces it.

A JSON document is one or more key- value pairs and a Mongo Document is simply a JSON

document.

26

Since Mongo DB uses JSON, it is schema-less, which means that there is no grouping of

documents that share the same keys as in the relational model where the relation roughly fills

this purpose.

Instead, similar documents, which contain data about the same thing but with different key

value pairs, are grouped together in what is called a collection.

Figure 8, Different Key- Value groupings

An important characteristic of Mongo DB is its support to indexing any attributes of a document

similar to how Relational Databases offer indexing on any column. Indexes in Mongo DB are

implemented as B- Trees which if rightly created can give a dramatic change in performance,

especially in querying.

Like many other NoSQL Databases Mongo DB also supports replication such as Single Master/

Single Slave, Multiple Masters/ Multiple Slaves, Master/Master etc. (Schmitt & Majchrzak,

2012) (Bhardwaj, 2017) (Henricsson, 2011).

As of November 2017, Mongo DB ranks 5th on the overall database ranking of db- engines while

it is the top ranked document- oriented database with a score of 330,47 (DB-Engines, 2017).

Couch DB

Couch DB is another very important document- oriented database; it is developed in Erlang by

the Apache Software Foundation.

What makes Couch DB special is its RESTful API, which lets any environment that allows HTTP

requests to access data from a database set up in Couch DB.

27

In terms of data storage, it is similar to Mongo DB since it stores data as Binary JSON while it

lacks collections, so the documents are directly found in the database, where each document

has a unique id, which can be assigned manually when inserting documents, or automatically by

Couch DB.

There is no restriction in terms of the number of key- value pairs for documents and there are

no size restrictions as well.

Figure 9, CouchDB storage type

Relational databases typically use static data and dynamic queries; schemas are fixed, and SQL

queries are dynamic. Couch DB, however, has turned this upside down. Since it uses JSON

documents, the data is dynamic. Querying data in Couch DB is done through views.

There are two kinds of views:

• Permanent Views- Static

• Temporary Views- Can be provided ad-hoc.

Views show the results of Map/Reduce functions. The user writes map functions and iterate

over all documents in the database to check if the documents match the criteria specified in the

function by the user. If everything matches, and a result is hence found, the document (or

selected parts of it) are emitted using the emit function (Henricsson, 2011).

28

As of November 2017, Couch DB is ranked 28th overall with a 20.51 score, while it is 4th on

document stores only (DB-Engines, 2017).

Column- based Databases (Cassandra and HBase)

Column- based Databases also known as Wide- Column or Column- Family Databases are alike

Document Databases which employ a distributed, column- oriented data structure that

accommodates multiple attributes per key (Moniruzzaman & Hossain, 2013).

Extensible Record Databases are in a way like Key- Value databases since a lot of them have

what (Moniruzzaman & Hossain, 2013) calls “Key- Value DNA” such as Dynamo DB and

Cassandra while other are inspired and built on Google’s Bigtable.

Google’s Bigtable as described by Google is “Google's NoSQL Big Data database service. It is the

same database that powers many core Google services, including Search, Analytics, Maps, and

Gmail. Bigtable is designed to handle massive workloads at consistent low latency and high

throughput, so it's a great choice for both operational and analytical applications, including IoT,

user analytics, and financial data analysis.”

Another simplified definition of Extensible Record Stores is a database with basic data model

using rows and columns while their basic scalability model is splitting both rows and columns

over multiple nodes (Abadi, 2007).

As seen from the above definitions we face two basic ingredients: Rows and Columns.

• Rows

Rows are split across nodes through sharding on the primary key. They usually split by range

rather than function; this strategy makes possible for queries not to have to go to each node.

• Columns

Columns of a table are distributed over multiple nodes using the concept of column groups,

which is a way for the customer to decide which columns are best stored together.

29

With these two concepts we see that we have not only horizontal but vertical partitioning also,

and the good thing about Column- based Databases is that these partitioning methods can be

both used at the same time.

A good example is given by (Abadi, 2007): “If a customer table is partitioned into three column

groups (say, separating the customer name/address from financial and login information), then

each of the three column groups is treated as a separate table for the purposes of sharding the

rows by customer ID: the column groups for one customer may or may not be on the same

server. The column groups must be pre-defined with the extensible record stores.”

However, that is not a big constraint, as new attributes can be defined at any time. Rows are

analogous to documents: they can have a variable number of attributes (fields), the attribute

names must be unique, rows are grouped into collections (tables), and an individual row’s

attributes can be of any type”.

Primary uses of Column- based Databases are:

• Distributed Data Storage

• Large- scale, batch- oriented data processing

• Exploratory and predictive analytics

Some advantages of these NoSQL Database according to (Cattell, 2010) are:

• Improved bandwidth utilization

In a Column- based Databases only the data which is accessed by the query needs to be read off

the disk, while in other types surrounding attributes need to also be accessed.

• Improved data compression

Storing data from the same attribute domain together increases locality and thus data

compression rate.

While disadvantages of Column- based Databases are:

• Increased disk seek time

30

Disk seeks in-between each read of a block sometimes are needed since multiple columns are

read in parallel, even though in large applications this cost is kept small using large disk pre-

fetches.

• Increased cost of inserts

Insert queries are one of the main drawbacks of this type of NoSQL Databases since multiple

distinct locations on the disk must be updated for each inserted tuple.

The following section looks at the two leading Extensible Record Databases, Cassandra and

HBase, which both better define and show the characteristics of this type of NoSQL Databases.

Cassandra

Cassandra supports partitioning and replication, while failure detection and recovery are fully

automatic. A drawback of Cassandra when compared with other Extensible Record Stores is

that it has a weaker concurrency model because there is no locking mechanism and replicas are

updated asynchronously (Abadi, 2007).

Cassandra is written in Java while developed by Apache; it is open source and supported by

Data Stax.

Cassandra automatically connects new available nodes to the cluster and uses accrual

algorithms to detect node failure while cluster membership is decided with a gossip- style

algorithm.

A novelty of Cassandra is that it brings a new concept to the column groups, the super-columns,

which are basically a collection of column groups, these column groups are members of column

families which are part of databases called key-spaces.

Same as other systems any row can have a combination of column values, while Cassandra uses

an ordered hash index, which gets the most out of both hash and b- tree indexes.

As of November 2017, Cassandra ranks first among Wide Column Stores in db- engines ranking

while it is 8th overall with a score of 124.21 points.

31

HBase

HBase is an Apache project. It is written in Java and patterned after Google Bigtable.

Characteristics of HBase are that it:

Uses Hadoop distributed file system, which in the case of Bigtable is different from Google’s

own file system. HBase puts updates in memory and periodically writes them to disk.

Updates which are flushed to the disk go to the end of a data file so that seeks are avoided, files

are also periodically compacted, while for recovery purposes if a server crashes updates are

also written to a “ahead log file”.

Row operations are atomic and occur with row- level locking, while there is optional/ additional

support for transaction with wider range, since these operations are atomic they also have

concurrency control which aborts them if there is a conflict with other updates.

Partitioning and distribution are transparent, there is no client- side hashing or any fixed key-

space as in other systems, while there is multiple master support so that single points of

failures are avoided, HBase also supports MapReduce so that a fair and efficient distribution

occurs.

HBase’s b- trees allow it to have a fast range queries and sorting, in terms of API there are

several APIs that support HBase such as: Java API, Thrift API, REST API, JDBC/ODBC.

As of November 2017, HBase ranks second in Database Engines Ranking of Extensible Record

Stores while it is ranked as 16th in the overall ranking with a score of 63.56 points (DB-Engines,

2017).

32

Criteria of Analysis

This chapter is an analysis and comparison of NoSQL Databases and Relational Databases, the

comparison is made based on the hypothesis that NoSQL Databases are competitive with

Relational Databases and that they provide significant advantages when it comes to Data

Modeling.

In this section, we have analyzed and compared NoSQL Databases to Relational ones in the

following categories:

• Data Modeling

• Querying

• Performance

The analysis performed are done in each system’s as ideal as possible environment, while

already available data is used to prove statements.

Data Modeling

Entity Relationship Model

The Entity Relationship Model is the technique of representing data relationships. A key

technique in ER Model is the graphical representation of entities and their relationships to each

other called the ER Diagram.

Relationships in ER Model can be of three types:

1. One-to-one Relationship

Figure 10, One-to-one relationship

33

One instance of an entity (husband) is associated with one other instance of another entity

(wife). For example, in a database of married couples, each husband is associated with only one

wife.

2. One-to-many Relationship

Figure 11, One-to-many relationship

One instance of an entity (A) is associated with zero, one or many instances of another entity

(B), but for one instance of entity B there is only one instance of entity A. For example, for a

class with all students having their courses in one class, the class name is associated with many

different students, but those students all share the same singular association with entity class.

3. Many-to-many Relationship

Figure 12, Many-to-many relationship

One instance of an entity (A) is associated with one, zero or many instances of another entity

(B), and one instance of entity B is associated with one, zero or many instances of entity A. For

example, for a student who attends multiple courses, each instance of a student is associated

with many instances of courses, and at the same time, each instance of a course has multiple

students associated with it.

Different Data Models for NoSQL Databases

The ER Model is valid in cases where Relational Database model is implemented but not when

we deal with NoSQL Databases since their data model varies from a database type to another.,

34

As mentioned in the second chapter of this thesis we have four main NoSQL Database types

however we are working with only three of them: Key- Value Databases, Document Databases

and Wide- Column Databases.

DOCUMENT DATABASES KEY- VALUE DATABASES WIDE COLUMN STORES

Store data elements in

document- like structures that

encode information in formats

such as JSON.

Use a simple data model that

pairs a unique key and its

associated value in storing data

elements

Also called table-style

databases, store data across

tables that can have very large

numbers of columns.

Table 2, Different types of databases

The main difference between NoSQL Databases and Relational Databases lays in their Data

Model. Each NoSQL database type has a different data model.

The following section explains, the approach of each NoSQL Database type (Document, Key-

Value and Wide- Column) while comparing them to MySQL as one of the most popular

Relational Databases currently in market.

Data Model of Key- Value Stores

Key value stores are like maps or dictionaries where unique keys address data. Since values are

uninterrupted byte arrays, which are completely opaque to the system, keys are the only way

to retrieve stored data. Values are isolated and independent from each other therefore

relationships must be handled in application logic.

Due to this very simple data structure, key value stores are completely schema free. New values

of any kind can be added at runtime without conflicting any other stored data and without

influencing system availability. The grouping of key value pairs into collection is the only offered

possibility to add structure to the data model. Key value stores are useful for simple operations,

which are based on key attributes only.

Since most key value stores hold their dataset in memory, they are oftentimes used for caching

of more time intensive SQL queries (Funck & Jablonski, 2011).

35

Data Model of Document Databases

Document Stores encapsulate key value pairs in JSON or JSON like documents. Within

documents, keys must be unique. Every document contains a special key “ID”, which is also

unique within a collection of documents and therefore identifies a document explicitly.

Document stores offer multi attribute lookups on records, which may have complete different

kinds of key value pairs. Therefore, these systems are very convenient in data integration and

schema migration tasks.

Most popular use cases are real time analytics logging and the storage layer of small and

flexible websites like blogs (Funck & Jablonski, 2011) (Kaur & Rani, 2013).

Like Key- Value stores, Document Stores do not have any schema restrictions. Storing new

documents containing any kind of attributes can as easy as adding new attributes to existing

documents at runtime.

Their differences with Key- Value Stores lays in the fact that values are not opaque to the

system and can be queried as well. Therefore, complex data structures like nested objects can

be handled more conveniently.

Storing data in interpretable JSON documents have the additional advantage of supporting data

types, which makes document stores very developer-friendly (Kaur & Rani, 2013).

Data Model of Column- oriented Databases

Column oriented stores also known as extensible record stores are almost all inspired by

Googles Bigtable, which is a “distributed storage system for managing structured data that is

designed to scale to a very large size” (Chang, et al., 2008).

Bigtable is used in many Google projects varying in requirements of high throughput and

latency-sensitive data serving. The data model is described as “sparse, distributed, persistent

multidimensional sorted map” (Chang, et al., 2008). In this map, an arbitrary number of key

value pairs can be stored within rows. Since values cannot be interpreted by the system.

36

Relationships between datasets and any other data types other than strings are not supported

natively.

Columns can be grouped to column families, which is especially important for data organization

and partitioning.

Columns and rows can be added very flexibly at runtime, but column families oftentimes must

be predefined, which leads to less flexibility than key value stores and document stores offer.

Due to their tablet format, column family stores have a similar graphical representation

compared to relational databases.

 Relational Databases NoSQL Databases

Data Model ER- Entity Relationship Model Different in different NoSQL Database types

Schema Predefined Schema Schema on read (Schema less Approach)

Scalability Scaling Up (Vertical Scalability) Scaling Out (Horizontal Scalability)

Consistency Strong Consistency Required Eventual Consistency (Strong consistency is not

required)

Table 3, RDBMS vs NoSQL Databases

Data Modeling Techniques

NoSQL Data Modeling is a key step on designing NoSQL Data Managing solutions and it often

starts from the application- specific queries or simply said it starts from “What questions do I

have?” in opposite of relational data modeling which at its basis has “What answers do I

have?”.

In most cases, NoSQL modeling requires a deep understanding of data structures and

algorithms whilst these are not as important in relational modeling.

Other differences to have in mind when comparing NoSQL and Relational Data Modeling are

data duplication and denormalization.

37

Even though data modeling techniques are basically implementation theories there can be

divisions on specific techniques which can be used. Based on multiple studies NoSQL Data

Modeling techniques can be divided in three main categories:

1. Conceptual Techniques

2. General Techniques

3. Hierarchy Modeling Techniques

Conceptual Techniques

Conceptual techniques are described as the basic principles of NoSQL Data modeling and they

include:

• Denormalization

Denormalization can be defined as the process of copying the same data in multiple documents

or tables so that query processing time is optimized, most of the techniques used for NoSQL

modeling leverage denormalization in a form.

Denormalization comes with some trade- offs such as data volume to be queried. Using

denormalization all the data needed to process a specific query is grouped in one place, which

often means that different query flows need the same data, but in different combinations

leading to data duplication.

• Aggregates

Major types of NoSQL Databases provide soft schema capabilities.

Soft schema allows formation of classes of entities with more complex internal structures called

nested entities; this feature provides two major advantages:

1. Minimization of one-to-many relationships using nested entities thus reducing joins.

2. Masking the differences between business entities and modeling of heterogeneous

business entities using one collection of documents or one table.

• Application Side Joins

38

Application side joins even joins in general are rarely supported in NoSQL, this comes because

of the “question-oriented” approach.

Joins in the case of NoSQL Databases are handled in the designing phase as opposed to

relational model where joins are handled at the query execution time, we exceptions in cases

when we have:

• Many-to-many relationships which are modeled by links and require joins

• Entity internals subject of frequent modifications,

For example, a messaging system can be modeled as a user entity that contains nested message

entities, but if messages are often appended it may be better to extract messages as

independent entities and join them to the user at query time.

Figure 13, Application Side Joins

39

General Modeling Techniques

General Modeling Techniques are applicable to a variety of NoSQL Databases and they include

the following:

• Atomic Aggregates

Many of NoSQL solutions have limited transaction support, in some cases where this support is

missing it can be achieved by distributed locks, and it is common to model data using

aggregating techniques to guarantee some of the ACID properties.

Figure 14, Atomic Aggregation

Atomic Aggregates as a technique to model data is not a complete solution to handle

transaction, but if certain guaranties of atomicity are provided by the store, then Atomic

Aggregates can be applicable.

• Enumerable Keys

40

Enumerable Keys technique is a modeling technique applicable only to Key- Value Stores.

Sorting or numbering makes things more complex however it is beneficial if used for certain

purposes like modeling for an email application where:

1. Having atomic counters allows generating sequential IDs, so that messages can be

stored using userID_messageID as a composite key.

2. In addition, this makes possible the grouping in buckets such as daily buckets for

example, allowing the user to traverse a mailbox backwards or forward starting from

any specific date.

• Index Table

Index Table is one of the most straightforward techniques that allow taking advantage of

indexes in stores that do not support indexes naturally; the most important store that falls in

this category is BigTable and all BigTable-style databases.

The idea here is to create and maintain a special table with keys that follow the access pattern.

For example, there is a master table that stores user accounts that can be accessed by user ID.

A query that retrieves all users by a specific city can be supported as well by means of an

additional table where city is a key.

Figure 15, Index Tables

The Index Table can be updated for each update of the master table. Index Tables can be

considered as an analog of materialized views in relational databases.

41

• Composite Key Index

When using stores with ordered keys, Composite Key techniques are very beneficial. When

combining composite key with secondary sorting, it is possible to build a kind of

multidimensional index.

If we take, for example, a set of records where each record is a user statistic, and if we

aggregate these stats by the region the user comes from, we can use keys in a format

(Stet:City:UserID) that allow us to iterate over records for a particular state or city if the store

supports the selection of key ranges by a partial key match.

Figure 16, Query example

Figure 17, Query Results

• Aggregation with Composite Keys

Composite Keys are used for different types of grouping. If we take, for example, a huge array

of log records with information about internet users and their visits from different sites, and

our requirement is to count the number of unique users for each site this is like the following

SQL query:

42

Figure 18, Composite key query example

The same situation can be modeled using composite keys with a UserID prefix:

Figure 19, Composite key query results

The idea here is to keep all records for each individual user collocated so that fetching such a

frame into memory is possible.

Another alternative technique is having one entry for each user and appending sites to this

entry as events in this case visits arrive.

Hierarchy Modeling Techniques

• Tree Aggregation

Trees can be modeled as single record or document. This technique is efficient when a tree is

accessed at once, such as the comments of a blog post.

43

Figure 20, Tree Aggregation

• Adjacency Lists

Adjacency Lists is a technique, which is applicable to Key-Value Stores and Document

Databases, and it is a straightforward way of modeling graphs, where each node is modeled as

an independent record that contains arrays of direct ancestors or descendants.

• Nested Sets

A standard technique in modeling tree-like structures is Nested Sets. It is mostly used in

Relational Databases, but it is also applicable to Key-Value Stores and Document Databases, the

idea here is storing leaves of the tree in an array and mapping each non-leaf node to a range of

leaves using start and end indexes.

44

Figure 21, Nested Sets

Such structures are very efficient for immutable data because the memory footprint is very

small and allows fetching all leaves for any given node without traversals.

• Nested Documents Flattening: Numbered Field Names

Most Search Engines work with flat documents where each document is a flat list of fields and

values, while this works in cases of Search Engines it becomes challenging when mapping

business entities for example since the internal structures may be very complex.

One typical challenge of this kind is mapping documents with a hierarchical structure.

45

Figure 22, Nested Documents- Numbered fields

In the figure above, we have an example of a business entity, which contains a person’s name,

and a list of skills with a skill level. An obvious way to model such entities is by creating a plain

document with Skill and Level fields, so that a person can be searched by skill or level and

everything works fine until we have a combination of these two queries which results in false

matches as seen in the figure above.

Figure 23, Nested Documents- Numbered fields

One way of overcoming this issue is indexing each skill and the corresponding level as dedicated

pairs of fields and then searching for all these pairs simultaneously.

46

As it can be seen in terms of Data Modeling, there is a huge difference between NoSQL

Databases and Relational Database.

Relational Databases use Entity Relational Model as their data model to implement solutions

depending on the application, while NoSQL Databases use different data modeling techniques

for each database type.

Data Modeling is a very important step which is in most cases is directly related to querying

thus being related with performance however in the case of NoSQL systems another important

factor which highly contributes to performance is scalability and the way it is achieved.

In the following sections, we will explain scalability to back the hypothesis that NoSQL

Databases in general and Document Databases in particular do a better job in this section

compared to Relational Databases.

Scalability

Scalability is one of the prominent factors contributing to the advancement of NoSQL

Databases. Scalability means partitioning of a system, in this case database, over several nodes;

while this is a very important feature to have, it compromises either consistency or availability.

Prioritizing consistency or availability is highly dependent on the nature of the application

where the database is implemented; however, there are numerous examples, which trade

consistency over availability.

E-commerce applications such as Amazon for example prioritize swift response to users; this

forces the system to be highly available for write and read requests, which sometimes requires

data to be replicated, and thus forfeiting consistency to an extent.

Another area where NoSQL Databases have found greater implementation is that of social

media, an area that in most of the cases prioritizes availability. (Henderson, 2006).

Scalability can also be defined as the border beyond which a system cannot work if expanded;

currently scalability can be measured as the ability to handle huge amounts of data while

providing uninterrupted service to the applications.

47

There are three possible kinds of scalability:

1. Vertical Scalability

Vertical Scalability or also known as scaling-up is the addition of more resources (processing

power) to the existing machine, as machines run out of capacity more power is added to those

machines or they are replaced by newer faster machines, thus increasing the power of

individual nodes (power meaning Processing Power, RAM, or Storage Space).

Relational Databases use this type of scaling since their query language (SQL) favors it. One

drawback of such approach is that with the increase of power there is an exponential increase

in maintenance costs (Henderson, 2006).

2. Horizontal Scalability

Horizontal Scalability also known as scaling- out, is the opposite of vertical scaling since in this

case no machine is replaced or upgraded but new machines not necessarily very powerful are

added.

Most of NoSQL Databases including Mongo DB, HBase, Dynamo DB are horizontally scalable.

In the case of Relational Databases newer systems also provide horizontal scalability, Facebook

is an example where Relational Databases are used in a horizontally scaled system consisting of

many MySQL servers.

Among most important advantages of horizontally scalable systems is that they are very cost-

efficient (Henderson, 2006).

Figure 24, Vertical vs Horizontal Scalability

48

3. Elastic Scalability

Elastic Scalability is the ability of a system to be scaled both vertically and horizontally, or grow-

shrink ability by adding or removing hardware nodes dynamically based on the needs of the

application.

Cloud platforms mostly use elastic scalability, while most popular application of elastic

scalability is Netflix, which uses Cassandra and HBase, which can be scaled dynamically without

the need of re-sharding or rebooting.

Scalable Relational Database Management Systems

Generally, Relational Databases are considered as “one-size-fits-all” solution for data

management, their maturity comes from decades of research and development.

Scalability has not been traditionally achieved with Relational Databases; however, with the

increasing need for scalability, there have been some developments in this field such as MySQL

Cluster, which is one of the first and most scalable relational systems even though it does not

have high performance per node, compared to standard MySQL. Another system is Clusterix,

which promises high scalability with a respectable per- node performance (Cattell, 2010)

(Henderson, 2006).

In the following section, we take a look at MySQL Cluster, VoltDB and Clusterix as the three

main and most important scalable relational solutions, while also making digressions and

comparisons with NoSQL Systems such as Mongo DB and Cassandra.

MySQL Cluster

MySQL Cluster is part of MySQL release since 2004 and the code is based from an earlier

project developed by Ericsson.

MySQL Cluster is available from MySQL and it is not open source, it works by sharding over

multiple database servers while every shard is replicated so that recovery is supported and

possible.

49

VoltDB

VoltDB oppositely to MySQL Cluster is an opensource solution, which is designed especially for

high performance per node while also being highly scalable.

VoltDB’s features include partitioning of tables over multiple servers while also allowing clients

to call any server.

Distribution is transparent to the user, but the customer can choose the sharding attribute. In

addition, replication of selected tables is possible while shards are always replicated so that

data can be recovered if a node happens to crash.

Clusterix

Clusterix is very much like VoltDB and MySQL Cluster with the difference that Clusterix nodes

are sold as rack-mounted appliance, they claim to be scalable to hundreds of nodes while

having automatic sharding and replication.

Failovers and failed node recoveries are automatic, while a performance improvement is also

reached by using solid-state disks (Cattell, 2010).

Same as other relational databases Clusterix is ACID compatible for transactions and supports

SQL.

50

Experimental Work

This chapter is a benchmarking and performance testing of databases from two different types,

the first database in study is MySQL as a representative of Relational Databases, while the

second one is Mongo DB as a representative of NoSQL Databases.

The experiment is performed as follows:

1. Two scripts written in NodeJS perform all the CRUD operations, in two modes:

a. Single Insert, Read, Update and Delete

b. Concurrent Insert, Read Update and Delete

c. Read, Update and Delete from multiple sources

2. All the data manipulated is generated by these scripts creating an id, company name

and address.

The following hardware and software configuration is used:

Name Configuration

CPU Intel® Core™ i7- 75000U CPU @ 2.90 GHz

RAM 8GB

Hard disk 256 SSD

MySQL 5.7.21

Mongo DB 3.6

Node JS 8.11.1

Table 4, Hardware Configurations

Test Mode One: Single Insertion, Read, Update and Delete

The first part of the benchmark is testing of CRUD operation speeds while performing single

operations.

As mentioned above a NodeJS script is used in each case (for both databases), which inserts a

company id which is auto incremented, a given company name and an address. The script runs

to a given amount of records to insert and is run using Windows command prompt.

51

In single insertion, all the records are inserted one by one and we do not have concurrency

while the test is performed for two cases:

1. When the database is empty

a. 1000, 10000, 100000 or 1000000 records are inserted one by one

2. When the database is already populated with a certain number of records

Reading is the second test performed, and in this case, we have the operation of reading all the

records present in the database but accessing the database every time we want to perform a

read.

1. Updating is also performed for one case:

a. Update of all the records present in the database one by one.

Deletion is the last test performed for the first mode; in this case, the databases are tested in

two cases:

1. Deletion of a single record with 1000, 10000, 100000 or 1000000 records in the

databases

2. Deletion of all the records present in the database

Each test is performed three times and the average time is taken for the results.

Test Mode Two: Concurrent Insertion, Read, Update and Delete

The second part of testing consist of the same CRUD operations as in the first test however this

time all the operations are performed concurrently.

Same as for the first test data insertion is performed through NodeJS scripts which generate the

same data as before for two cases:

1. In an empty database

a. 1000, 10000, 100000 and 1000000 records are inserted accessing the database

only once for each number of records

2. When the database is already populated with data

52

Also, all the other tests are performed same as in the case of single insertions, while again each

test is performed three times with the average time taken as result.

Test Mode Three: Read, Update and Delete from multiple tables/collections

The third and final test performed in this thesis is that of reading and then manipulating data

from multiple tables in MySQL or collections in Mongo DB.

Multiple tables and collections are created manually, where data is also inserted individually in

each of them, so for testing purposes only Read, Update and Delete are performed.

The following chapter presents the results of all these tests.

53

Benchmarking Results

Benchmarking results are represented in the form of tables and graphs representing each test.

The first part of the results is head-to-head comparison of single and concurrent insertion for

both databases followed by the other operations in the following order: Read, Update and

Delete.

Data Insertion

For testing data insertion, two tests are performed using two different NodeJS scripts. The first

test is insertion of 1000, 10000, 100000 and 1000000 in an empty database where the database

is accessed every time a new record is added, while the second test is concurrent insertion of

data where the database is accessed only once at the beginning of the process.

The process of data insertion is completed with breaks after each test, meaning that after each

pre-set number of records is inserted a complete wipe of the database is performed, so the

database is empty at the beginning of each test.

Figure 22 shows the results of this test. As it can be seen, both databases perform quite well

with Mongo DB being exponentially faster than MySQL.

Another important result that can be seen is the increase in time for both databases as the

number of records is increased.

Figure 25, Single Insertion in an empty database Mongo DB vs MySQL

1000 10000 100000 1000000

Mongo DB 119 1101 9953 127789

MySQL 2339 3733 21022 227173

1
10

100
1000

10000
100000

1000000

Ti
m

e
in

 m
s

Single Insertion in empty database

Mongo DB MySQL

54

When trying to insert data concurrently the node script is such that all the requests are sent at

the same time this is a very hardware- intensive approach and makes it very difficult for the

CPU to handle everything at the same time.

The second test is concurrent insertion in an empty database. Figure 23 shows the results of

this test where we can see that Mongo DB is faster than MySQL for each corresponding number

of records inserted (1000, 10000, 100000 and 1000000).

Another important observation is that both databases fail when a larger number of records is

inserted concurrently with Mongo DB failing to insert 1000000 records while MySQL fails at

57920 records every time is tested.

This failure in MySQL comes as a result of hardware limitations both in CPU speed and memory

size, since when monitored with Windows Task Manager over 80% of RAM is used.

Figure 26, Concurrent Insertion in an empty database Mongo DB vs. MySQL

The third test performed for data insertion is single insertion in an already populated database.

Each number of records is inserted in the database as follows:

• 1000 records are inserted with: 1000, 10000, 100000 or 10000000 records in the

database

• 10000 records are inserted with: 1000, 10000, 100000 or 10000000 records in the

database

1000 10000 100000 1000000

Mongo DB 102 817 13330

MySQL 4398 22615

1
10

100
1000

10000
100000

Ti
m

e
in

 m
s

Concurent Insertion in empty database

Mongo DB MySQL

55

• 100000 records are inserted with: 1000, 10000, 100000 or 10000000 records in the

database

• 1000000 records are inserted with 1000, 10000, 100000 or 10000000 records in the

database

This test is performed for each database and the results are represented in the following figures

(fig. 27 and fig 28).

Figure 27, Single Insertion in Mongo DB in a populated database

From the results, it can be observed that Mongo DB is more stable and faster than MySQL.

Another important observation is that Mongo DB is not affected a lot by the number of records

present in the database with the exception of the last case where the database is populated

with 1 million records and another 1 million is inserted.

MySQL in the other hand is much more affected from the number of records in the database

since execution time rises as the number of records present in the database rise.

0

500000

1000000

1500000

2000000

2500000

1000 10000 100000 1000000

Ti
m

e
in

 m
s

Single Insert in Mongo DB

1000 10000 100000 1000000

56

Figure 28, Single Insertion in MySQL in a populated database

All the results shown in the graphs above are also represented in tabular form below.

Type Records to be inserted Current Data Mongo DB MySQL

Single Insert in empty

database

1000 0 119 2449

Single Insert in empty

database

10000 0 1101 4733

Single Insert in empty

database

100000 0 9953 21022

Single Insert in empty

database

1000000 0 127789 227173

Concurrent Insert in

empty database

1000 0 102 4398

Concurrent Insert in

empty database

10000 0 817 22615

Concurrent Insert in

empty database

100000 0 13330

Concurrent Insert in

empty database

1000000 0

Single Insert in

populated database

1000 1000 128 2468

Single Insert in

populated database

10000 1000 1075 11484

Single Insert in

populated database

100000 1000 8896 20470

0

50000

100000

150000

200000

250000

300000

1000 10000 100000 1000000

Ti
m

e
in

 m
s

Single Insert in MySQL

1000 10000 100000 1000000

57

Single Insert in

populated database

1000000 1000 91415 241185

Single Insert in

populated database

1000 10000 134 2458

Single Insert in

populated database

10000 10000 1133 4718

Single Insert in

populated database

100000 10000 8993 20233

Single Insert in

populated database

1000000 10000 118686 238757

Single Insert in

populated database

1000 100000 140 2430

Single Insert in

populated database

10000 100000 1180 4921

Single Insert in

populated database

100000 100000 9290 26796

Single Insert in

populated database

1000000 100000 194702 280808

Single Insert in

populated database

1000 1000000 147 2442

Single Insert in

populated database

10000 1000000 1186 4713

Single Insert in

populated database

100000 1000000 10928 24380

Single Insert in

populated database

1000000 1000000 1958214 278375

Table 5, Table of measurements for Insert operation

Update

Updating data or collections in a database is very sensitive since it requires completion of two

actions instead of one, reading and writing.

In our tests, update is performed in two cases: Updating all the records in single mode and

updating all the records concurrently.

The first graph below in figure 26 shows benchmarking results for single update where as it can

be seen none of the databases fails however there is a difference in execution time where again

58

Mongo DB is faster compared to MySQL, with the biggest difference when 1 million records are

updated.

Figure 29, Single Update Mongo DB vs MySQL

The second test is concurrent update of all the data present in the database and the results are

represented in the figure below.

As we can see both databases fail when updating 1 million records. As in the case of concurrent

insertion, this comes mostly due to hardware limitations.

A speed difference is also noticeable with Mongo DB being much faster.

Figure 30, Concurrent Update Mongo DB vs. MySQL

1000 10000 100000 1000000

Mongo DB 178 1238 10931 10903

MySQL 2468 5162 28440 432018

0

100000

200000

300000

400000

500000

Ti
m

e
in

 m
s

Single Update Mongo DB vs. MySQL

Mongo DB MySQL

0

5000

10000

15000

20000

25000

1000 10000 100000 1000000

Ti
m

e
in

 m
s

Concurrent Update Mongo DB vs. MySQL

Mongo DB MySQL

59

Read

The third operation tested is Read. A similar approach is followed for Reading, as for Insert and

Update with the difference that data is read concurrently from the database and not in single

mode.

Another difference is an extra test performed. Reading speeds for a single record from the

database when populated with 1000, 10000, 100000 and 1000000 records respectively.

Compared to other tests performed Read takes less time to execute. Following graphs show the

results for both tests.

The graph in figure 28 shows the results for concurrent update for both Mongo DB and MySQL

where it can be seen that Mongo DB performs faster than MySQL in most cases except for

Reading of 1000 records.

Unlike other tests, this test was repeated more than 3 times with more or less similar results

where every time MySQL is faster when reading a smaller number of records.

Figure 31, Concurrent Select Mongo DB vs MySQL

1000 10000 100000 1000000

Mongo DB 41 63 190 1262

MySQL 21 76 415 3706

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
in

 m
s

Concurret Data Selection Mongo DB vs MySQL

Mongo DB MySQL

60

The results represented by figure 28 are the reason for performing the test of reading a single

record from the database, results of which are represented in figure 29.

Results of this second test confirm the results of the previous one. MySQL is faster ever time

read is performed for a single record.

Figure 32, Single Record Reading

All the results and observations are presented in the following table.

Type Objects to be read Current Data Mongo DB MySQL

Concurrent Read 1000 1000 41 21

Concurrent Read 10000 10000 63 76

Concurrent Read 100000 100000 190 415

Concurrent Read 1000000 1000000 1262 3706

Reading one record 1 1000 33 8

Reading one record 1 10000 33 8

Reading one record 1 100000 32 9

Reading one record 1 1000000 32 8

Table 6, Table of results for Selection

Delete

Data deletion is the last test of this benchmark between Mongo DB and MySQL and the test is

performed for two cases: Delete of all the records in the database concurrently and delete of a

single record.

Results of these tests are represented in the figures below (Fig. 30, 31 and 32).

1000 10000 100000 1000000

Mongo DB 33 33 32 32

MySQL 8 8 9 8

0

10

20

30

40

Ti
m

e
in

 m
s

Reading one record

Mongo DB MySQL

61

Figure 30 shows the deletion speeds between Mongo DB and MySQL when all the data in the

database is deleted. Results show a difference in time between the two databases with Mongo

DB being faster than MySQL.

Figure 33, Data Deletion Mongo DB vs MySQL

As mentioned above, in the case of delete we have also tested the delete speed of a single

record when we have a certain number of records in the database and the results are shown in

the following graphs, where both databases perform very quickly and are stable throughout the

test with the number of records present in the database almost not affecting the performance

at all.

Figure 34, Data Deletion MySQL

1000 10000 100000 1000000

Mongo DB 175 10785 10875 128398

MySQL 2476 4945 24941 383151

0
100000
200000
300000
400000
500000

Ti
m

e
in

 m
s

Data Deletion Mongo DB vs. MySQL

Mongo DB MySQL

1 1 1 1

1000 1009

10000 1010

100000 1012

1000000 1012

1007
1008
1009
1010
1011
1012
1013

Ti
m

e
in

 m
s

Data Deletion MySQL

1000 10000 100000 1000000

62

Figure 35, Data Deletion Mongo DB

All the results and observations are presented in the following table.

Update from multiple tables/collections

The next test performed is more about testing on how databases perform when we deal with

more complicated data models such as having to perform crud operations from multiple tables

or collections.

Results from these tests are shown in the figures below where the first figure represents the

data collected form updating data in multiple tables/ collections. When updating from multiple

sources execution speeds are slower than when updating from a single table/collection.

1000 10000 100000 1000000

1000 3

10000 3

100000 3

1000000 3

0
0.5

1
1.5

2
2.5

3
3.5

Ti
m

e
in

 m
s

Data Deletion Mongo DB

1000 10000 100000 1000000

Type Objects to be deleted Current Data Mongo DB MySQL

Concurrent Deletion 1000 1000 175 2476

Concurrent Deletion 10000 10000 10785 4945

Concurrent Deletion 100000 100000 10875 24941

Concurrent Deletion 100000 1000000 128398 383151

Delete one record 1 1000 ~ 3 1001

Delete one record 1 10000 ~ 3 1001

Delete one record 1 100000 ~ 3 1001

Delete one record 1 1000000 ~ 3 1001

Table 7, Table of results for Delete Operation

63

Figure 33 shows that MySQL is slower than Mongo DB with the time difference increasing as

number of records increases.

Figure 36, Update from multiple tables/collections

Read and Delete from multiple tables/collections

The same approach is used when testing Read and Delete operations from multiple

tables/collections. The data is read from multiple sources and displayed as a single table.

Same as with update the read and delete operations are faster in Mongo DB with the only

difference that Mongo DB slows down when having to delete large amounts of data.

Figure 37, Read from multiple tables/collections

1000 10000 100000 1000000

Mongo DB 171 1325 11021 143524

MySQL 348 2667 38532 453674

0

100000

200000

300000

400000

500000

Ti
m

e
in

 m
s

Update from multiple tables/collections

Mongo DB MySQL

1000 10000 100000 1000000

Mongo DB 12 48 307 3106

MySQL 2530 7500 39520 410685

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Ti
m

e
in

 m
s

Read from multiple tables/collections

Mongo DB MySQL

64

The test is performed multiple times with similar results; however, this delay might come

because of hardware restrictions, while the read operation in Mongo DB is where the most

difference can be seen since it is much more stable in all cases.

Figure 38, Delete from multiple tables/collections

1000 10000 100000 1000000

Mongo DB 167 1277 12060 137389

MySQL 360 2770 31624 138912

0

50000

100000

150000

Ti
m

e
in

 m
s

Delete from multiple tables/collections

Mongo DB MySQL

65

Conclusions

The schema-less data model of NoSQL Databases ensures the ability to store any type of data

without enforcing a strict data structure, while also ensuring that more sophisticated data

models can be implemented. NoSQL Databases in general and Mongo DB in particular, are

designed to prioritize availability over consistency, even though it varies a lot from the

applications.

Relational Databases have a pre-set data model long before inserting data, which sometimes

leads to complexity in development. A strong selling point for Relational Databases is the fact

that they are mostly mature since a lot of development and research is conducted since they

are an older technology compared to NoSQL Databases.

As mentioned in Chapter 3 of this thesis, Relational Databases are more about “What answers

do I have?” compared to NoSQL ones which start at “What questions do I have?”

Apart from the theoretical part of this thesis, the last chapter is an experimental work in the

form of a benchmark.

The benchmarking in this thesis has been done in a local environment, which is not the typical

environment for NoSQL systems, however it provides a small-scale test for the theoretical

claims and hypothesis of this thesis.

The results of these tests prove that Mongo DB performs better, since it has a better

performance in terms of actions per time unit than MySQL.

The tests performed in this thesis are all done based on fairness and without any stereotypes

while the results are those expected by the theoretical claims of this thesis as in many other

related works.

In general, NoSQL databases are complementary to the relational model, and the work

supports the main hypothesis that document–based databases are competitive to relational

databases.

66

This thesis may also be expanded in the future since new scripts for more operations and

database types can be easily added. In addition, the testing environment can be upgraded with

the addition of more machines, which would provide a physical division rather than emulating

it.

67

References

Abadi, D., 2007. Column Stores For Wide and Sparse Data. California, CIDR, pp. 292-297.

Beltrame, C., 2013. Key-value stores. Zurich, ETH- Zurich, pp. 1-12.

Bhardwaj, N., 2017. Comparative Study of Couchdb and MongoDB- NoSQL Document

Oriented Databases. International Journal of Computer Applications, pp. 24-26.

Brewer, E., 2012. CAP Twelve Years Later: How the "Rules" Have Changed. IEEE Computer

Society, pp. 23-29.

Bugiotti, F. & Cabibbo, L., 2013. A Comparison of Data Models and APIs of NoSQL

Datastores.

Cattell, R., 2010. Scalable SQL and NoSQL Data Stores. SIGMOD Record, pp. 12-27.

Chandra, D. G., 2015. BASE analysis of NoSQL databases. Elsevier- Future Generation

Computer Systems, Volume 52, pp. 13-21.

DB-Engines, 2017. DB Engines. [Online]

Available at: https://db-engines.com/en/ranking

Henricsson, R., 2011. Document Oriented NoSQL Databases, s.l.: Blekinge Institute of

Technology.

Moniruzzaman, A. & Hossain, S. A., 2013. NoSQL Database: New Era of Databases for Big

data Analytics - Classification, Characteristics and Comparison. International Journal of

Database Theory and Application, pp. 1-14.

68

Omji, M., Lodhi, P. & Mehta, S., 2018. Document Oriented NoSQL Databases: An Empirical

Study. Springer: International Conference on Recent Developments in Science, Engineering and

Technology, pp. 126-136.

Oracle, 2013. Oracle: Big Data for the Enterprise, s.l.: Oracle.

Pritchett, D., 2008. Base an ACID Alternative. ACMQ, pp. 50-55.

Redis, 2017. Redis. [Online]

Available at: https://www.redis.io

Schmitt, O. & Majchrzak, T. A., 2012. Using Document- Based Databases for Medical

Information Systems in Unreliable Environments. Vancouver, s.n., pp. 1-10.

Seeger, M., 2009. Key- Value stores: a practical overview. Medien Infromatik, pp. 1-21.

Storey, V. & Song, I.-Y., 2017. Big data technologies and management: What conceptual

modeling can do. Elsevier: Data & Knowledge Engineering, Volume 108, pp. 50-67.

