
Functional software testing of a web application and analysis of requirements

Mentor:
Assoc. Prof. Dr. Visar Shehu

unctional software testing of a web application and analysis of requirements
coverage

 Candidate:
Hana Rustemi, BSc

unctional software testing of a web application and analysis of requirements

Candidate:
Hana Rustemi, BSc

2

Contents
List of Figures 4

List of Tables 4

Abstract 5

1. Introduction 6

1.1.Purpose of thesis 6

1.2 Hypotheses 7

1.3 Research Methodology 7

2.0 Software Engineering 8

2.1. Software Development Life Cycle 9

2.1.1.Software Development Process Models 9

2.2. Software Testing in SDLC 15

2.2.1. Testing in Waterfall Model 15

2.2.2.Testing in V Model 15

2.2.3. Testing in Agile Model 16

2.2.4. Testing in Extreme Programming 16

2.3. Software Testing 17

2.3.1. The Importance Of Testing 18

2.3.2.Foundations of software testing 19

2.3.3.Software Testing Life Cycle (STLC) 20

2.3.4. Software Testing Levels 21

2.3.5. Software Testing Approaches 24

2.3.6. Manual vs. Automated Testing 28

3. Test Process and Methods 32

3.1 Modules of Application 33

3.2 Requirements 36

3.3. Methods 37

3.3.1 Modules and their manual testing scenarios 37

3.3.2 Automated test scripts 44

4. Results and Conclusion 47

Results 47

Conclusion 54

References 56

Appendices 58

3

Appendix A – Traceability Matrix 58

Appendix B – Test Scenarios 60

Appendix C – Test Scripts 68

4

List of Figures
1. The waterfall model
2. The V-Model
3. The Incremental Model
3.1 The Iterative Model
4. The Agile Method

5. Testing Life Cycle

6. Levels Of Testing

7. Dynamic And Static Approaches And the Corresponding Methods

8. Black Box Testing Method

9. Dashboard Module

List of Tables
1. Testing Principles

2. Levels of testing

3. Manual and Automated test usage

5

Abstract
Software testing is an important part of Software Development Life Cycle which encapsulates
steps like designing, running and maintaining operations. It is a crucial step towards creating a
valuable product that fulfills the requirements of the stakeholder. Testing both ensures that the
initial requirements are fulfilled, and the product will be working causing no errors to the users.
This thesis is analyzing the importance of software testing in SDLC and functional testing by
analyzing the techniques, levels and methods of software development. Also, the related work
has been researched and used for further conclusions and comparisons.

Methodology

Black-box test scenarios are designed to perform manually in an application and later test
coverage metrics are calculated to evaluate the success of the testing process. In this paper
process, time, human resource, advantage, disadvantage, limitations and usability differences of
manual test and automation test processes are compared as well.

Keywords

Software testing, SDLC, STLC, Black-Box testing, White-Box testing, Manual Testing,
Automated Testing.

6

1. Introduction

Testing has always had and will have a crucial role and importance in software
development. Considering the fact that each field of our lives nowadays requires usage of a
software, be it a web app for shopping, a desktop app for professional or educational use or be it
a mobile app for using in our spare times, each of them in essence are software products that
some developers have created and possibly are maintaining continuously. These products are
required to work seamlessly, without errors and fast, pretty fast. Popular industrial research
claims a rule named as “15 seconds rule” which is widely used to guide web developers to
develop products to attract the visitors attention in less than 15 seconds. Doing so requires
maximum effort and minimum errors. To be able to answer the needs of this dynamic world and
to fill the ever-changing requirements several development cycles and approaches are being
used.

With the increasing of available software in the world, a huge need for quality (software
quality) has come in play which as we might guess is not quite easily achievable considering the
fact that the requirements based on which this software are developed have become far than
complex. Also, we should keep in mind that in these situations not only physical effort is spoken
of but all these complex requirements also have a financial dimension, that when gone wrong can
cost a fortune to the stakeholder companies or people and the only way of avoiding failures and
generating successful and operational products lies on the field of software testing. Software
testing even though sometimes is underrated because of constraints in time and cost, it is
considered as one of the most important steps of Software Development Life Cycle. The whole
process of testing is aimed at finding bugs which may result in smaller or bigger errors in the
future.

Testing can be realized with the tester knowing the internal structure of the software or
not knowing its structure at all. It is a process of evaluating the overall or detailed components of
the system through manual or automated means to verify the functionality and requirements. All
these elements lead to determine some attributes of a qualitative software like: usability,
efficiency, reliability, security, capability, maintainability, compatibility and many more.

1.1.Purpose of thesis

Functional testing is mainly conducted to validate the software product opposed to given
requirements for functionality and thereby contribute to its’ usability.

In general, functional testing, recruits black-box testing methods to run several tests
which do not consider the internal structure of the software product.

As the technology develops, the need for human interaction is decreasing in each field.
Testing is one of them, where automated software outperforms people and human effort in any
way, but yet there are situations were human involvement results in best accomplishments

7

These tests are conducted usually in automated environments that and they validate
aspects like: Accessibility, Usability, User Interface and more. The paradox here is that testing
manually these aspects is a time and cost consuming process but on the other hand using
automated tools is costing much to the companies plus there is need for a specialist that knows
how to use the automation tools as well as good programming language knowledge. In addition,
using automation does not always mean that the process will work flawlessly just because it is
done by computers and programs independently. It generally requires human input which in
some organizational cases might confuse testers whether to use manual or automated methods.
Another point that puts me in doubt about using automation tools in functional testing is that
handling test scenarios in those environments is very much like doing the testing manually and in
such cases, testers prefer to do the work manually with the conventional methods of collecting
data and documenting results.

Hereby, this thesis aims to demonstrate the process of testing an application on its
functionality with conventional black box method of creating test scenarios and their test cases
and evaluate the Requirements coverage for these tests.

1.2 Hypotheses

H0. Automated test gives the best results in software testing.

H1. Manual Functional testing of a web application results in better error finding.

H2. Combining Manual and Automated test in functional testing enhances the
requirement coverage.

1.3 Research Methodology

This thesis is conducted based on Primary Quantitative Method which includes Experimental
Research that will address which testing method gives best results in terms of error finding and
covering requirements.

The instruments to be used in this process will be use case scenarios for manual testing and
automation tool.

8

2.0 Software Engineering

The term “Software” has been an immensely pronounced word in our lives through the
past decades. According to Pressman and Maxin [1] it is a tool that “delivers the most important
product of our time-Information”, because it has been playing a dual role by being both a product
and a tool for delivering product. Independent of where it is located (mobile phone, tablet,
embedded systems, pc, laptop) it transforms information that are gathered by multiple and
independent sources.

It is not an easy task to obtain a software that is capable of transforming and serving
information to users seamlessly considering the fact that the technology has developed itself and
everyday new software products come along that simultaneously rises the expectations of the
users. A vast percent of electronic devices includes a software, so does the manufacturing
technology, also we have to mention that tasks like: banking, teaching, shopping, even
entertainment market is based on a software.” The term 'software engineering' was suggested at
conferences organized by NATO in 1968 and 1969 to discuss the 'software crisis'. The software
crisis was the name given to the difficulties encountered in developing large, complex systems in
the 1960s. It was proposed that the adoption of an engineering approach to software development
would reduce the costs of software development and lead to more reliable software”
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/History/.

Software Engineering has been defined by to Pressman and Maxin [1] as a process along with a
collection of methods and array of tools that result in building a high-quality software product.
As a process, it enables professionals to escape the chaotic environment of development by
following a defined path but also leaving them flexible to adapt their approach. Also, another
definition is by IEEE” The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software"—IEEE Standard Glossary of Software
Engineering Terminology”

9

2.1. Software Development Life Cycle

Software Development is a collection of processes that lead to creating a product based
on the requirements, in some cases these processes are complex and interconnected steps which
either are lined as an incremental array of steps or a cycle that iterates itself. Whatever process is
undertaken, there are 4 major and fundamental steps that need to be inside a development
process [24]:

• Software specification – which is usually called as Requirements Engineering,
where usually the input from the customers is the key, which consequently generates the
limits or constraints of the product by documenting the core functions of it.

• Software design and implementation – where the requirements are implemented
or defined as data models, interfaces and structures.

• Software validation - usually called as Verification and Validation where
Verification makes sure if the requirements have been implemented into functions, and
Validation refers to the product being based on the given requirements. Usually testing is
the most important component of the Validation process, which generally has three
stages: Development testing, System Testing and Acceptance Testing.

• Software evolution- refers to the part of maintaining the product after
development which in general is underrated and considered dull, but in fact a consistent
maintenance of a product that has to undergo changes in correspondence to the needs and
changes is what makes it valuable.

The above-mentioned processes are further combined together with other steps in so
called Process Models or Process Paradigms which serve for defining the architectural
framework of the steps taken to develop a certain product. Although they are defined and
grouped in several types, they can be further extended in order to create other engineering
processes.

2.1.1. Software Development Process Models

Although through the passing time the need and the strive for faster and perfect product
has led to more models which today reach to a number of approximately 50 process models,
there are some fundamental models that one way or another might be suitable to project. The
following 8 models are considered as the widest used methods:

1.The Waterfall Model

Is the conventional development model which has been noted as a firm basis for the
further coming development models.It is based on iterative and sequential approach where each
step is a ground for the next step. This model is usually
operating systems or projects whose requirements won’t be changing [1]. In contrary to this,
mostly waterfall model is compared to the incremental model which is one of the best
approaches to agile development in mainly
product in its earliest stages because each increment of the product should possibly include a
requirement of the customer and the customer gets to see a demonstration of the product up to
some point.[24].Based on a research of The Standish Group in 2015 over 10.000 projects, its
shown that the Waterfall model have a successful rate of 44% over Agile methods only in Small
Sized Projects[26].

Fig.1.The waterfall model

Is the conventional development model which has been noted as a firm basis for the
further coming development models.It is based on iterative and sequential approach where each
step is a ground for the next step. This model is usually used in development of databases or
operating systems or projects whose requirements won’t be changing [1]. In contrary to this,
mostly waterfall model is compared to the incremental model which is one of the best
approaches to agile development in mainly e-commerce, where the user can interact with the
product in its earliest stages because each increment of the product should possibly include a
requirement of the customer and the customer gets to see a demonstration of the product up to

Based on a research of The Standish Group in 2015 over 10.000 projects, its
shown that the Waterfall model have a successful rate of 44% over Agile methods only in Small

10

Is the conventional development model which has been noted as a firm basis for the
further coming development models.It is based on iterative and sequential approach where each

used in development of databases or
operating systems or projects whose requirements won’t be changing [1]. In contrary to this,
mostly waterfall model is compared to the incremental model which is one of the best

commerce, where the user can interact with the
product in its earliest stages because each increment of the product should possibly include a
requirement of the customer and the customer gets to see a demonstration of the product up to

Based on a research of The Standish Group in 2015 over 10.000 projects, its
shown that the Waterfall model have a successful rate of 44% over Agile methods only in Small

2.V-Model

The V-model (Vee Model) is an improved version of
development process is broken down to components in top
component verification and validation is applied through compatible tests like acceptance,
system, integration and unit testing, which consequently
the requirements have been placed precisely, if you pass system test
been designed correctly, the same is valid for the integration and unit testing where its proven
that module design and code are working properly. It is mostly chosen to be used in projects with
restrictions in time and failure like airplane fleet management.

i
g.2The V

3. Incremental and Iterative Models

model (Vee Model) is an improved version of Waterfall model where the
development process is broken down to components in top-down approach and for each
component verification and validation is applied through compatible tests like acceptance,
system, integration and unit testing, which consequently means that if you pass acceptance test
the requirements have been placed precisely, if you pass system test- the system architecture has
been designed correctly, the same is valid for the integration and unit testing where its proven

nd code are working properly. It is mostly chosen to be used in projects with
restrictions in time and failure like airplane fleet management.

Software Product [[1]

F

g.2The V-Model

3. Incremental and Iterative Models

11

Waterfall model where the
down approach and for each

component verification and validation is applied through compatible tests like acceptance,
means that if you pass acceptance test-

the system architecture has
been designed correctly, the same is valid for the integration and unit testing where its proven

nd code are working properly. It is mostly chosen to be used in projects with

In the Incremental model, the aim is to create a Minimum Viable Product with core
functions that reflect the requirements of the customer, and then based on the feedback and
comments of the user the product can be added with the next features. We can say t
through iterations and after each iteration the new requested feature is added.

However, in the Iterative model, the major requirements that cannot undergo a big
change are stated, although through the iteratio
done. At the final stage, after all the requirements are fulfilled, the product is ready to be
presented to the client.

In the Incremental model, the aim is to create a Minimum Viable Product with core
functions that reflect the requirements of the customer, and then based on the feedback and
comments of the user the product can be added with the next features. We can say t
through iterations and after each iteration the new requested feature is added.

Fig.3. The Incremental Model

However, in the Iterative model, the major requirements that cannot undergo a big
change are stated, although through the iterations small modifications to requirements can be
done. At the final stage, after all the requirements are fulfilled, the product is ready to be

12

In the Incremental model, the aim is to create a Minimum Viable Product with core
functions that reflect the requirements of the customer, and then based on the feedback and
comments of the user the product can be added with the next features. We can say that, it goes

However, in the Iterative model, the major requirements that cannot undergo a big
ns small modifications to requirements can be

done. At the final stage, after all the requirements are fulfilled, the product is ready to be

4.The Agile Methods

In contrary to the conventional plan
rigorous processes, mainly focused on how the product should be developed rather than the
development process itself including the testing, with no consideration on changing requirements
that desperately need change in design, the agile software development process model is the
most used development process in the World. According to [27] 71% of the companies have
embraced an Agile approach in their development process. Agile method is implemented based
on “The Agile Manifesto” [28], which is more considered as a philosophical approach to
development rather than a methodology.

The general idea of this method is to observe and develop for a period and do these steps
in a loop. Design and implementation are consi
steps like requirements gathering and testing [24]. Here the planning and observation takes more
time due the fact that in these phases the possible mistakes are considered, which creates a solid
base for decreasing the upcoming failures, in this way the product can easily transform to an
MVP and then can be improved. It is usually fitting best in the projects which have constant
changes in requirements while in development.

Fig.3.1. The Iterative Model

In contrary to the conventional plan-driven model where strict project planning and
rigorous processes, mainly focused on how the product should be developed rather than the
development process itself including the testing, with no consideration on changing requirements

change in design, the agile software development process model is the
most used development process in the World. According to [27] 71% of the companies have
embraced an Agile approach in their development process. Agile method is implemented based

Agile Manifesto” [28], which is more considered as a philosophical approach to
development rather than a methodology.

The general idea of this method is to observe and develop for a period and do these steps
in a loop. Design and implementation are considered as main activity later combined with other
steps like requirements gathering and testing [24]. Here the planning and observation takes more
time due the fact that in these phases the possible mistakes are considered, which creates a solid

creasing the upcoming failures, in this way the product can easily transform to an
MVP and then can be improved. It is usually fitting best in the projects which have constant
changes in requirements while in development.

13

driven model where strict project planning and
rigorous processes, mainly focused on how the product should be developed rather than the
development process itself including the testing, with no consideration on changing requirements

change in design, the agile software development process model is the
most used development process in the World. According to [27] 71% of the companies have
embraced an Agile approach in their development process. Agile method is implemented based

Agile Manifesto” [28], which is more considered as a philosophical approach to

The general idea of this method is to observe and develop for a period and do these steps
dered as main activity later combined with other

steps like requirements gathering and testing [24]. Here the planning and observation takes more
time due the fact that in these phases the possible mistakes are considered, which creates a solid

creasing the upcoming failures, in this way the product can easily transform to an
MVP and then can be improved. It is usually fitting best in the projects which have constant

4.1. Extreme Programming

Is the most widely used version of Agile method, which mainly is based on iterative
approach but in ‘extreme’ limits. As a simple example, in extreme programming based on a
requirement, a scenario is created, implemented as task units,
development, then the code is integrated to the system with fully executable and successful tests
which may lead to several developers creating versions, integrating and testing them in a very
short period.

Extreme programming has generally 12 practices that may be grouped in 4 categories:

• Communication with customer and the group of programmers

• Application’s specification and test cases are derived in collaboration with the customer

• A partner should be involved in programmin

• Multiple testing of the base code

4.2 Scrum Method

In the scrum method, there are development phases of: requirement, analysis, design,
evolution and delivery. All these phases need to happen in a process flow that is called as sprint.
The process is carried out in a group of development activities:

 Backlogs- business requirements of the client that prioritize the requirements.

 Sprints-are blocks of tasks that need to be done in order to achieve a backlog that consists
 requirement (generally up to 30 days)

Fig.4 The Agile Method

Is the most widely used version of Agile method, which mainly is based on iterative
approach but in ‘extreme’ limits. As a simple example, in extreme programming based on a
requirement, a scenario is created, implemented as task units, test is planned ahead of
development, then the code is integrated to the system with fully executable and successful tests
which may lead to several developers creating versions, integrating and testing them in a very

generally 12 practices that may be grouped in 4 categories:

Communication with customer and the group of programmers

Application’s specification and test cases are derived in collaboration with the customer

A partner should be involved in programming

Multiple testing of the base code

In the scrum method, there are development phases of: requirement, analysis, design,
evolution and delivery. All these phases need to happen in a process flow that is called as sprint.
The process is carried out in a group of development activities:

business requirements of the client that prioritize the requirements.

are blocks of tasks that need to be done in order to achieve a backlog that consists
requirement (generally up to 30 days)

14

Is the most widely used version of Agile method, which mainly is based on iterative
approach but in ‘extreme’ limits. As a simple example, in extreme programming based on a

test is planned ahead of
development, then the code is integrated to the system with fully executable and successful tests
which may lead to several developers creating versions, integrating and testing them in a very

generally 12 practices that may be grouped in 4 categories:

Application’s specification and test cases are derived in collaboration with the customer

In the scrum method, there are development phases of: requirement, analysis, design,
evolution and delivery. All these phases need to happen in a process flow that is called as sprint.

business requirements of the client that prioritize the requirements.

are blocks of tasks that need to be done in order to achieve a backlog that consists

15

 Meetings-daily held, short meetings where team members question what they have done
since last meeting, the problems they have faced and what needs to be achieved until next
meeting.

2.2. Software Testing in SDLC

Testing a product is generally seen as a process that will prove that it is error-free or all
the client requirements have been fulfilled. It is usually considered as a dissuasive and a
consuming process both psychologically and economically whose, in my opinion, sole aim
should be finding errors in any circumstance. Not even a single product can be error-free, thus as
much as consuming it might be, it needs to be incorporated in each type of SDLC.I am going to
explain how testing is achieved in the following development models. But first we have to
consider some testing principles that are defined in the book “The Art of Software testing” [2] in
the following table:

Nr. The Principle
1 The expected output is an important part of the test case
2 A programmer should avoid testing his/her code
3 An organization/company should avoid testing their own program
4 A testing process should analyze the results of the test in detail
5 Test cases should be prepared for both valid and invalid inputs
6 Testing should check both if a program does and doesn’t do what it should not do
7 Test cases should be reusable
8 Do not create test cases that aim to prove the product to be error free
9 There is a proportional relation between errors that are found and those to be found
10 Testing is both a creative and challenging task

Table.1 Testing Principles

2.2.1. Testing in Waterfall Model

As mentioned above, Waterfall model is a strict and highly disciplined development
model. It flows the process of development in a sequential way where each step comes after
finalizing the previous one, and each step should be completed in order to pass to the next one.
As a result of this, testing is carried out after each phase which in the advantage side helps
provide a qualitative product. But the down side is that, because the testing happens in the final
stages, the errors are detected late and their cost to the product are immense.

2.2.2.Testing in V Model

The V Model or Verification and Validation model, as explained above is not a linear approach
to development but instead it is based on a verification principle where each phase is depending

16

on the previous step in order to proceed further. Here testing happens in each step and requires a
parallel involvement of the developer and tester. System test cases are prepared based on
requirements, Integration test cases are prepared based on High Level Design, and for the Low-
Level Design the unit tests are prepared.

Testing in Iterative and Incremental Model

The iterative model aims to provide a working software in short and frequent intervals to the
client and they get to test an actual version. The testing process is divided into two phases, the
first phase consists of:

• Unit testing

• Component Testing

• Integration Testing

Which are usually conducted for each iteration before the product is completed as a
whole, and then during the final phases of development where the team considers that the
requirements delivered by the customer have been fulfilled, the product goes through the second
phase of final testing which is made of:

• System Integration Testing

• Acceptance Testing [29]

2.2.3. Testing in Agile Model

As we know, agile development embraces a fast, iterative and incremental development
including testing which generally provides user involvement and the changes happening in this
phase are welcome for the general process. It is not a conventional or traditional model due the
fact that the competition in the market has imposed a qualitative product that can be delivered
immediately with the least possible errors. Because of this testing plays an important role in this
development model. As in nature of agile development, also in the testing phase the involvement
of the client is crucial in every stage of development stage. In addition to this, developers are
also involved in the testing phase which makes testing process a collaborative one. For example:

• Initially developers generate unit tests ahead of coding actual units which will test their
product

• Generally automated tests are used to enhance the fast production schedule.

• After a deploy, customers take the acceptance test to give their feedbacks on the product
[2].

2.2.4. Testing in Extreme Programming

17

Compatible with the term “Extreme” the testing applied in XP is also considered as
extreme therefore retestingor constant testing is practiced in this model. Laying on the
foundations of Agile Development and similar to it, the tests are provided ahead of coding whose
target is to find errors at the earliest. For this purpose, unit testing and acceptance testing are the
principles in charge of testing process. Unit testing is done with the purpose of finding errors and
consequently fixing those errors, and acceptance test is done by the clients who check the
fulfillment of their requirements.

As we can see above, in each development model testing is included one way or another.
In some models testing is done parallel to the development process in general, and in some
models, testing is done after some phases have been implemented. In each situation, it shows us
that testing is an important phase which feeds and enriches the product by making sure that there
are possible or existing errors but they will be fixed and everything will work properly. Let’s not
forget that testing is not conducted to assure the clients that there are no errors, it starts with the
assumption that there are errors and we need to find them as soon as possible.

2.3. Software Testing

Testing is a process mainly conducted to find errors in the software, determine risks and help
to get the best out of the software being produced.It usually serves to determine the qualiyt of the
product and it is an important discipline of Software engineering due to the fact that it consumes
approximately 50% of the devlopment process and efforts[9].All problems can be identified as
bugs and these can be caused by anything from a mistake in the user requirements up to code
errors.These bugs can drastically decrease the time and cost of the product which can end with
multiple conflicts between customer and development team. At the end what matters is the
quality of the product.Moreover, testing can also be seen as an important component of the
Verification&Validation[1] which is mostly inherited as a framework with different activities
that ensure a product, software or a system fulfills its initial requirements and that the final
product is a qualitative result of these requirements.Today, as the requests for a qualitative
software are rising, testing is becoming more important. The following are the ISO 9126
Software Quality Characteristics[7] which is an international standart for evaluating a software
product regarding the following subjects:

● Functionality
● Reliability
● Usability
● Efficiency
● Maintainability
● Portability

where testability is lined under Maintainability subject of the standard. Not only for
maintainability, but also with testing in the early stages of the development many mistakes and
inadequacies can be detected which contributes to the quality of the product hence satisfy both
the customer and development company.

18

Quality is a norm that corresponds to software being developed according to the
requirements and it shows a degree of excellence if it conforms to some parameters which
differentiate for the customer and developer.

When testing a software, the results of the tests tell us about errors, defects or any
malfunction in it. Although this is a long process which contains many steps, levels and methods
it serves to two goals:

 1.To prove that the product fulfills the requirements of the customer

 2.To track anomalies or cases where the product does not meet the customer’s
specifications

Through the history, testing has been primarily made to find errors, then it has been
conducted to show that the software product had been built correctly, and in the past years
employing testing in a destructive manner gives better results to the developers. The important
thing to know is that no software is a total success and not any software can be tested in 100%.

2.3.1. The Importance Of Testing

What gave more importance to testing might be some failures in the past that have happened
as a result of a software malfunction or a simple error in the code. The following are some major
disasters that have happened in the past years, and the main reason has been considered as a lack
of testing in their SDLC [31].

● Credential leak of Yahoo that exposed 500 million credentials in 2016
● Airbus A400M bug that had caused a crash in 2015
● Apple iPad in 2012 got on sale with a price of £49.99 instead of £650 in Tesco
● Ola India’s largest taxi company, due to a glitch in their system provided free rides to

programmers who infiltrated in their system

These are only a few examples that once again have proven the importance of testing in any
kind of system, software, or product. As we can see the cost of these are not only ethical
disasters that have damaged reputation of the related companies, at the same time they have had
an impact in the material aspect as well. Usually the cost of fixing bugs rises proportionally as
the stages of development progress further, which means that the earlier the bugs are discovered
the minimal cost impact they will have on the company, for example a bug found in the early
stages of development like requirements phase can cost nearly nothing; a bug in the coding
process can take little to minimal effort to correct it with little interaction; a bug in the system
testing may cause a delay of delivery of the product which is considered as tolerable but a bug
on the system functioning may cause a disaster[3].

The advantages of software testing can be very different from the perspective of developers
and customers but in general we can summarize them as the following:

19

1. Discovering new or existing errors
2. Proving the security of the product
3. Proving the quality of the product
4. Prevention from being sued for inadequacy by the customer
5. Proving that there are no errors in the product

Before proceeding with further testing information, we should clear the three main terms in
testing, fault, error and failure. These terms are best described by Amman.P and Offutt.J in
“Introduction to Software Testing” [34] as following:

● Fault-a defect in the software
● Error-An internal condition that comes as a consequence of a fault
● Failure-An external incorrect behavior that opposes the requirements

2.3.2. Foundations of software testing

Although the first statements about software testing date back to 50’s to the time when
FORTRAN language was developed, the genuine definitions for software testing are accepted as
the book of Glenford Myers “The Art of Software Testing” was published in 1979[2]. But with
radical and rapid changes both in computer hardware and software developed, it was a necessity
to update and adapt the methodologies and definitions to the changing environment. If we have
to explain how testing was developed in a timeline basis, then in the literature we can see the
article of D. Gelperin and B. Hetzel [32] where they have divided the history of testing in
different periods such as:

● The Debugging-Oriented Period (--1955) is the period when testing was based on
computer hardware, it was not distinguished from debugging. Actually, the term bug
comes from Ada Lovelace in 1843 where she described a problem with a program that
Charles Babbage wrote, far later than that Thomas Edison in 1878 where he described a
malfunction in his machine as a “bug”. Correcting these bugs was mainly focused on
hardware issues until 1950 when Alan Turing published an article where he was
concerned about how a program can reveal intelligence, which consequently has brought
up the concern whether a program satisfies its requirements. This led to creation of a test
where an interrogator a program and a reference system developed testing.

● The Demonstration-Oriented Period (1957-1978) in timeline lasts between 1957 and
1978 when testing was developed to verify if it adhered to the specifications. Until this
point, testing was referred as a process where you “checkout” if the program has bugs.
Initially a step for definition of testing was taken by Charles L. Baker (see Review of “Digital

Computer Programming,1957”) when he proposed that a so called “checkout” needed a
differentiation between testing and debugging and that it should bring clarity to two
issues, first it should assure that the program works and it corresponds to a stated problem

20

and the second which is considered as the major purpose of testing is if the program
satisfies the requirements. The sole aim of testing and debugging was to find, locate, and
correct mistakes, but the need for making sure if a program runs correctly was an issue
that needed further methodologies to be ensured.

● The Destruction-Oriented Period (1979-1982)- The destructive approach was applied
from 1979 to 1982 whose main concern was to find as much possible errors at the earliest
stages, even undiscovered errors. The testing in this period was so focused in finding
errors that it had mostly ignored other aspects of providing and developing a successful
product. In a way, it was in complete opposition of demonstration period where testing
was done to assure requirements. In this point of view, substantial testing was done but
the problem stood that the more destructive testing was done, the more errors were found
hence debugging them took a lot of time, therefore this period lacked success and gave
rise to fault detection methods that prospered in the following period of evaluation-
oriented approach.

● The Evaluation-Oriented Period (1983-1987) - It was in 1983 when National Bureau of
Standards published a guideline for developers, managers, maintainers and everyone
included in software development process [33]. This guideline took the first step to a
more convenient software development process. It was proposing a model called VV-T
that was a combination of processes of verification, validation and testing to whom we
are familiar at this point. The idea of this approach was to utilize different analysis and
testing activities to provide evaluation of the product quality during its development life
cycle to detect design, implementation and requirements faults. Based on this
verification, validation and testing processes were adjusted to fit in each development
cycle phases.

● The Prevention Oriented Period (1988- present)- As the name suggests, the main reason
of testing was to prevent possible design, implementation and requirements faults. This
was achieved by accentuating test planning, analysis and design, which opposed the
evaluation approach based on analysis and review thus excluding testing process at later
steps. The steps for testing have been described as: planning, design, construction,
implementation and execution which until today have been present in any type of testing
lifecycle.

2.3.3.Software Testing Life Cycle (STLC)

STLC refers to a set of activities that need to be done in order to verify that the product
meets the requirements and in each organization testing is a separate but paradoxically inclusive
act from SDLC.It is appropriate to say that although testing is a separate process which has its
own phases, it corresponds to each cycle of the development process and each cycle has its own
goals and results.We should keep in mind that each phase of the testing lifecycle has its input and

output criteria that define what requirements need to be completed before testing begins and
what requirements need to be completed before testing finishes.

Testing life cycle has the following phases as depicted in the diagram:

 Fig.5 Testing Life Cycle

Where:

1. Requirement analysis is the initial phase of testing in which developers and testers and
optionally users discuss, analyze and gather user requirements against which the product
will be tested. As a result of this requirements document is created.

2. Planning is the activity to predetermine the testing process, classify possible problems,
define metrics and schedule of testing process. Also here the team determines which
testing approach will be considered, what needs to be tested and what is opted out of
testing.

3. Writing test cases is based on the requirements listed in the requirements document.
Usually test cases and test data are the outputs of this step.

4. Designing is the phase where test document including plan, design and automation
scenarios are usually the output. It

5. Running and executing the test cases happen in this phase which may include bug
reporting and revision of test cases.

6. Reporting is the phase where the expected and the actual results of the tests are
compared.

7. Final testing is the phase where all front and back
scripts are executed and if necessary updated.

8. Post implementation is the final phase of testing w
provide strategies to ward off similar defects in the future [3].

9. This process can be modified by adding or removing some phases according to the needs,
but this framework is the most general approach to testing life

2.3.4. Software Testing Levels

Testing as we know is a process that begins with the developers and goes all the way to the
user, there is no distinct line to define up to which point a user can test the product since errors
might come up at the most unexpected time and way and in any level. The SDLC in itself is a
layered structure of components that needs to be tested for each component so that the missing
points can be fulfilled, and we can avoid repeating of the development stages. There are sev
testing methods suitable for each development stage, and we will initially define the four most
important levels that are used in testing process:[3],[9],[12]

1. Unit Testing

output criteria that define what requirements need to be completed before testing begins and
what requirements need to be completed before testing finishes.

fe cycle has the following phases as depicted in the diagram:

Fig.5 Testing Life Cycle

Requirement analysis is the initial phase of testing in which developers and testers and
optionally users discuss, analyze and gather user requirements against which the product
will be tested. As a result of this requirements document is created.

is the activity to predetermine the testing process, classify possible problems,
define metrics and schedule of testing process. Also here the team determines which
testing approach will be considered, what needs to be tested and what is opted out of

Writing test cases is based on the requirements listed in the requirements document.
Usually test cases and test data are the outputs of this step.
Designing is the phase where test document including plan, design and automation
scenarios are usually the output. It
Running and executing the test cases happen in this phase which may include bug
reporting and revision of test cases.

ase where the expected and the actual results of the tests are

Final testing is the phase where all front and back-end test and manual or automated
scripts are executed and if necessary updated.
Post implementation is the final phase of testing which usually ends with a defect report,
provide strategies to ward off similar defects in the future [3].
This process can be modified by adding or removing some phases according to the needs,
but this framework is the most general approach to testing lifecycle.

Testing as we know is a process that begins with the developers and goes all the way to the
user, there is no distinct line to define up to which point a user can test the product since errors

st unexpected time and way and in any level. The SDLC in itself is a
layered structure of components that needs to be tested for each component so that the missing
points can be fulfilled, and we can avoid repeating of the development stages. There are sev
testing methods suitable for each development stage, and we will initially define the four most
important levels that are used in testing process:[3],[9],[12]

21

output criteria that define what requirements need to be completed before testing begins and

Requirement analysis is the initial phase of testing in which developers and testers and
optionally users discuss, analyze and gather user requirements against which the product

is the activity to predetermine the testing process, classify possible problems,
define metrics and schedule of testing process. Also here the team determines which
testing approach will be considered, what needs to be tested and what is opted out of

Writing test cases is based on the requirements listed in the requirements document.

Designing is the phase where test document including plan, design and automation

Running and executing the test cases happen in this phase which may include bug

ase where the expected and the actual results of the tests are

end test and manual or automated

hich usually ends with a defect report,

This process can be modified by adding or removing some phases according to the needs,

Testing as we know is a process that begins with the developers and goes all the way to the
user, there is no distinct line to define up to which point a user can test the product since errors

st unexpected time and way and in any level. The SDLC in itself is a
layered structure of components that needs to be tested for each component so that the missing
points can be fulfilled, and we can avoid repeating of the development stages. There are several
testing methods suitable for each development stage, and we will initially define the four most

2. Integration Testing
3. System Testing
4. Acceptance Testing

If we think of it as a testing hierarchy, the following would be suitable to describe these levels in
the context of STLC:

1. Unit Testing is the fundamental test level where each component of the software is tested
including code, classess, objects and modules and this is done by decomposing each one
of them separately. Testing in this level is done to verify the functionality and
requirements fulfillment of the components. Usually, unit testing happens in the early
stages of coding by the developers themselves, and errors are fixed as soon as they are
found thereby avoiding further bugs in the software in higher levels of development.

2. Integration Testing is another nomenclature given to testing done when joining or
combining components of a software, also integration testing can be done when
integrating different software. The reason for conducting integration testing comes from
the problems that possibly happen when developers finally combine several components
of a software that they previously had tested individually but when combined together
may cause errors. Testing is done by developers and it generally has sub
such as:[15],[18]

If we think of it as a testing hierarchy, the following would be suitable to describe these levels in

Fig. 6 Levels of Testing

is the fundamental test level where each component of the software is tested
including code, classess, objects and modules and this is done by decomposing each one
of them separately. Testing in this level is done to verify the functionality and

ts fulfillment of the components. Usually, unit testing happens in the early
stages of coding by the developers themselves, and errors are fixed as soon as they are
found thereby avoiding further bugs in the software in higher levels of development.

is another nomenclature given to testing done when joining or
combining components of a software, also integration testing can be done when
integrating different software. The reason for conducting integration testing comes from

that possibly happen when developers finally combine several components
of a software that they previously had tested individually but when combined together
may cause errors. Testing is done by developers and it generally has sub

22

If we think of it as a testing hierarchy, the following would be suitable to describe these levels in

is the fundamental test level where each component of the software is tested
including code, classess, objects and modules and this is done by decomposing each one
of them separately. Testing in this level is done to verify the functionality and

ts fulfillment of the components. Usually, unit testing happens in the early
stages of coding by the developers themselves, and errors are fixed as soon as they are
found thereby avoiding further bugs in the software in higher levels of development.

is another nomenclature given to testing done when joining or
combining components of a software, also integration testing can be done when
integrating different software. The reason for conducting integration testing comes from

that possibly happen when developers finally combine several components
of a software that they previously had tested individually but when combined together
may cause errors. Testing is done by developers and it generally has sub-levels of testing

23

● Component Integration Testing comes after component testing which simply
tests the interaction between different components and aims to find any interface
defects.

● System Integration Testing usually is conducted to test the behavior of the
system as a complete integration of components from both hardware and software
perspective which aims to verify the fulfillment of the requirements.

Integration testing may become more complicated based on the volume of the
components that get integrated, thus segregation of errors may inevitably become
impossible, to cope with this problem a popular approach is ‘big-bang’ integration testing
that tests all components after they are integrated at the same instant. Also, there are top-
down, bottom-up and incremental testing approaches in the context of Integration testing
that are guided by the control flow based on the architectural structure.

3. System Testing is conducted on an entire, completed system and is usually a final test on
the developer perspective which aims to verify that the resulting product meets its initial
requirements including both functional and non-functional testing such as: load testing,
performance testing, reliability, maintenance, security etc., and aims to find as many
errors as possible. It generally begins with black-box methods that address testing
functional-requirements, then white-box methods follow up to catch errors that may be
missed in black-box methods.

4. Acceptance Testing is a non-functional testing level where the software gets to be tested
by users themselves with the intention of confiding users that the system works properly
rather than finding errors [8],[9].
Along with these levels, usually the following are accounted as useful while testing a
software to maintain its usability and confide to requirements:

5. Regression Testing is done after changes are made to the software, this ensures that
although changes have been made, it does not cause any errors in the usage of the
software.

6. Alpha Testing is an imitation of an acceptance testing process where the tester usually
plays the role of the user and tries to identify any issues or bugs before the system gets to
be released.

7. Beta Testing is similar to alpha testing but in this case the system is tested in a real
environment by users before it is revealed to the clients, it may also be referred as
external acceptance test.

8. Functional Testing is the last testing done by the user or independent tester to ensure
that the system provides all the expected behavior.

24

LEVEL TECHNIQUE FOCUS TESTER Scope

UNIT White-Box Low Level, Code Developer Classes

INTEGRATION White Box,
Black Box

Low Level, High level Developer Single
Class

SYSTEM Black Box Requirements Analysis Tester Whole
System

ACCEPTANCE Black Box Requirements/Specifications End-User Whole
System

REGRESSION White Box,
Black Box

High Level, Documentation Developer,
Tester

Any

ALPHA

Black Box High Level Tester Any

BETA Black Box High Level Customer,
Tester

Whole
system

FUNCTIONAL Black Box High Level Tester Whole
System

Table. 2 Levels of testing

2.3.5. Software Testing Approaches

Aside from testing levels that mostly deal with how the testing process should be
conducted based on the software development process in a hierarchical structure of a system
which gives us a general view of what needs to be done in which development phase. To better
understand the testing done in these development phases, we need to explain which approaches
are embraced when trying to test a software product independent of its focus level.

In different sources approaches are referred as techniques or categ
process in these tests is mostly based on an execution attitude that has many types and
categories, I will refer to them as approaches that are combinations of several types of testing.

These approaches are called as Static and Dynam
not executed but rather source code is tested with respect to program analysis, error handling,
functional requirements and overall code design. However, in Dynamic testing the software
should be compiled and ran and be tested for its quality under real circumstances. Mainly inputs
are given and their outputs are tested, generally test automation is employed here.

 Fig 7. Dynamic And Static Approaches and The Corresponding Methods

As shown in the above graph, the dynamic approach is mainly concerned with
process meaning that it tests if the product meets its requirements and the static approach deals
with verification to check if the product has been built based on the sp

In this paper, black-box methods will be emphasized but for the sake of comparison I will
as well explain the main aspects of white
disadvantages.

In different sources approaches are referred as techniques or categories but because, the
process in these tests is mostly based on an execution attitude that has many types and
categories, I will refer to them as approaches that are combinations of several types of testing.

These approaches are called as Static and Dynamic, where in Static testing the program is
not executed but rather source code is tested with respect to program analysis, error handling,
functional requirements and overall code design. However, in Dynamic testing the software

and be tested for its quality under real circumstances. Mainly inputs
are given and their outputs are tested, generally test automation is employed here.

Fig 7. Dynamic And Static Approaches and The Corresponding Methods

As shown in the above graph, the dynamic approach is mainly concerned with
process meaning that it tests if the product meets its requirements and the static approach deals
with verification to check if the product has been built based on the specified requirements.

box methods will be emphasized but for the sake of comparison I will
as well explain the main aspects of white-box testing, and compare their advantages and

25

ories but because, the
process in these tests is mostly based on an execution attitude that has many types and
categories, I will refer to them as approaches that are combinations of several types of testing.

ic, where in Static testing the program is
not executed but rather source code is tested with respect to program analysis, error handling,
functional requirements and overall code design. However, in Dynamic testing the software

and be tested for its quality under real circumstances. Mainly inputs
are given and their outputs are tested, generally test automation is employed here.

Fig 7. Dynamic And Static Approaches and The Corresponding Methods

As shown in the above graph, the dynamic approach is mainly concerned with Validation
process meaning that it tests if the product meets its requirements and the static approach deals

ecified requirements.

box methods will be emphasized but for the sake of comparison I will
box testing, and compare their advantages and

Black Box Testing

Black box testing has an implicit role in the whole process of software testing because it tests the
overall functionality of the software by validating its components. It is mainly done on the basis
of requirements so that errors related to them can be traced easily. It is do
the user or a tester and inputs/outputs are checked in a finished product. The product is precepted
as a black box meaning that the tester or the user has no knowledge of the internal structure of
the product (code) and deals with
them.

 Fig.8 Black Box Testing Method

 Black box testing method usually uncovers errors that are related to
interface, performance, initializing and terminating different process
exist or are incorrect based on the requirements [12]. Black
every phase of development cycle and the participation of the tester to the project should begin
since the requirements phase. This met
Integration and Acceptance but has proven efficiency in System (if requirements are met),
Integration (if the system/components stick to use cases) and Performance (if load or
performance evaluation is requested in use case) testing best. Although there have evolved
multiple types of this method mainly the following are accepted as best ways to implement
testing in a black-box perspective of a product:

● Equivalence Partitioning
● Boundary Value Analysi
● Decision Tables
● Orthogonal Array
● Cause-Effect Graph [15]

Advantages and Disadvantages of Black Box testing

Even though the usage of the black
situation, purpose and many other circumstances that they might be used, there are still some
points where these methods may cause issues when being used. Below

an implicit role in the whole process of software testing because it tests the
overall functionality of the software by validating its components. It is mainly done on the basis
of requirements so that errors related to them can be traced easily. It is done in the perspective of
the user or a tester and inputs/outputs are checked in a finished product. The product is precepted
as a black box meaning that the tester or the user has no knowledge of the internal structure of
the product (code) and deals with how the product is visible to the user and the quality it offers to

Fig.8 Black Box Testing Method

Black box testing method usually uncovers errors that are related to
interface, performance, initializing and terminating different processes and functions that do not
exist or are incorrect based on the requirements [12]. Black-box method can be conducted in
every phase of development cycle and the participation of the tester to the project should begin
since the requirements phase. This method is used in a variety of levels including Unit, System,
Integration and Acceptance but has proven efficiency in System (if requirements are met),
Integration (if the system/components stick to use cases) and Performance (if load or

n is requested in use case) testing best. Although there have evolved
multiple types of this method mainly the following are accepted as best ways to implement

box perspective of a product:

Boundary Value Analysis

Advantages and Disadvantages of Black Box testing

Even though the usage of the black-box testing methods is broadly defined as to in which level,
situation, purpose and many other circumstances that they might be used, there are still some
points where these methods may cause issues when being used. Below are listed some of

26

an implicit role in the whole process of software testing because it tests the
overall functionality of the software by validating its components. It is mainly done on the basis

ne in the perspective of
the user or a tester and inputs/outputs are checked in a finished product. The product is precepted
as a black box meaning that the tester or the user has no knowledge of the internal structure of

how the product is visible to the user and the quality it offers to

Black box testing method usually uncovers errors that are related to
es and functions that do not

box method can be conducted in
every phase of development cycle and the participation of the tester to the project should begin

hod is used in a variety of levels including Unit, System,
Integration and Acceptance but has proven efficiency in System (if requirements are met),
Integration (if the system/components stick to use cases) and Performance (if load or

n is requested in use case) testing best. Although there have evolved
multiple types of this method mainly the following are accepted as best ways to implement

box testing methods is broadly defined as to in which level,
situation, purpose and many other circumstances that they might be used, there are still some

are listed some of

27

advantages of using black-box testing method opposing the disadvantages, thus a tester should
have in mind when deciding their testing methodology [35].

Some advantages:

o The tester is independent of the code, so there is no pre-requisite to know or
understand the underlying code (neither programming or implementation)

o Testers and developers can work independently
o Testing emphasizes in the users’ point of view, which provides a complementary

help to find the errors that may be missed from developers
o Fast and effective in finding errors
o No technical knowledge required

Some disadvantages:

o It doesn’t exactly uncover all related errors to the product, thus some deeper
errors or bugs should be subject to other testing types

o Only a given set of inputs are tested, it is impossible to test all possible input
cases

o Testing open or broad (not strictly defined) requirements or even creating test
cases for them is a hard piece of work.

o A big number of back-end features are not tested

White Box Testing

White-box testing is conducted by developers who know the internal structure and the
code of the system. In these methods, the components or entities of the system are tested for their
errors from the perspective of the developer. It is necessary for these methods to be conducted by
the developers or someone that knows the internal logic of the system because in that way every
possible branch of the code gets tested and its crucial for them to know how the system is
supposed to function and in that way, they can compare if its intentions are met. Because it deals
with the code mainly and its logical implementation, its intended to be used in Unit, Integration
and System testing, although there are several phases that it can suit like requirements, design
etc. Generally, they serve for two purposes: structural testing and coverage analysis, and reveal
errors related to syntax, data flow and different conditions. Finally, in white-box testing an
anticipated outcome is expected via a given input [2].

Advantages and disadvantages in White-box testing

Some Advantages are as listed:

28

● Unseen errors are easier to uncover
● Coding skills of developers are enhanced
● Contributes to code optimization
● Dead points of code can be eliminated
● Code errors are uncovered in earlier stages due checking the whole code

systematically

And some disadvantages:

● After integration the test methods may become inefficient
● It generally is expensive
● Test cases are volatile to the changes in the implementation
● Testing of all conditions and paths is time consuming

2.3.6. Manual vs. Automated Testing

It is a long debate whether manual or automated tests shall be used in testing process. Although
automation tests show better performance in time, cost and efficiency there are cases where
manual tests are ought to be used due the fact that tester/user involvement is higher in the whole
process of developing test cases and running them which and this involvement contributes in
complex scenarios by decreasing the risk of false negatives. The intention is to let them work
where they suit best: automated tests in less complex and tedious scenarios and manual tests in
complex scenarios.

Manual tests

When testing a software manually testers mimic random users where they use the
software step by step and see if the real users get what they should from it and if software works
properly, as it is intended to. In these tests, testers get a vision of the system and the feedback is
immediate, if there are errors, they are visible. They are not expensive since testers use their
intuition and can identify bugs. Also, manual testing is flexible and if there are small changes in
the back end the tester can perform testing without the need to change the test case. On the other
hand, human eye can be deceiving thus manual testing is prone to mistakes and since they are not
recorded, in the cases where repetitive testing is needed it becomes a tiresome process to repeat
the test cases over and over.

Automated tests

Since testing has gained a popularity in the previous years, it is used in each and every
part of software development, this means that test cases are run repeatedly during development
and deploy and it is a long-term process which requires automation to save time and cost.

29

Automated tests bring cost-effectiveness to the whole testing process by optimizing human
resources. They are written in a programming language/script and they require less or no human
involvement and these scripts are repeated until a given condition. The results are documented
and delivered to the development team which consider the need for changes based on errors
found. At the end test scripts can be run repeatedly in an infinite number depending on the
circumstances.

Even though automated and manual tests seem diverse in the way how they operate and it
amenably seems that automated tests are efficient in most ways, there are situations which show
the significance of using manual testing as a part of testing process.

Below, I depict a table which shows best usage of both these methodologies that ensure
the optimization of testing process:

Manual Test Automated Test

Exploratory Testing Regression Testing

AD-Hoc Testing Performance Testing

Usability Testing Iterative Functional Testing

Functional Testing

 Table 3. Manual and Automated test usage

We should be aware that, even though we can define usage spectrum of manual and
automated tests there is no universal and no strict method of testing a product because each
project has its own dynamics, deadlines, designs, structure and development models, thus
combining manual and automated methods results in a better testing strategy but also this
requires a highly qualified QA team that elaborates up to which point the product will be tested
manually and when it becomes insufficient the rest of the process gets automated and this
enables a high rate of testing coverage.

Selenium IDE

This thesis includes usage of Selenium IDE which is a test automation tools that saves
time and workload when working in long term projects which consequently increases
productivity. It handles main goals of test automation respectively automating ongoing
functional testing, reduce workload and save time, but when speaking of complex tests, it has
shown that manual testing is more efficient.

Explaining a little more, Selenium IDE can test whether a web site or application works
properly for given functionalities like: login, search, add to cart, edit, delete etc. It is a user-
friendly application that allows the user to record a test case with its steps on the web site or
application then can playback the steps and the user can save these cases to reuse them later in
case of need.

Selenium ID is an extension to Chrome and Firefox and as such it can easily be
downloaded.

 Fig.10 Selenium IDE

● Projects is the place where we can see and rename a project
● Tests menu locates all the test cases that are created by the user which also can be

changed to show the Test Suites
● Create Project, Open Existing Project and Save Project
● Record button is clicked prior to executing test steps which are then recorded
● Pause is used to stop recording steps and continue if necessary
● Play From Beginning is used to play a recorded test case

Fig.10 Selenium IDE

is the place where we can see and rename a project
menu locates all the test cases that are created by the user which also can be

Test Suites where corresponding test cases can be added.
Create Project, Open Existing Project and Save Project buttons are on the right edge

s clicked prior to executing test steps which are then recorded
is used to stop recording steps and continue if necessary

is used to play a recorded test case

30

menu locates all the test cases that are created by the user which also can be
where corresponding test cases can be added.

buttons are on the right edge
s clicked prior to executing test steps which are then recorded

31

● Play is used to play recorded steps at any time
● Step by step play is used to play each step of the case individually
● Playback speed can be arranged based on the needs.
● Command is the place where Selenese commands are written based on actions

performed by user, it can either be filled manually by the user or the recording catches
them. There are many commands including: open, click, type, assert, verify, check, etc.

● Target is the element which is being tested on the page
● Value is the given value to a selected target
● Log is the place where information about running tests is displayed, it displays whether a

test is successful or failing.
● Reference is the documentation of the commands used.

32

3. Test Process and Methods

Functional testing refers to what the product actually does. Generally, these are defined in
a requirement or functional specification, and testing of these specifications and functional
testing may be conducted in any test level (unit, component, etc). Testing functionality of a
product can be based on the requirements or business where test cases are derived based on the
requirements specification or business processes that most likely lead to use cases.[35].

The main method for conducting functional testing of a software is through black-box
methods that are suitable for the case and the framework is consisting of ISO 9126 quality
characteristics (mentioned in the above sections) namely Functionality characteristics consisting
of:

● Suitability.
● Accuracy.
● Interoperability.
● Security.
● Functional compliance.

This research demonstrates the process of testing a web application that is developed to
serve as a recruitment application in which companies/users create their profiles to employ
people, maintain and cooperate with their employees. On the other hand, employees can use the
system to coordinate with their employers and co-workers.

The application is developed on an agile development model which has several releases
that integrate multiple iterations where features, requests or defects are maintained and
organized. Each release contains new features and enhancements that need to be tested
continuously, most of which are functional enhancements or defect improvements.

The url of the application is https://dev.talentsmanager.ch. Basically the system works on
tasks or Todo’s which can be appointed to different employees that may include documents and
all these are conducted on a calendar basis. The application is still on development phase thus the
testing conducted is also accounted as an alpha testing and the author is accounted as an end user
that has no knowledge of the code and tests the application on the base of functional
requirements that form the basis of test scenarios and cases.

The test cases are derived from 55 requirements which are formulated based on
documentations that have been published by development team and several stakeholders of the
project on GitLab.

3.1 Modules of Application

The application is a dynamic web page, consisting of several functionalities to enable the
user maintain their employees, and it consists mainly of these modules:

● Dashboard
● Personal
● Documents
● Calendar
● Notifications
● Todos
● Settings

If we were to shortly expl
provide screenshots as follows to depict the application with its general features. Consequently,
the Dashboard is the place which is displayed in 5 divisions that gives a dynamic vision to the
user at the same time it provides a fast access to other functionalities like Todos, Contacts,
Events, Team and Activities example:

 Fig.9 Talentsmanager Dashboard view

The application is a dynamic web page, consisting of several functionalities to enable the
user maintain their employees, and it consists mainly of these modules:

If we were to shortly explain the functionalities of these modules, it would be best to
provide screenshots as follows to depict the application with its general features. Consequently,
the Dashboard is the place which is displayed in 5 divisions that gives a dynamic vision to the
user at the same time it provides a fast access to other functionalities like Todos, Contacts,
Events, Team and Activities example:

Fig.9 Talentsmanager Dashboard view

33

The application is a dynamic web page, consisting of several functionalities to enable the

ain the functionalities of these modules, it would be best to
provide screenshots as follows to depict the application with its general features. Consequently,
the Dashboard is the place which is displayed in 5 divisions that gives a dynamic vision to the
user at the same time it provides a fast access to other functionalities like Todos, Contacts,

-Following the Dashboard, Personal components’ main feature is to allow the user add a new
employee besides it displays a populated list of employees which might be searched throguh
statuses active and inactive or with details of location, division etc, eg

 Fig.10 Talenstmanager Personal module

The Documents component stores and displays documents that a user or employee might

need to provide for their duty.
uploading to from their device, attri

uploaded documents. Along with this, activities of different types like document deletion,

document creation etc. of the users are also displayed in this component

Following the Dashboard, Personal components’ main feature is to allow the user add a new
employee besides it displays a populated list of employees which might be searched throguh
statuses active and inactive or with details of location, division etc, eg.:

Fig.10 Talenstmanager Personal module

The Documents component stores and displays documents that a user or employee might

. The user can add a document by dragging and dropping or

uploading to from their device, attribute them as confidential or search through the already

Along with this, activities of different types like document deletion,

document creation etc. of the users are also displayed in this component.

34

Following the Dashboard, Personal components’ main feature is to allow the user add a new
employee besides it displays a populated list of employees which might be searched throguh

The Documents component stores and displays documents that a user or employee might

The user can add a document by dragging and dropping or

bute them as confidential or search through the already

Along with this, activities of different types like document deletion,

 Fig.11. Talentsmanager Documents module

 Calendar module is a general calendar that displays events related to the user where they
can delete or edit an event.

 Fig.12. Talentsmanager Calendar module

Fig.11. Talentsmanager Documents module

Calendar module is a general calendar that displays events related to the user where they

Fig.12. Talentsmanager Calendar module
35

Calendar module is a general calendar that displays events related to the user where they

36

3.2 Requirements

The application is designed to provide a solution for administration and organization of
employees that in a broader term refers to a big infrastructure that can be hired by several

companies to monitor their organization. In this context, the requirements of such a system can

vary from tens to hundreds, and a lot of these requirements may be crucial requirements that are
likely to appear as core features of the application or contrary to this many requirements are
likely to remain as enhancements to the application that are not a priority neither to the

development nor the stakeholders themselves.

For this thesis, the requirements were captured from documents that were published in
GitLab and they are documented in a requirements traceability matrix that serve as basis for the
developed test scenarios which in latter parts of the paper will be compared to evaluate how
much automated or manual tests are covering them.

The requirements traceability matrix (RTM) is is a document that is widely used to
generate a relation table between requirements of the stakeholder and the test cases that verify
and validate those requirements. A single requirement may demand multiple test cases that need
to be run in order to verify a feature or functionality.

The requirements are usually generated from stakeholders through several interviews,
project documentations or informal discussions which is usually known as Requirements
Elicitation that is an extensive phase of software development.

Beside verification and validation of requirements, RTM is also a practical way of
tracking requirements through the development lifecyce and through connecting it with test cases
it allows the dveleopment team not to miss any requirement or feature that has been asked for by
the customer.

The requirements of this application can be found in Appendix A.

37

3.3. Methods

This part will present several testing scenarios that are designed according to stakeholder
requirements and goals for the application in general.

The applications functionalities are tested against different scenarios and test scenarios
belong to above mentioned modules of the application.

The first step is the manual black box testing that is run in Google Chrome web browser,
and the following test cases depict several functionalities.

On the following chapter, the manual test cases are automated using Selenium IDE.

TS refers to Test Scenario and TC refers to Test Cases

3.3.1 Modules and their manual testing scenarios

1.The first module to be tested is the Login module:

TS001.User logs in to the system with correct username and password.

Expected results: The user is able to log in to the system with a correct combination of
username and password, or gets prompted when either or both of username or password is
wrong.

Explanation: The user opens the page of Talentsmanager and tries to log in with a
previously given username and password, if both are correct the user successfully logs in, if not
the user gets prompted that the user is not found or the password is incorrect.

Created test cases:

 TC.Login.001

TC.Login.002

TC.Login.003

TC.Login.004

TC.Login.005

TC.Login.006

TC.Login.007

See Appendix B.

38

2.Log out functionality:

TS002.User logs out of the system when clicking on logout button.

Expected result: The user is able to logout from the system just by clicking on the logout
button and the session is closed afterwards.

Explanation: The user finds and clicks the logout button, then opens another tab to check
if the session is closed.

Created test cases:

 TC.Logout.001

TC.Logout.002

See Appendix C.

3.Search Box in Dashboard

TS003. Using the search box In the dashboard of the application to search for a

keyword.

Expected result: After entering a keyword on the search box a list containing related

keyword expands under search box.

Explanation: User enters a keyword and checks if the search box functions properly to

show results based on searched keyword.

Created test cases:

 TC.Dashboard.001

TC.Dashboard.002

TC.Dashboard.003

TC.Dashboard.004

TC.Dashboard.005

TC.Dashboard.006

See Appendix D.

4.Notifications module in Dashboard

TS004.Checking the functionality of Notifications in the dashboard

39

Expected result: The system should display notifications and their settings should be
editable by the user based on their preferences.

Explanation: The user clicks on notifications, checks if displayed notifications are
related to events or todos and if notification settings are editable.

Created test cases:

TC.Notifications.001

TC.Notifications.002

TC.Notifications.003

TC.Notifications.004

TC.Notifications.005

TC.Notifications.006

TC.Notifications.007

TC.Notifications.008

TC.Notifications.009

TC.Notifications.010

TC.Notifications.011

TC.Notifications.012

TC.Notifications.013

TC.Notifications.014

TC.Notifications.015

TC.Notifications.016

TC.Notifications.017

TC.Notifications.018

TC.Notifications.019

TC.Notifications.020

See Appendix E.

5.Todos module in Dashboard

TS005.Create, edit and delete a todo from the menu displayed on the dashboard as
Todos.

40

Expected result: The user should be able to see their Todos as a list on dashboard, and if
anyone of those is clicked the user can see them in a separate window. There the user can add,
edit or delete a todo.

Explanation: The user scrolls in the Todos appearing in the dashboard, they can see the
todos details in a new window, if they wish they should be able to edit or delete a todo by
rightcliking on them. A new todo is possible to be created in the menu as well.

Test cases:

 TC.TodoDash.001

TC.TodoDash.002

TC.TodoDash.003

TC.TodoDash.004

TC.TodoDash.005

TC.TodoDash.006

TC.TodoDash.007

See Appendix F.

6.Todo Overview page

TS006.Testing TODO component for displaying events (Todos) related to
employees.

Expected results: The Todo Overview page should display todos and user can either
search for a todo or filter the todos based on options displayed.

Explanation: User opens Todos overview page and types keywords to see if related
results will appear, also checks if the filtering options affect the results.

Test cases:

TC.TodoOver.001

TC.TodoOver.002

TC.TodoOver.003

TC.TodoOver.004

TC.TodoOver.005

TC.TodoOver.006

TC.TodoOver.007

TC.TodoOver.008

41

TC.TodoOver.009

 See Appendix G.

7.Activities module of Dashboard

TS007.Checking the Activities component for displaying activities related to
employees.

Expected results: The activities component of dashboard should display all activities of
employees, and they can be filtered based on categories and locations.

Explanation: User scrolls dashboard page to see Activities component, filters the
displayed list of activities with different categories or location options displayed as dropdown
menus.

Test cases:

 TC.ActivitiesDash.001

TC.ActivitiesDash.002

TC.ActivitiesDash.003

TC.ActivitiesDash.004

TC.ActivitiesDash.005

TC.ActivitiesDash.006

See Appendix H.

8.Activities Overview Module

TS008: Displaying the activities details based on selected option from dropdown.

Expected results: The activities of all employees should be visible to the user based on a
selected option from dropdown menu.

Explanation: User clicks on Open Activities and it should take the user to main page of
Activities where they are displayed on a list, and the user can filter them based on a selected
option from dropdown menu.

Test cases:

TC.ActivitiesOver.001

TC.ActivitiesOver.002

TC.ActivitiesOver.003

TC.ActivitiesOver.004

42

TC.ActivitiesOver.005

 See Appendix I.

9.Personal Module

TS009: Adding a new employee in Personal module, and checking the displayed
information about employees, activities, archives.

Expected results: User should be able to add a new employee with their information, and
see their employees’ information, activities and archives.

Explanation: User clicks on Personal tab on the left sidebar, and is able to add a new
employee or search for employees, their activities or archives.

Test cases:

 TC.Personal.001

TC.Personal.002

TC.Personal.003

TC.Personal.004

TC.Personal.005

TC.Personal.006

TC.Personal.007

TC.Personal.008

TC.Personal.009

TC.Personal.010

TC.Personal.011

Tc.Personal.012

See Appendix J.

10.Documents Module

TS010.Uploading a document to the Documents module of the application.

Expected results: The user should be able to add a new document to the system by either
dragging and dropping or uploading via file browser, also should be able to search through
documents.

43

Explanation: User clicks on Documents tab on left side bar, and can search on existing
documents or add a new document by clicking on (+) button.

Test cases:

TC.Documentsl.001

TC.Documents.002

See Appendix K.

11.Calendar Module

TS011.Testing events displayed in the calendar.

Expected results: The events related to employees should be displayed in day, week and
month view based on selected year.

Explanation: User clicks on Calendar tab on left sidebar, checks if the calendar has
appropriate view modes (day, week, month) and if selected year changes events displayed on
calendar.

Test cases:

TC.Calendar.001

TC.Calendar.002

See Appendix L

12.User interface

TS012.Testing interface elements in Dashboard and User Settings.

Expected results: The dashboard page should contain 5 components, a left sidebar should
contain 4 tabs and settings is located there. The interface should comply to requested parameters.

Explanation: User checks if dashboard has required components, if there’s a left sidebar
and if it contains tabs and settings.

Test cases:

 TC.Elements.001

TC.Elements.002

Tc.Elements.003

TC.Elements.004

TC.Elements.005

44

TC.Elements.006

See Appendix M

13.Settings Module

TS013.Adding an searching: a location, divison, role or document category in Settings
page.

Expected results: User should be able to edit their administration settings by searching
for a location, division, role or document category or adding one of them.

Explanation: User clicks on Administration settings and adds a new location, division,
role or category for their employees. The user can also search for the above-mentioned elements
with any keyword.

Test cases:

TC.Settings.001

TC.Settings.002

TC.Settings.003

Tc.Settings.004

Tc.Settings.005

Tc.Settings.006

Tc.Settings.007

Tc.Settings.008

Tc.Settings.009

Tc.Settings.010

Tc.Settings.011

Tc.Settings.012

Tc.Settings.013

Tc.Settings.014

Tc.Settings.015

See Appendix N

45

3.3.2 Automated test scripts

Above mentioned test scenarios and their test cases are automated in Selenium IDE with
the same steps that are used in manual test cases. The tests are recorded as the user performs the
steps from test cases and the recordings are re-run to check the functionalities.

The main idea for using Selenium IDE is because functional testing in this application is
done in development environment which can be accounted as an alpha testing where the
application gets tested by a random user without backend knowledge, thus record and play
feature of Selenium IDE allows the user to perform simple steps (click, scroll, type a keyword
etc.) to achieve a result which consequently serve as desired or required features/functionalities
of the application.

The following are some of the automated test scripts which have been run in Selenium
IDE:

- TS001.User logs in to the system with correct username and password

46

TS007.Checking the Activities component for displaying activities related

The created test scenarios in Selenium Ide can be exported as either Javascript or Python
files and might be reused in different situations or when changes to the system are deployed,
since Selenium Ide can be used for regression testing of an application
used by the development team if necessary.

Further test scripts are available on Appendix C.

Checking the Activities component for displaying activities related to employees.

The created test scenarios in Selenium Ide can be exported as either Javascript or Python
files and might be reused in different situations or when changes to the system are deployed,
since Selenium Ide can be used for regression testing of an application these test scenarios can be
used by the development team if necessary.

Further test scripts are available on Appendix C.

47

to employees.

The created test scenarios in Selenium Ide can be exported as either Javascript or Python
files and might be reused in different situations or when changes to the system are deployed,

these test scenarios can be

48

4. Results and Conclusion

Results

The testing process for https://dev.talentsmanager.ch/ as mentioned above has been conducted in
two approaches:

● Manual
● Automated

for which, black box method has been used.

1.The manual and automated test results can be seen separately for each test scenario as PASS or
FAIL:

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS001 TC.Login.001 Pass Pass

 TC.Login.002 Pass Pass
 TC.Login.003 Pass Pass

 TC.Login.004 Pass Pass
 TC.Login.005 Pass Pass
 TC.Login.006 Pass Pass

 TC.Login.007 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing
Pass /Fail Pass/Fail

TS002 TC.Logout.001 Pass Pass

 TC.Logout.002 Fail Fail

Test Scenario Test Case Manual Testing Automated Testing

Pass/Fail Pass/Fail

TS003 TC.Dashboard.001 Pass Pass

 TC.Dashboard.002 Pass Pass

 TC.Dashboard.003 Fail Fail

 TC.Dashboard.004 Pass Pass

 TC.Dashboard.005 Fail Fail

 TC.Dashboard.006 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing

Pass/Fail Pass/Fail
TS004 TC.Notifications.001 Fail Fail

 TC.Notifications.002 Pass Pass

 TC.Notifications.003 Pass Fail

49

 TC.Notifications.004 Pass Fail

 TC.Notifications.005 Pass Fail

 TC.Notifications.006 Pass Fail

 TC.Notifications.007 Pass Fail

 TC.Notifications.008 Pass Fail

 TC.Notifications.009 Pass Fail

 TC.Notifications.010 Pass Fail

 TC.Notifications.011 Pass Fail

 TC.Notifications.012 Pass Fail

 TC.Notifications.013 Pass Fail

 TC.Notifications.014 Pass Fail

 TC.Notifications.015 Pass Fail

 TC.Notifications.016 Pass Fail

 TC.Notifications.017 Pass Fail

 TC.Notifications.018 Pass Fail

 TC.Notifications.019 Pass Fail

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS005 TC.TodoDash.001 Pass Pass

 TC.TodoDash.002 Pass Pass

 TC.TodoDash.003 Fail Fail

 TC.TodoDash.004 Fail Fail

 TC.TodoDash.005 Pass Fail
 TC.TodoDash.006 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS006 TC.TodoOver.001 Pass Pass

 TC.TodoOver.002 Pass Pass

 TC.TodoOver.003 Pass Fail

 TC.TodoOver.004 Pass Pass

 TC.TodoOver.005 Pass Pass

 TC.TodoOver.006 Pass Pass

 TC.TodoOver.007 Pass Pass

 TC.TodoOver.008 Fail Fail

 TC.TodoOver.009 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS007 TC.ActivitiesDash.001 Pass Pass

50

 TC.ActivitiesDash.002 Fail Fail

 TC.ActivitiesDash.003 Pass Fail

 TC.ActivitiesDash.004 Pass Pass

 TC.ActivitiesDash.005 Fail Fail

 TC.ActivitiesDash.006 Fail Fail

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS008 TC.ActivitiesOver.001 Pass Pass

 TC.ActivitiesOver.002 Fail Fail

 TC.ActivitiesOver.003 Pass Pass

 TC.ActivitiesOver.004 Pass Pass

 TC.ActivitiesOver.005 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS009 TC.Personal.001 Pass Pass

 TC.Personal.002 Pass Pass

 TC.Personal.003 Pass Pass

 TC.Personal.004 Pass Pass

 TC.Personal.005 Pass Pass

 TC.Personal.006 Pass Pass

 TC.Personal.007 Pass Pass

 TC.Personal.008 Fail Fail

 TC.Personal.009 Pass Pass

 TC.Personal.010 Pass Pass

 TC.Personal.011 Pass Pass

 Tc.Personal.012 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing

Pass/Fail Pass/Fail

TS010 TC.Documentsl.001 Pass Fail

 TC.Documents.002 Pass Pass

Test Scenario Test Case Manual Testing Automated Testing

Pass/Fail Pass/Fail

TS011 TC.Calendar.001 Pass Pass

 TC.Calendar.002 Pass Pass

51

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS012 TC.Elements.001 Pass Pass

 TC.Elements.002 Pass Pass

 Tc.Elements.003 Pass Pass

 TC.Elements.004 Pass Pass

 TC.Elements.005 Fail Fail

 TC.Elements.006 Fail Pass

Test Scenario Test Case Manual Testing Automated Testing
Pass/Fail Pass/Fail

TS013 TC.Settings.001 Pass Pass

 TC.Settings.002 Pass Pass

 TC.Settings.003 Pass Pass

 Tc.Settings.004 Fail Pass

 Tc.Settings.005 Pass Pass

 Tc.Settings.006 Pass Pass

 Tc.Settings.007 Pass Pass

 Tc.Settings.008 Pass Pass

 Tc.Settings.009 Pass Pass

 Tc.Settings.010 Pass Pass

 Tc.Settings.011 Pass Pass

 Tc.Settings.012 Pass Pass

 Tc.Settings.013 Pass Pass

 Tc.Settings.014 Pass Pass

 Tc.Settings.015 Pass Pass

In total, 13 Test Scenarios and 97 Test Cases have been created and run, and results are:

In manual testing:

69 test cases are recorded as Pass which means that the regarding functionality is working
properly and the process is successful.

28 test cases have Failed which means that the desired functionality is not working
properly and fails to fulfill a requirement.

In percentage, 71.13% of test cases have Passed and 28.87 % have Failed the manual
testing process.

52

In automated testing:

63 test cases were automated successfully which means that the required functionality is
working properly.

34 test cases have Failed from which 10 failed because IDE could not detect Interface
errors such as: ADD TODO label should be EDIT TODO, some of search results did not match
the query, verification alerts could not be detected. 17 of the test cases failed because the
application did not allow interaction of page with Selenium IDE.

 In percentage 64.95% of test cases have Passed and 35.05% have Failed the automated
testing process.

Requirements Coverage

The requirements for this research have been documented and shown in the Appendix A,
where 55 requirements in total have been saved.

Based on the requirements, initially manual test cases have been derived and then these
manual tests have been automated.

As for requirements coverage, it is an important metric that shows the tester whether the
test suites are compatible to the requirement or if the test case really tests the desired
requirement, because in many situations the tester can extend the test cases to excess which not
just surpasses the requirements but results in more time spent without need. Thus, requirements
coverage assures that the designed test cases comply with requirements that are put forward.

Based on the results of manual and automated tests, we can state that:

For 55 requirements 7 of requirements did not have an adequate manual test case and
could not be tested, 2 tests Failed and 46 test cases passed.

53

This chart displays the percentage of requirements that are covered from manual test
cases which are shown as Passed and Failed and the not tested part shows that 13% of the
requirements were not covered by the test cases and 3 requirements failed manual testing.

This chart displays the percentage of requirements that are covered from automated test
cases which are shown as Passed and Failed and the not tested part shows that 13% of the
requirements were not covered by the test cases and 7% of the requirements failed automated
testing.

Comparison of results:

Manual functional testing is a testing strategy where tester evaluates requirements,
creates test cases, runs them and records their results to check if they meet the requirements of
the stakeholders. In this situation several mistakes can be done because a functionality might

54

change during the time the tester tests it, a requirement might be missed from the tester, or a
small mistake on any step of test case can result in errors not being seen from the tester.

On the other hand, automation process requires similarly requirements evaluation,
creating test cases but the magic of automation happens afterwards where after carefully creating
test cases user can run them and can easily detect any mistakes if a step of test case is missing or
wrong.

The main difference between these approaches is that, manual testing is conducted on
testers lead which includes instinct and critical eye which cannot be expected from automation
tools and functional testing in some cases can include some complex steps which generally
cannot be handled by automation tools.

In general, results have shown us that, functional testing when conducted with manual
test cases, takes approximately 4 hours of work per day, for 5 days meaning 20 hours in total,
and both automation of these cases and running them takes 3 hours of work per day for 3 days in
total 9 hours.

28.87 % of manual tests have failed because of missing functionalities and 35.05% of
automated tests have failed where nearly half of the failed test cases could not be conducted
properly by automation tool because of above mentioned reasons (Results section), thus if we
consider this, we can say that error finding rate of automation testing drops in half
(approximately 17.02%).

Also, there are some errors that are missed by automation tools but discovered while
manual testing, they are as follow:

ID PROCESS Note:
TC.Logout.001 LOGOUT

The Logout button is only
visible when clicking on tab
where users' name appears!

TC.Dashboard.003 SEARCH Only displays seacrhed
items if one of the related

results is clicked
TC.Notifications.008 NOTIFICATIONS The Activate all

inApp,Activate all email
and Activate all push

notifications is not checked
but the related radiobuttons

below are checked
randomly.

TC.Notifications.009 NOTIFICATIONS The Activate all
inApp,Activate all email

and Activate all push
notifications is not checked
but the related radiobuttons

below are checked
randomly.

55

TC.TodoDash.004 TODO the page name remains add
todo,

when editing a todo, re
editing doesn’t change the

name of todo!
TC.TodoOver.005 Todos Overview

Buttons are toggled by
defautl

TC.TodoOver.006 Todos Overview
Buttons are toggled by

defautl
TC.ActivitiesDash.002 ACTVITIES

Some of results do not have
the Profile tag

TC.ActivitiesDash.005 ACTVITIES

The results don’t change
TC.ActivitiesOver.002 Activities Overview

Some of Results do not
contain Profie tag

TC.Personal.008 PERSONAL MOST OF THE
EMPLOYEES ARE NOT

DISPLAYED WHEN ALL
OPTIONS ARE

SELECTED
TC.Elements.006 SETTINGS

Settings tab in left side
remains open

Conclusion

When comparing manual and automated tests, it would be irrational to ignore the
opportunities and pros of automated testing where the user simply can interact with a web
application as if they were naturally navigating it and record these interactions within a short
time period, at the same time the documentation and tracking of the cases is easily done through
automation tools, but the problem stands that in functional testing some requirements need more
complex test cases which inevitably require human interaction to detect different errors that
might be missed from automation tools, also as seen on the above table, some of the automated
test cases for the corresponding processes have resulted as PASS but they have not been able to
discover the errors that are discovered by manual tests.

As for the Hypotheses of this research, we can state the following conclusions about them:

 H0 stating that automated test gives best results in software testing can be partially true
since automation only results in faster testing and allows user to reuse their test cases
both for the development team and the tester but yet it requires test cases being prepared
ahead and in our case, it did not fulfill the requirements being tested.

56

H1 stating that manual functional testing of a web application results in better error
finding cannot be proven true since it is a slow process when compared to automation
and the test cases are only written in informal language so it is no use for developers to
test their applications on back end, but aside these manual testing gave better error
finding results compared to automation tests.

Thus, the H3 can be proved right where we state that combining both manual and
automated tests for functional testing can give better results by: enhancing time spent in
test case running and ensuring that interface functionality errors or logic errors are
captured by human interaction.

57

References

1. Pressman, S., Roger, Maxim, Bruce R., Software Engineering A practitioner’s approach, Eighth
Edition.

2. Myers, Glenford J., 1946-The art of software testing / Glenford J. Myers, Corey Sandler, Tom
Badgett. — 3rd ed.

3. Chintakayala, Padmini ,2019, Begginers guide to Software testing

4. Strazdiņa, L., Arnicane, V., Arnicans, G., Bičevskis, J., Borzovs, J., Kuļešovs, I.,

What Software Test Approaches, Methods, and Techniques are Actually Used in Software Industry,

5. Padayachee, Indira & Kotzé, Paula & Van, A & Van der Merwe, Alta. (2010). ISO 9126 external
systems quality characteristics, sub-characteristics and domain specific criteria for evaluating e-
Learning systems.

6. M. A. Jamil, M. Arif, N. S. A. Abubakar and A. Ahmad, "Software Testing Techniques: A
Literature Review," 2016 6th International Conference on Information and Communication Technology
for The Muslim World (ICT4M), 2016, pp. 177-182, doi: 10.1109/ICT4M.2016.045.

7. Buenaflor, L., ISO 9126 Software Quality Characteristics
 https://medium.com/@leanardbuenaflor/iso-9126-software-quality-characteristics-a25a26e7d046

8. Farooq, S. Gap between academia and industry: a case of empirical evaluation of three software
testing methods. Int J Syst Assur Eng Manag 10, 1487–1504 (2019). https://doi-
org.uaccess.univie.ac.at/10.1007/s13198-019-00899-2

9. Ghuman, S.S. (2015). Software Testing Techniques.

10. Khan, Mohd. (2010). Different Forms of Software Testing Techniques for Finding Errors.
International Journal of Computer Science Issues. 7.

11. Kumari, K. (2014). Software Testing for Finding Errors. International Journal of Scientific
Research and Education

12. Saini, G., & Rai, K. (2013). An Analysis on Objectives, Importance and Types of Software
Testing. IJCSMC, Vol. 2, Issue. 9, September 2013, pg.18 – 23

13. Sethi, M. (2017). A REVIEW PAPER ON LEVELS, TYPES & TECHNIQUES IN SOFTWARE
TESTING. International Journal of Advanced Research in Computer Science, 8(7), 269-271. doi:
https://doi.org/10.26483/ijarcs.v8i7.4236

14. Sawant, A., Bari, P.H., & Chawan, P. (2012). Software Testing Techniques and Strategies.
International Journal of Engineering Research and Applications (IJERA. ISSN: 2248-9622
www.ijera.com.Vol. 2, Issue 3, May-Jun 2012, pp.980-986

15. Umar, Mubarak Albarka (2020): A Study of Software Testing: Categories, Levels, Techniques,
and Types. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.12578714.v1

16. Rosenberg, Linda H., Phd Theodore F. Hammer, Huffman, Lenore L. Requirements, Testing, and
Metrics. In 15th Annual Pacific Northwest Software Quality Conference},1998

58

17 Whalen, Michael & Rajan, Ajitha & Heimdahl, Mats & Miller, Steven. (2006). Coverage metrics
for requirements-based testing. 2006. 25-36. 10.1145/1146238.1146242.

18. Nalbant, E.- The importance of testing in software development life cycle and the implementation
of a test automation. 2020-11-08 19:32:53

19. Kuday, G. SOFTWARE TEST PROCESS IN SOFTWARE ENGINEERIN. 2015, published 2020-
02-29.

20. Iren.G, REVIEW OF SOFTWARE DEVELOPMENT AND TESTING PROCESSES. 2020--11-08

21. Hanoglu, E., A TESTABILITY ANALYSIS METHOD BASED ON INTERNAL ATTRIBUTES AND
METRICS FOR OPEN-SOURCE SOFTWARE PROJECTS,2019.

22. The Power of Black Box Testing, https://applitools.com/black-box-testing-5-tools-used-by-the-
pros/#test-auto

23. Eriksson, U., The A-to-Z Guide to the Software Testing Process https://reqtest.com/testing-
blog/the-a-to-z-guide-to-the-software-testing-process/

24. Sommerville, I. (2019). Software engineering, tenth edition. Harlow: Pearson Education.

25 Shiklo, B.,8 Software Development Models: Sliced, Diced and Organized in Charts
 https://www.scnsoft.com/blog/software-development-models

26. The Standish Group Chaos Report
 https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

27. Survey Project Management Institute (PMI) PMI’s Pulse of the Profession
 https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-
of-the-profession-2017.pdf

28. Beck K., Beedle M., Van Bennekum A., Cockburn A., Cunningham W., Fowler M, Grenning J.,
Highsmith J., Hunt A, Jeffries R., Kern J., Marick B.,. Martin R.C., Mellor S., Schwaber K., Sutherland
J., Thomas D. Manifesto for Agile Software Development https://agilemanifesto.org/

29. Choodi , Sh., S., Testing in Iterative Product Development Environment. 6th Annual International
Software Testing Conference 2006

30. Rajan A., Whalen M., Staats M., Heimdahl M.P.E. (2008) Requirements Coverage as an
Adequacy Measure for Conformance Testing. In: Liu S., Maibaum T., Araki K. (eds) Formal Methods
and Software Engineering. ICFEM 2008. Lecture Notes in Computer Science, vol 5256. Springer, Berlin,
Heidelberg. https://doi-org.uaccess.univie.ac.at/10.1007/978-3-540-88194-0_8

31. Cigniti, 37 Epic Software Failures that Mandate the Need for Adequate Software Testing
 https://www.cigniti.com/blog/37-software-failures-inadequate-software-testing/

32. Gelperin, David & Hetzel, Bill. (1988). The growth of software testing. Communications of the
ACM. 31. 687-695. 10.1145/62959.62965.

33 The National Bureau of Standards Guideline for lifecycle validation,
Verification, and testing of computer software. https://www.govinfo.gov/content/pkg/GOVPUB-C13-
886cadfdbff83e49dfdba09a89cd49cf/pdf/GOVPUB-C13 886cadfdbff83e49dfdba09a89cd49cf.pdf
34. Ammann, P., & Offutt, J. (2017). Introduction to software testing.

35 Graham, D., Black, R., Veenendaal, E.., & International Software Testing Qualifications Board.
(2020). Foundations of software testing: ISTQB certification.

Appendices

Appendix A – Traceability Matrix

Graham, D., Black, R., Veenendaal, E.., & International Software Testing Qualifications Board.
). Foundations of software testing: ISTQB certification.

Traceability Matrix

59

Graham, D., Black, R., Veenendaal, E.., & International Software Testing Qualifications Board.

60

Appendix B – Test Scenarios

Test Scenarios

61

62

63

64

65

66

67

Appendix C – Test Scripts

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

