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Abstract 

 

Semantic technologies have been extensively used for integrating stream data applications. 

However, using SWRL, which has become the de facto standard rule language in Semantic 

Web, has never been used in stream data applications. Its open world assumption and 

monotonic nature makes SWRL powerless for doing continuous inference over stream data. 

For example, using aggregate functions on a particular window of streams cannot be 

expressed in SWRL.  

Semantic Web standard query language, SPARQL, has been extensively used in stream data 

applications. A number of its extensions have been developed to enable powerful stream 

processing capabilities including data filtering and aggregation functions. One of them, C-

SPARQL, is a framework which supports continuous querying over data streams combined 

with ―static‖ knowledge bases. However, stream processing systems cannot modify the 

knowledge base. 

State of the art stream reasoning systems have achieved the desired expressivity and 

scalability level. However, as hybrid approach they suffer from translation, reasoner and side-

effects issues.  

The purpose of this thesis, therefore, is to provide a unified Semantic Web stream reasoning 

framework that further supports continuous inference over stream data. It was developed C-

SWRL, a system that uses SWRL rules in conjunction with C-SPARQL filtering and 

aggregation of RDF streams to enable closed-world and time-aware reasoning over stream 

data. Moreover, the non-monotonic behavior is supported with the use of OWLAPI 

constructs. In particular, it is shown how negation as failure (NAF) can be enabled in this 

system. C-SWRL is presented by means of examples in water quality monitoring. 
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Moreover, the contribution of this thesis also includes the development of an ontology for 

water quality management called INWS ontology. Namely, it is an SSN-based ontology to 

support water quality classification based on different regulation authorities such as Water 

Framework Directive. Furthermore, to demonstrate its usage, StreamJess was developed, 

which is an expert system which uses INWS ontology for water quality monitoring and 

investigation of potential sources of pollution.  
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Chapter I    Introduction 

Sensor measurements, social networks, health monitoring, smart cities and other massive data 

sources are continuously producing massive amount of data called stream data. Stream data 

are defined as unbounded sequences of time-varying data elements [99]. Reasoning with 

these kinds of data with Semantic Web techniques has eventually contributed in a new 

research area called Stream Reasoning (SR). The aim to derive high level knowledge from 

low level data streams is one of the challenging requirements which cannot be easily 

achieved with the classic solutions for data stream and complex event processing and with 

reasoning engines for static data [40]. The World Wide Web Consortium (W3C) RDF Stream 

Processing Community Group
1
 has set their mission to define common model for producing, 

transmitting and continuously querying RDF Streams. However, even though different works 

exist (e. g. ETALIS [14], StreamRule [34] etc.), rule-based reasoning over RDF streams still 

remains vastly unexplored. 

In this thesis is proposed a unified Semantic Web approach for rule-based reasoning over 

stream data, thus complementing state of the art query processing engine e.g. C-SPARQL 

[93] with the W3C recommended Semantic Web rule language SWRL.   

Semantic technologies have proved evidence of efficient implementations on stream data 

domains [3]. Firstly, OWL ontologies have been widely used for modeling stream data 

domains, e.g., the SSN ontology [4]. Secondly, querying these knowledge bases has been 

merely done by SPARQL extensions e.g. C-SPARQL [93], EP-SPARQL [15], etc. However, 

the windows opened over streams can determine changes in the static information sources. 

Managing the knowledge bases and reasoning with background and streaming data is merely 

done by rule systems. Although layering different rule systems over ontologies has already 

been suggested, using Semantic Web recommended rule languages, SWRL [150] and RIF 

                                                 
1
 Cf. https://www.w3.org/community/rsp/. 
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[171], over stream data has to the best of our knowledge not been considered to date. Thus, as 

described in our works [3, 148, 5], there is an inherent need for a Semantic Web unified rule 

system capable of reasoning with stream data.  

In line with this vision was developed the INWATERSENSE (hereinafter referred to as INWS) 

ontology [5] and an expert system [100] demonstrating its usage. Moreover, StreamJess [6] 

was developed to enable stream reasoning with production rules. More importantly, 

Continuous SWRL (or simply C-SWRL) [cswrl] was developed to represent a SWRL system 

for reasoning with stream data. It utilizes C-SPARQL definition of RDF streams and 

windows that further supports non-monotonic and time-aware reasoning on stream data.  

Publications from this thesis. The initial works on this thesis were published in [3] (cf. 

Section 2.3), describing Semantic Web trends on reasoning over stream data including latest 

developments on ontology, query and rule layer. The INWS ontology model is described in 

[5] (cf. Chapter 3). A Jess expert system demonstrating the INWS ontology usage is 

described in [100] (cf. Section 3.3), whereas its stream data version appeared in [6] (cf. 

Chapter 4). The main contribution of this thesis is presented in [cswrl] (cf. Chapter 5). 

Outline. The material provided in this thesis is organized as follows: Chapter 2 describe 

current trends on representing stream data with semantic technologies and their pros and 

cons. The next subsection states the hypothesis and presents the motivation that inspired the 

works on this thesis.  

Chapter 3 describes the INWS ontology, an ontology framework for modeling the domain of 

the water quality monitoring (WQM) systems, which is used as a case study throughout this 

thesis. INWS ontology consists of three ontology modules: core, regulations and pollutants. 

All these modules are integrated into a single ontology to serve as a single access point for 

the rules to enable WQM and investigation of potential sources of pollution. The model was 

validated with Jess rules described in Section 3.4.1. 

An expert system, StreamJess, capable of expressive reasoning over stream data is elaborated 

in Chapter 4. It layers Jess on top of C-SPARQL to enable time-aware, closed-world and 

non-monotonic reasoning on stream data domains. Namely, with a couple of examples in the 

WQM domain it demonstrates the usage of the INWS ontology coupled with production rules 

i.e. Jess rules. 

Chapter 5 unfolds the main contribution of the work providing an explanation of the overall 

architecture of the C-SWRL. It describes how SWRL can be enabled to run efficiently on 
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stream data domains. Moreover, it explains how the required reasoning features missing in 

SWRL are fulfilled by a stream processing system such as C-SPARQL. 

The relation of the INWS ontology and C-SWRL compared to their counterparts is explained 

in Chapter 6, while the challenges behind building them and related discussion take part on 

Chapter 7. 

Finally, Chapter 8 outlines the perspectives and concludes the thesis. 
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Chapter II    Preliminaries 

This chapter provides a general summary of the Semantic Web and Stream Reasoning. The 

definitions and formalisms of both paradigms are given in short borrowed and cited from the 

related literature. Moreover, the Semantic Web trends on reasoning over stream data are 

described and moreover the motivations inspiring the works on this thesis are highlighted. 

They set the stage for the presentation of the work which commences in the following chapter. 

Namely, the description of Semantic Web standards for data modeling, querying and 

reasoning takes place on the next section. Section 2.2 describes the notions of reasoning, 

stream data, stream reasoning, windows and continuous processing. Literature review on 

ontology models and rule-based approaches for stream data applications are presented in 

Section 2.3. The chapter concludes with hypothesis and problem statement of the study of this 

thesis. 

II. 1   Semantic Web  

The importance of the World Wide Web (WWW) and its impact on our everyday life is huge. 

At every single moment people are sharing information worldwide. They share them on 

social networks, web sites, web-based applications etc. This has led in a situation where there 

are too much data and less semantics. The inventor of WWWs, Sir Tim Berners-Lee, came 

with another brilliant idea. He proposed to represent Web content in a form that is more 

easily machine-processable and to use intelligent techniques to take advantage of these 

representations. This paradigm opened up the way for new developments on the Web and 

was formalized as a new discipline called Semantic Web. However, this does not mean to 

eliminate all current developments on the Web, instead the Semantic Web technologies are 

built to equip the human-directed information with machine-processable affinities.  
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The development of the Semantic Web has a lot of industry momentum, and governments are 

investing heavily. The U.S. government has established the DARPA Agent Markup 

Language (DAML) Project, and the Semantic Web is among the key action lines of the 

European Union‘s Sixth Framework Programme [110].  

 

Figure 1. The Semantic Web cake 

II. 1. 1   Semantic Web technologies 

This section recalls current recommended standards for building Semantic Web applications. 

For a concise illustration of the relation between the layers of Semantic Web applications will 

be consulted the popular Semantic Web cake depicted in Figure 1. 

Only definitions of the main layers will be presented below necessary for understanding the 

description of this thesis.  

RDF data. The first important thing is the data model. The W3C has set RDF (Resource 

Description Framework) as a de facto standard for building Semantic Web models. As the 

name may suggest, it describes the Web objects, called resources, and the relations between 

them. Uniform Resource Identifiers (URIs) are used to uniquely identify each resource. They 

can be URLs or any other unique identifiers.  

The main idea behind RDF is the constitution of the so-called triples (subject, predicate, 

object) between resources. For example, the statement ―Landfill sites are discharging on the 

body of the river Sitnica‖, represented as RDF triple (in three forms of representation) looks 

as depicted in Figure 2.  
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RDF Schema. RDF Schema (RDFS) makes semantic information machine accessible, in 

accordance with the Semantic Web vision. RDFS is an extension of RDF, which allows users 

to describe resources using its vocabularies. For the readers familiar with SQL databases, 

RDFS is to RDF, what is SQL schema to SQL data. RDFS defines classes and properties of 

specific application domains. 

TRIPLE  
 
(http://inwatersense.uni-pr.edu/ontologies/inws-
core.owl#Sitnica, hasSourcesOfPollution, landfill_sites) 

 

SEMANTIC NET  

 
XML-based  

 

<body:River rdf:about="http://inwatersense.uni-
pr.edu/ontologies/inws-core.owl#Sitnica"> 
<hasSourcesOfPollution rdf:resource="#landfill_sites"/> 

</body:River> 

Figure 2. A RDF triple example from the domain of WQM 

 

OWL ontologies. The expressivity of RDF and RDF Schema that was described previously 

is deliberately very limited. RDF is (roughly) limited to binary ground predicates, and RDF 

Schema is (roughly) limited to a subclass hierarchy and a property hierarchy, with domain 

and range definitions of these properties. However, the Web Ontology Working Group of 

W3C identified a number of characteristic use cases for the Semantic Web that would require 

much more expressiveness than RDF and RDF Schema offer. A number of research groups in 

both the United States and Europe had already identified the need for a more powerful 

ontology modeling language. This led to a joint initiative to define a richer language, called 

DAML+OIL (the name is a join of the names of the U.S. proposal DAML-ONT and the 

European language OIL). DAML+OIL in turn was taken as the starting point for the W3C 

Web Ontology Working Group in defining OWL, the language that is aimed to be the 

standardized and broadly accepted ontology language of the Semantic Web [110]. 

hasSourcesOfPollution 

http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#Sitnica 

#landfill_sites 
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OWL builds upon RDF and RDFS and has the same kind of syntax. For ontological 

knowledge, one may reason about: class membership, equivalence of classes, consistency and 

classification. Ontologies are defined as explicit and formal specification of a 

conceptualization [19]. Typically, an ontology consists of a finite list of terms and the 

relationships between these terms. The terms denote important concepts (classes of objects) 

of the domain. For example, in the case of WQM data model, as shown in Figure 3, the class 

of measurement sites is a sub class of the class of bodies of water; the fact that potential 

sources of pollution may discharge in a particular measurement site is captured by the 

relation hasSourcesOfPollution linking instances of MeasurementSites with 

PollutionSources ones.  

 

Figure 3. An ontology excerpt 

SPARQL queries. The default query language for RDF is SPARQL. It is a W3C standard 

query language since January 15
th

, 2008. The main principle behind SPARQL is to match 

RDF triples based on the values provided for the subject, predicate and object positions. It 

supports variables instantiation on each of these positions to output the matching graph of 

triples. The body of the query follows the SQL-like approach in the form of SELECT-

FROM-WHERE, where SELECT clause specifies the projection of the retrieved results, 

FROM specifies the source being queried and WHERE clause is used to apply constraints 

over the matched triples. An example query to return all the individuals of the 

ssn:Observation class might be like follows: 

PREFIX ssn:<http://purl.oclc.org/NET/ssnx/ssn#> 

SELECT ?x 
WHERE { 
    ?x rdf:type ssn:Observation . 
}  

The PREFIX command is used to register namespaces for omitting them on the body of the 

query. 
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SWRL rules. The recommended rule language of the Semantic Web is Semantic Web Rule 

Language (SWRL). It is a W3C member submission since May 21
st
, 2004. As an inference 

system, SWRL extends OWL axioms with Horn-like rules. The rules are composed in the 

form of implication between an antecedent (body) and consequent (head). Both rule‘s body 

and head consist of zero or more atoms. Atoms on these rules are OWL concepts: C(x) and 

P(x, y), where C is an OWL class, P is an OWL property and x, y are variables, OWL 

individuals or OWL data values. Moreover, predicates sameAs(x, y), 

differentFrom(x, y) and builtIn(r, x, ...) are added to the language to 

include the semantics of interpreting same and different objects and SWRL built-in libraries, 

respectively. For example, a SWRL rule to populate the class PHPollutedSite with 

individuals of class MeasurementSite, which sources of pollution include pH ones can 

be defined as follows: 

 MeasurementSite(?x) ∧  hasSourcesOfPollution(?x, ?y) ∧ 

potentialPollutant(?y, pH) → PHPollutedSite(?x) 

 

Namely, this rule binds the measurement sites with variable ?x and matches them with the 

sources of pollution ?y present on each particular measurement site. Furthermore, each 

potential pollutant ?y is checked whether it is equal to pH, if so the matched ?x 

measurement sites will also become individuals of class PHPollutedSite. 

Another Semantic Web rule language is the Rule Interchange Format (RIF). Since its primer 

purpose is for exchanging rules between different rule paradigms, it was decided to omit the 

study of its application on SR domains.   

II. 2   Stream Reasoning 

Reasoning is defined as the ability to generate non-trivial conclusions from premises or 

assumptions [111]. The known asserted facts are termed as explicit knowledge, while the 

inferred ones as implicit knowledge. The choice of RDF as data model, in combination with 

ontological languages (e.g., OWL), enables the implementation of algorithms that can 

―reason‖ on existing data to infer new knowledge [80]. However, this approach considers 

data change occurs in low frequency rate. In social networks, smart cities, WSNs etc. data is 
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super dynamic. On the time of writing this thesis
2
 each second are produced 7 426 tweets, 

754 photos are uploaded on Instagram, 2 365 Skype calls are made, etc. On the other side, 

sensors, logging systems, etc. are producing huge amounts. For example, it is estimated that 

312 million gigabytes of data are produced by car sensors worldwide
3
. In this situations, the 

reasoning tool need to process gigantic ―on the fly‖ data, e.g. sensor data, by combining them 

with data that changes slowly and with background domain-specific knowledge. These new 

settings have opened up new challenges known as Stream Reasoning (SR). It utilizes 

Semantic Web techniques for reasoning with stream data [99]. Stream data are defined as 

unbounded sequences of time-varying data elements [99]. In the literature SR is defined as 

“logical reasoning in real time on gigantic and inevitably noisy data streams in order to 

support the decision process of extremely large numbers of concurrent users” [29]. 

In fact, SR is a combination of Data Stream Management Systems (DSMSs), which have been 

developed by the database community and Complex Event Processing (CEP) systems, which 

have been developed by the community working on event based systems [80]. Namely, SR 

utilizes the DSMS‘s notion of windows and continuous processing and CEP‘s representation 

of events (data streams) with timestamp. SR can further effectively handle background 

knowledge and perform reasoning. 

The following statements define the notions of windows and continuous processing as 

described in [80]: 

Window. Traditional reasoning problems are based on the idea that all the information 

available should be taken into account when solving the problem. In SR, this principle is 

eliminated and the reasoning is restricted to a certain window of concern, which consists of a 

subset of statement recently observed on the stream while previous information is ignored. 

This is necessary for different reasons. First of all, ignoring older statements allow us to save 

computing resources in terms of memory and processing time to react to important events in 

real time. Further, in many real-time applications there is a silent assumption that older 

information becomes irrelevant at some point. 

Continuous Processing. Traditional reasoning approaches are based on the idea that the 

reasoning process has a well-defined beginning (when a request is posed to the reasoner) and 

end (when the result is delivered by the system). In SR, one will move from this traditional 

model to a continuous processing model, where requests in terms of reasoning goals are 

                                                 
2
 Metrics taken from http://www.internetlivestats.com/one-second/, on 30.11.2016 

3
 Metrics taken from http://www.ibmbigdatahub.com/blog/big-data-wheels, on 30.11.2016 
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registered at the reasoner and are continuously evaluated against a knowledge base that is 

constantly changing. 

II. 3   Semantic Web trends on reasoning over stream data 

Semantic Web applications are growing day to day. Meanwhile Semantic Web standards are 

also maturing. Sensor rapid development and deployment in different disciplines including 

weather forecasting, water quality management, civic planning for traffic management etc. 

requires efficient machine communication. Many organizations and institutions have taken 

initiatives to take advantage from the synthesis of both ―worlds‖ to provide semantics on 

different application domains. In 2008, Kno.e.sis initiated a project for building Semantic 

Sensor Web assembling sensor metadata from all over the world. The initiative is aligned-

well with standardization efforts of W3C and Open Geospatial Consortium (OGC), in 

particular with Semantic Web and Semantic Web Enablement (SWE) activities, respectively. 

In fact, Semantic Sensor Web represents a synergy of both initiatives by semantic annotating 

of simple sensor data i.e. time, spatial and thematic data. In line with Semantic Sensor Web 

the W3C Semantic Sensor Network Incubator group (the SSN-XG) recently produced an 

OWL 2 [11] ontology named SSN [4], which enhances OGC SWE simple spatial and 

temporal concepts with semantic annotation for analyzing and Linked Data publishing. The 

SSN ontology models sensor data in four main perspectives: sensor, observation, system and 

feature and property perspectives.  

Sensor data are an example of stream data which are rapidly changing data. These huge 

amounts of data need to be quickly consumed and reasoned over. For example, if a particular 

water quality parameter drops from its allowed threshold then this information needs to be 

consumed quickly and an appropriate decision should follow. Sensors continually produce 

water quality parameter values. Historical and real-time data produced by sensors require a 

flexible knowledge management system. An area which deals with continues execution of 

queries over stream data is Data Stream Management Systems (DSMS). As indicated in [22] 

it lacks the ability to reason about complex tasks and lacks a protocol for wide publication. 

The Semantic Web fulfills these gaps but caching all the knowledge for rapidly changing 

information is inappropriate. Similar to DSMS is Complex Event Processing (CEP) which 

provides on-the-fly analysis of event streams, but cannot perform reasoning tasks [15]. 

Following the pros and cons of DSMS and CEP a new research area has been investigated by 
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the community, namely Stream Reasoning [22]. Stream Reasoning integrates data streams, 

the Semantic Web and reasoning techniques into a unique platform. Unlike in a traditional 

reasoning environment, where all the information is taken into account, in stream reasoning 

there are two concepts which indicate the distinguished approach. The window concept 

restricts the reasoning to a certain subset of statements recently observed on the stream while 

previous information is ignored, furthermore continuous processing means continuous 

evaluation of streams against the knowledge base which is constantly changing. 

In general, querying RDF triples of stream data has been leveraged with different SPARQL 

extensions like: Streaming SPARQL [24], Continuous SPARQL (C-SPARQL) [23] and 

Time-Annotated SPARQL [25].  

This thesis is mainly focused on the Semantic Web rule layer. State-of-the-art rule-based 

systems for dealing with sensor data reasoning are mainly: 

 Hybrid systems e.g. CEP with Semantic Web in [14] and [15], production rules with 

Semantic Web in [13] and [27].  

 Pure Semantic Web rule systems as given in [37], [109] and [21], but which do not 

deal with the streaming nature of sensor data. 

The following subsections describe state-of-the-art ontology, query and rule systems for 

reasoning over stream data e.g., sensor data. 

II. 3. 1   Ontologies and queries 

Ontologies are defined as formal specification of a shared conceptualization [19]. Because of 

its knowledge reuse and sharing, the ontological knowledge model has been widely leveraged 

for representing WSNs. One of the first WSNs which has benefited from including the 

ontological model into its knowledge base is OntoWEDDS [9], a decision-support system for 

wastewater management, which extends its previous version‘s case-based and rule-based 

reasoning with WaWO [10] ontology. The evaluation results have yielded an improvement of 

70-100% successful diagnosis and no impasse situations including WaWO reasoning, against 

60-70% and 10 out of 57 impasse situations without using it.  

Interoperability between sensors and sensing systems was enabled with the development of 

the SSN ontology. Its foundation is based on DOLCE-UltraLight
4
 (DUL) ontology. To model 

                                                 
4
 http://www.loa-cnr.it/ontologies/DUL.owl  
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a knowledge base of sensor networks one would include SSN interested features extending it 

with units, location, feature and time ontologies [4]. Additional classes and properties can be 

defined and added to model specific domain knowledge. 

There are also initiatives dealing with sensor streaming data on query level. Shahriar et al. 

(2011) proposes smart query system considering both streaming data and historical data from 

marine sensor networks. ES3N [18] and C-SPARQL [23] are also dealing with sensor stream 

data. C-SPARQL is an extension of SPARQL for supporting stream data querying. Query 

processing is an important issue on the Semantic Sensor Web [26], but it is out of the scope 

of this thesis. Instead, the focus is on the rule layer reasoning.      

II. 3. 2   Rules 

As claimed in the previous section almost every sensor network knowledge base is modeled 

through OWL ontologies. The Semantic Sensor Web foundation has enabled semantic 

enrichment of simple sensor data through these ontologies. However, inferring new and 

implicit knowledge from known facts represented in ontological terms is enabled through a 

powerful mechanism known as rule-based reasoning. In general, the limited expressivity of 

SWRL [26], which currently has the status of W3C submission, has forced the community to 

consider hybrid systems while keeping the knowledge base modeled in the form of 

ontologies. Specifically, for the domain of sensor data an obstacle appears from the 

continuous flow of data. These data need to be consumed quickly and efficiently infer new 

knowledge by combining them with the background knowledge. Because of this nature when 

trying to infer logical consequences from sensor data different rule systems are considered by 

the community. In the remaining of this section they will be described briefly. 

Association Rules Mining 

Ding et al. (2011) have proposed a framework for association rule mining and scoping in 

spatial datasets [8]. For example, they have used an association rule to infer dangerous 

arsenic levels with 100% confidence.  

As envisioned by Bhatnaghar and Kochhar, association rules mining performing on stream 

data are increasingly in need. They are employed in the estimation of missing data streams of 

data generated by sensors and frequency estimation of internet packet streams [7].  
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Production Rules  

Sottara et al. (2012) models a hybrid Environmental Decision Support System (EDSS) for 

Waste-Water Treatment Plants (WWTP). They argue that the WWTP domain should be 

modeled through ontologies, for modeling sensor data, in pair with decision-making rules, for 

processing incoming sensor data and recommending actions to be taken. As an example of 

production rule they infer invalid NO3 measurement values. 

Another production rules implemented system has been designed by Chau (2007) in the 

domain of water quality modeling. Namely, the system simulates human expertise during the 

problem solving of coastal hydraulic and transport processes. Both forward-chaining and 

backward-chaining are used collectively during the inference process [13].  

Event Processing 

Another hybrid approach while dealing with sensor data reasoning is using OWL ontologies 

and CEP which is a similar area as Stream Reasoning. Taylor and Leidinger (2011) translate 

the whole OWL ontology, which models the event definition and optimization and extends an 

early version of SSN ontology, into CEP statements for processing in an event processing 

engine. Unlike this approach, Anicic et al. (2011) have taken the advantage of both ―worlds‖ 

synthesizing the ability of CEP systems to process real-time complex events within multiple 

streams of atomic occurrences and the Semantic Web i.e. ontological ability to effectively 

handle background knowledge and perform reasoning. The later approach has resulted with a 

new rule-based language ETALIS [14] and EP-SPARQL [15], a query language extending 

the SPARQL language with event processing and stream reasoning capabilities. Both are 

implemented in Prolog, which has its foundations in Logic Programming (LP).  

Semantic Web rules 

As previously mentioned on Section 2.1.1, the recommended rule system for Semantic Web 

applications is SWRL. However, since 2005 the W3C has formed the Rule Interchange 

Format (RIF) Working Group for building a standard for exchanging rules among rule 

systems. As a result, the initiative has offered to the community a family of languages with 

well-founded syntax and semantics. Namely, for the logic-based rule systems, i.e. first-order 

and LP, the group has defined Basic Logic Dialect (RIF-BLD) and a subset the RIF Core 

Dialect. As for action rules system, i.e. production rules and reactive rules, the group has 

defined Production Rule Dialect (RIF-PRD). An extensibility framework, Framework for 
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Logic Dialects (RIF-FLD), has been also defined motivated by the diversity of the logical 

theories underlying the different logic-based rule systems.  

RIF offers a unique standard for rule exchange between different rule systems and was not 

intended to bring a one-fits-all rule language. On the other side, SWRL‘s tight coupling with 

OWL provides no translation and reasoner issues. Because RIF is an exchange rule language 

and using SWRL with OWL has distinct advantages, studying SWRL applications over 

stream data domains was set as the main subject of this thesis.   

Dealing with sensor data, a pure Semantic Web approach has been implemented by Keßler et 

al. (2009). They have utilized the SWRL‘s ability to express free variables and the use of its 

built-ins for modeling mathematical functions which has fulfilled the OWL‘s lack of 

mathematical processing capabilities. The approach is tested for geographical information 

retrieval (GIR) task for recommending personalized surf spots based on user location and 

preferences. A similar approach is taken by Wei and Barnaghi (2009) who demonstrate how 

rule-based reasoning can be performed over sensor observation and measurement data within 

the terms of Semantic Sensor Web. They emphasize the ability of rules not just to infer 

accurate but also approximate knowledge. 

Henson et al. (2009) have used Jena Semantic Web Framework [12] as an engine for 

reasoning with rules implemented for Semantic Sensor Web on weather domain. Using Jena 

rules they infer new knowledge about sensor observation data and link the newly generated 

relations with original observation time and location data.  

II. 4   Hypothesis and problem statement 

The main hypothesis of this thesis is to prove that the Semantic Web rule layer technologies 

are capable for reasoning over stream data.  

Layering SWRL rules over OWL ontologies is a recommended approach to be considered 

while building Semantic Web applications. SWRL supports declarative programming. Using 

a formal, declarative rules language that operates over a formal and declarative model, such 

as OWL, has distinct advantages. First of all SWRL rules are not bound to a particular 

execution algorithm when reasoning with a backward-chaining engine [64]. Unlike in 

production systems the rule expert should not be aware of any side-effects. No side-effects 

means no need to prioritize rules or have knowledge of the execution algorithm, simplifying 

rule design and maintenance [64]. Secondly, no translation or mapping system is required 
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between OWL DL model and SWRL rules. SWRL works directly with OWL classes and 

properties.  

On the other side, using SWRL, which has become the de facto standard rule language in 

Semantic Web, has never been used in stream data applications. Its open world assumption 

and monotonic nature makes SWRL powerless for doing continuous inference over stream 

data. For example, using aggregate functions on a particular window of streams cannot be 

expressed in SWRL. A SR system should support reasoning over both streaming information 

and background data [153]. Moreover, some specific requirements about this property 

already mentioned in state of the art systems e. g. StreamRule [34], should also be 

considered. Namely, SR rule systems need to support a conjunction of reasoning features 

like: closed-world, non-monotonic, incremental and time-aware reasoning. The following 

subsections discuss these features in more detail. 

II. 4. 1   Closed-world and non-monotonic reasoning 

OWL and SWRL‘s open world assumption (OWA) and monotonic reasoning do not offer the 

desired expressivity level required in Stream Reasoning application domains. For example, 

modifying the river pollution status is not allowed through SWRL rules. Following the 

SWRL‘s monotonic nature a measurement site instance firstly asserted as ―clean‖ cannot be 

later modified to ―polluted‖.  

Non-monotonic operators, aggregates and negation, are common requirements for processing 

data streams [80]. For example, aggregate operations are present in almost every rule for 

classifying water bodies into corresponding statuses [83] e.g. finding arsenic observations‘ 

average value. OWA‘s approach means one cannot ―close‖ the world to calculate an average 

value. The SWRL‘s query language SQWRL [55] allows this through the use of 

sqwrl:average [148]. However, that approach is not supported, since using SQWRL 

constructs in SWRL rules for asserting new knowledge is not allowed [41].  

Additionally, a number of example rules need to infer new knowledge in absence of a fact or 

incomplete knowledge, the concept known as NAF. For example, the rule ―assign 

‗undetermined status‘ to those remaining bodies of water where the agency is not, by that 

date, in a position to assign a reliable interim classification due to a lack of data or other 

reason‖ [83] cannot be expressed in SWRL. 
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II. 4. 2   Incremental reasoning 

Pre-computing and storing of implicit ontology entailments is a process known as 

materialization. Every time a change occurs, a new materialization need to be computed, 

which in Semantic Web is known as incremental maintenance of materialization [71]. In SR 

applications, change to the facts occurs ―regularly‖. A technique for computing ontological 

entailments on SR is presented in [94]. It uses LP, respectively Datalog rules to compute 

incremental materialization for window-based changes of ontological entailments. This 

approach is concerned with computing complete and correct materialization enforced by 

changes to facts, i.e., facts are added or removed from the knowledge base.  

According to [71], changes to the ontology will typically require changes in the rules. 

Authors of [71] describe a technique of this type of incremental materialization. The 

frequency of changes to the ontology in SR applications does not differ from the traditional 

Semantic Web ones. Therefore, the techniques developed for this type of incremental 

materialization intended for ―static‖ knowledge bases would also be suitable for stream data 

knowledge bases.   

II. 4. 3   Time-aware reasoning 

SR systems should include time-annotated data i.e. the time model, and like Complex Event 

Processing (CEP) should offer explicit operators for capturing temporal patterns over 

streaming information [80]. INWS ontology implements the time model through OWL Time 

ontology [86]. Supporting temporal operators (serial, sequence, etc.) means the system can 

express the following example rule: Enhanced phosphorus levels in surface waters (that 

contain adequate nitrogen) can stimulate excessive algal growth [79]. If before excessive 

algal growth, enhanced phosphorus level has been observed then more probably the change 

of phosphorus levels has caused the algal growth. Thus, a sequence of these events needs to 

be tracked to detect the occurrence of this complex event.  

Moreover, in order to enable reasoning in terms of time and quantity intervals of continuous 

and possibly infinite streams, the SR notion of windows needs to be adapted for rules [34]. In 

traditional settings, rules operate over all asserted facts in the ontology. This is not practical 

with stream data as data flow is massive and rules may not always consider all RDF streams. 

Thus, the concept of continuous rules is defined as follows: 
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Definition 1. Rules that are evaluated against a particular set of RDF streams selected by a 

time or tuple window are called continuous rules. 

Rather than evaluating rules against all static and on-the-fly RDF streams as in traditional 

Semantic Web rule systems, continuous rules will run against a time or quantity constrained 

window. For example, a continuous rule to assert which sensors provided observation 

measurements that are above allowed average threshold the last 3 minutes, sliding the 

window every minute, will be easily expressible with the help of the time-based window. 
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Chapter III    The INWS ontology 

The purpose of this chapter is to describe the model of the WQM domain, which is used to 

validate our developed SR systems described in the following chapters. Namely, both Jess 

[72] and SWRL rules will be used to perform rule-based reasoning over the proposed model 

on this chapter on StreamJess and C-SWRL, respectively. StreamJess is a production rule 

system reasoning with stream data, while C-SWRL is a unique Semantic Web system for 

reasoning over stream data.  

The chapter resumes with introductory notes followed by ontology requirements 

specifications on Section 3.2. The model design comes in Section 3.3 by describing its 

modules and two case studies for its usability testing. Finally, an expert system was 

developed to validate the approach. 

III. 1   Introduction  

The old-fashioned approach of monitoring water quality by collecting water samples 

manually and transporting them to a laboratory for analyses is expensive, time-consuming, 

prone to miss fluctuations of pollutant concentrations such as periodic release of toxins, may 

be limited by weather conditions, and does not allow for continuous data collection [32, 56]. 

On the other side, the technological improvements on the sensor and network capabilities for 

long range data distribution and storage provide a capable platform to utilize low cost, high 

performance and real-time monitoring Wireless Sensor Networks (WSN) for WQM. 

Sensor data processing encapsulates processing historical data stored on permanent 

databases, as well as real-time stream data. Thus, a flexible knowledge management system is 

required to represent the water domain knowledge. The research community has integrated 

different representational schemes. Modern approaches are mainly ontology-based [4, 35, 42, 
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47, 49, 50]. The ontological capability of knowledge reuse and sharing is the main reason 

why the ontologies are best suited for modeling water quality monitoring domains. 

The current state-of-the-art WSNs are employing diverse Semantic Web technologies to not 

just automate real-time monitoring of water health, but also enrich it with semantics. 

Different intelligent real-time WQM systems are established and currently in place, be it 

centrally managed (e.g. [35]) or distributed on sensor nodes (e.g. [50]). Query answering has 

been leveraged in [35, 51] over water domain ontologies, while in [37, 38, 6] ontologies in 

pair with rules are used for efficient WSN. Yet in terms of support for WQM of semantic 

technologies, according to [45], there is to date no WSN for WQM able to address all 

requirements on water quality standards set up by the Water Framework Directive (WFD) 

[46] which represents one of the main environmental challenges in EU water policy [60]. 

The recent emergence of Semantic Sensor Web (SSW) has enabled the interoperability of 

heterogeneous WSNs. The SSN ontology [4], an OWL2 [55] ontology, offers a unique 

knowledge management base for WSNs. It is used as a foundation for development of the 

INWS ontology, an ontology for WQM. 

III. 2   Requirements Specification 

Firstly, an ontology will be build to model a WSN for WQM system. In traditional settings, 

WSN architecture for WQM is composed of spatially distributed (1) sensor nodes (also called 

motes) for capturing water quality values through one or more sensor probes or automatic 

samplers, (2) gateway nodes (also called sink nodes), usually one per site, for data gathering 

and transferring to a (3) remote monitoring center which retrieves data, performs some 

validation rules, stores them in a database, and eventually raises an alarm event if any 

parameter value is out of its threshold or any other alarming event occurs. 

Secondly, the ontology should model the observations made by sensing devices, e.g., by 

sensor probes or automatic samplers. Observation data must be recorded such as: location 

(latitude and longitude of the sensor node), time (the sampling and entry system time), and 

the water quality element (e.g., pH, temperature etc.). Additionally, the ontology needs to 

model devices. In particular, the ontology shall model data on where the devices are deployed 

(i.e., in which sensor nodes), what RFID they hold, and the type of devices. 
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Thirdly, the system should support classification of sensor observations based on different 

regulation authorities. It remains per future work to classify the observation with four 

regulation authorities: the WFD, UNECE standards [57] (statistical classification of surface 

freshwater quality for the maintenance of aquatic life), etc. 

Finally, the ontology should model pollution sources. Pollutant is any facility or entity 

discharging to the water body. 

A typical scenario for WQM in a WSN platform is as below:  

Scenario 1. Water quality sensor probes are deployed in different measurement sites of a 

river. A sensor probe emits water quality values. One may want to (1) classify the water body 

into the appropriate status according to WFD regulations and (2) identify the possible polluter 

if the values are below the allowed standard. 

III. 3   The Ontology Model 

This section describes the INWS ontology, which will fulfill the requirements specified in the 

previous section. According to [35], three types of water quality monitoring knowledge need 

to be modeled: observational data items (e.g., the amount of ammonia in water) collected by 

sensing devices, regulations (e.g., safe drinking water acts) published by authorities, and 

water domain knowledge maintained by scientists (e.g., water-relevant contaminants, bodies 

of water, etc.). This model will be extended to capture the knowledge of sources of pollution. 

Namely, it consists of four ontology modules:  

 The core ontology, consisting of classes and relationships for deploying real-time 

observational water quality data coming from data sources i.e. sensors and lab 

measurements 

 The regulations ontology, a module which deals with permitted water parameter 

thresholds regulated by different authorities 

 The pollutants ontology, a module representing pollutants entities and their attributes 

 Water expert rules, a module representing if-then water expert rules 

In order to reason with ontology modules in general, or to express Scenario 1 in particular, all 

of these modules will be integrated into a single ontology. As depicted in Figure 4, sensor 

observation data are consumed in the core ontology. Water expert rules will classify water 

bodies to appropriate status following the regulations ontology model and core ontology 
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observation data. Additionally, expert rules based on polluting semantics modeled in the 

pollutants ontology identify the pollution causes.  

 

Figure 4. Ontology framework modules 

III. 3. 1   The Core Ontology 

Following the ontology design pattern used in [35], the core ontology will represent 

observational water quality data together with the corresponding descriptive metadata, 

including the type and unit of the data item as well as the provenance metadata such as the 

locations of sensor nodes, the time when the data item was observed and optionally the test 

methods and devices used to generate the observation. The SSN ontology has recently 

emerged as main upper ontology for modeling WSN knowledge bases. It can describe sensors 

in terms of capabilities, measurement processes, observations and deployments. Thus, this 

ontology is best suited to be used for our core ontology. It will eventually be extended with 

additional classes and relationships as needed by the system requirements. For example, for 

representing time related features OWL Time5 ontology was used, while asserting geo 

location attributes longitude and latitude was realized through the basic geo location 

vocabulary6. The complete list of ontology namespaces used by the ontology modules is 

described in Table 1.  

Because SWRL [27] rules are going to be employed in our framework, Protégé 3.5 was used 

as the main ontology development environment. Version 3 was chosen over 4 because of 

version 3‘s SWRL built-ins support. But, the SSN ontology is an OWL2 ontology which 

                                                 
5
 http://www.w3.org/TR/owl-time/ 

6
 http://www.w3.org/2003/01/geo/ 
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cannot be directly imported in version 3. Hence, the desired SSN features were imported 

extending them with other ontologies.     

Table 1. INWS ontology namespaces 

Prefix Namespace Description 

 http:// inwatersense.uni-pr.edu/ontologies/inws-

core.owl# 

INWS core ontology 

ssn http://purl.oclc.org/NET/ssnx/ssn# The SSN ontology 

body http://sweet.jpl.nasa.gov/2.1/realmHydroBody.owl

# 

Describes water bodies like 

river, basin etc. 

chem http://sweet.jpl.nasa.gov/2.1/matr.owl# Chemical substances 

ontology 

elem http://sweet.jpl.nasa.gov/2.1/matrElement.owl# Chemical elements ontology 

dul http://www.loa-cnr.it/ontologies/DUL.owl# Descriptive Ontology for 

Linguistic and Cognitive 

Engineering 

event http://www.csiro.au/EventOntology# CSIRO event ontology 

geo http://www.w3.org/2003/01/geo/wgs84_pos# Geographical location 

ontology 

qu http://www.purl.oclc.org/NET/ssnx/qu/qu# Library for Quantity Kinds 

and Units 

qurec http://www.purl.oclc.org/NET/ssnx/qu/qu-rec20# Ontology for Quantity Kinds 

and Units: units and 

quantities definitions 

time http://www.w3.org/2006/time# OWL Time Ontology 

twcc http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl# TWC-SWQP core ontology 

twcp http://escience.rpi.edu/ontology/semanteco/2/0/poll

ution.owl# 

TWC-SWQP pollution 

ontology 

 

In Table 2, a summary of the concept additions following the imported SSN features is 

presented, whereas in Table 3 are listed the added properties. For brevity, OP is used as for 

“object property” notation and DP for “datatype property”. For example, 

CentralMonitoringNode is modeled as both geo:Point and ssn:Platform, 

since it is an entity to which gateway nodes can be attached and it has geo location attributes. 
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A property hasDevice was added to indicate anything that is related with a particular 

device e.g. a sensor node consisting of a set of devices. 

Table 2. Ontology class specifications of INWS core ontology 

Class Description and Axioms 

event:Alert The class of all alerts. Has subclass event:EmailAlert 

and event:SMSAlert. 

DeviceType The class of device types which include: sensors, auto 

samplers, RFIDs etc. 

AutoSampler The class of auto samplers. Subclass of ssn:Device. 

WaterFeature Subclass of ssn:FeatureOfInterest.  

ssn:hasProperty some WaterQuality 

twcc:WaterMeasurement  Represents measurements as water feature. Subclass of 

WaterFeature. 

time:Instant The class of time individuals.  

hasObservationTime some xsd:datetime 

time:Interval The class of time intervals.  

dul:hasIntervalDate some xsd:datetime 

body:Basin Each basin passes through only one municipality. Each basin 

involves one or more rivers.  

hasAnnualFlowing only xsd:float 

hasFlowingDirection some string  

hasFlowingQuantity some float 

hasMunicipality some Municipality. 

Municipality  In a community passes only one basin and some rivers. 

hasCatchment only body:Basin 

hasCatchment exactly 1  

hasRiver some body:River.  

body:River The class of all rivers.  

hasBasin some body:Basin 

CentralMonitoringNode Subclass of geo:Point and ssn:Platform. 

GatewayNode Subclass of geo:Point and ssn:Platform. 

hasCentralMonitoringNode some 

CentralMonitoringNode  

hasMeasurementSite only 

twcc:MeasurementSite  
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hasSensingNode only SensingNode 

SensingNode  Subclass of geo:Point and ssn:Platform. 

dul:hasLocation only SensingNodeLocation 

hasDevice some ssn:Device  

hasDevice min 1 ssn:Sensor  

hasDevice max 1 AutoSampler  

hasRFID min 1. 

SensingNodeLocation Subclass of twcc:MeasurementSite. 

RiversWaterQuality Subclass of WaterQuality. Super class of categories of 

quality elements: Biological, Hydromorphological 

and Physico-chemical. 

 

Regarding the SSN features the following modifications/extensions were applied in order to 

fulfill the needs for the WQM domain: 

 In ssn:Sensor class were added subclasses based on the water quality element 

measured by the sensor. For example, DissolvedOxygenSensor will hold 

sensor devices measuring dissolved oxygen. A sensor measuring more than one 

element can be instance of more than one ssn:Sensor subclasses. 

 In the ssn:Observation class to describe the observation location the following 

two axioms observationResultLocation only geo:Point  and 

observationResultLocation min 0 were added. 

 In the class ssn:Platform the following axiom has been added 

dul:attachedSystem owl:hasValue InWaterSense indicating that all 

ssn:Platform instances will be attached to our system instance named 

InWaterSense. 

 A ssn:FeatureOfInterest subclass WaterFeature was added, having a 

subclass twcc:WaterMeasurement, which in turn will eventually hold instance 

RiversWaterMeasurement for our first case study and 

DrinkingWaterMeasurement for the second one. 

Table 3. Ontology properties specifications of INWS ontology 

Property Description  and Axioms  Type 

hasDevice Anything that has as its range ssn:Device. OP 



The INWS ontology 

 

33 

 

hasMeasurementSite Anything that has as its range 

twcc:MeasurementSite. Inverse property of 

isMeasurementSiteOf. 

OP 

isMeasurementSiteOf Anything that has as its domain 

MeasurementSite 

 

isDeviceType Is used to represent device types. Domain: Device. 

Range: DeviceType. 

OP 

observationResultLocation Domain: ssn:Observation. Range: 

geo:Point. 

OP 

twcc:hasMeasurement Is sub property of ssn:hasProperty. Has sub 

properties: 

ssn:hasMeasurementCapability and 

ssn:hasMeasurementProperty 

OP 

hasObservationStartTime Used for describing start time of intervals for 

observations. Range: xsd:datetime 

DP 

hasObservationEndTime Used for describing end time of intervals for 

observations. Range: xsd:datetime 

DP 

hasObservationTime Used for describing an instant time of observations. 

Range: xsd:datetime 

DP 

geo:lat and geo:long For expressing geo location parameters.  DP 

III. 3. 2   Regulations Ontology 

According to [35], regulations concerning water quality have not been modeled as part of any 

existing ontology so far. Their attempt has resulted with a basic regulations ontology 

following different authoritative water quality regulations. Based on our system requirements 

the regulation ontologies will be modeled following the WFD regulations [46]. The system is 

open to include other regulation authorities. 

A class Standard holds all the regulations authorities. In the next subsection the WFD 

regulations ontology will be described, while the others are suggested as future works. 
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The WFD regulations ontology 

The WFD regulations classify water quality parameters into three broad categories: 

biological, hydromorphological and physico-chemical [46]. This categorization is illustrated 

in ontological class-hierarchy representation in Figure 5.  

In WFD, instead of classifying water bodies as polluted or clean as was used in [35], water 

bodies are classified through five statuses and corresponding color: high/blue, good/green, 

moderate/yellow, poor/orange and bad/red. In WFD a general rule, called one-out-all-out, 

applies: The quality element with the lowest (worst) status for a water body determines the 

overall ecological status [46]. 

 

Figure 5. WFD categorization of water quality elements in Protégé class/hierarchy terms 

A class named WFDSurfaceWaterStatus was used to capture the status hierarchy. The 

semantics of status/color pairs are captured through owl:equivalentClass. To express 

the WFD ecological status provided for different quality category a class 

EcologicalStatus was created. Since the latest class is about WFD regulations there is 

an owl:Restriction restricting the hasStandard property to have values only from 

WFD class. Class twcc:WaterMeasurement was reused as a super class of all water 

quality statuses e.g. HighAmmoniaMeasurement.  
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In [35] regulation status is expressed through OWL property restrictions. Based on SSN 

ontology design pattern it was impossible to do this in ontology level. This is a consequence 

of involvement of more individuals representing a single sensor data stream. SWRL‘s support 

of free variables is a suitable solution for expressing this rationale. For example, the 

following WFD rule ―If total ammonia is less than 0.04 (mean), than river belongs to the 

high status of nutrient conditions‖ assuming that observations are queried after 2013-02-13 

on 09:11, can be expressed through the following SQWRL query: 

ssn:Observation(?x) ∧ ssn:observedProperty(?x, Ammonia) ∧ 

ssn:observationResultTime(?x, ?y) ∧ hasObservationTime(?y, 

?z) ∧ temporal:after(?z, "2013-02-13T09:11:00") ∧ 

ssn:observationResult(?x, ?r) ∧ ssn:hasValue(?r, ?v) ∧ 

dul:hasDataValue(?v, ?val) ∧ sqwrl:makeSet(?sv, ?val) ∧ 

sqwrl:avg(?avg, ?sv) ∧ swrlb:greaterThan(?avg, 0.04) → 

HighAmmoniaMeasurement(?o) 

III. 3. 3   Pollutants ontology 

The pollutants ontology will model facilities and other entities discharging wastes in water 

bodies. The semantics modeled in this ontology in cooperation with other ontology modules 

will help to identify the possible cause of the pollution. 

The INWS pollutants ontology was designed based on examples of sources of pollution 

and the potential pollutant discharges which could arise described in [79]. As depicted in 

Figure 6, two classes were added: PollutionSources, describing the sources of 

pollution e.g. urban storm water discharges, and Pollutants, representing contaminants 

present in the environment or which might enter the environment which, due to its properties 

or amount or concentration, causes harm e.g., heavy metals. A property 

potentialPollutant links individuals of PollutionSources and Pollutants 

(based on the Table on page 3 in [79]). PollutionSources class was also linked with a 

string through two properties: pollutionSourceName, representing the name of the 

pollution source, and pollutionType, representing the type of the pollution source which 

can be point, diffuse or both of them. Moreover, a property hasSourcesOfPollution 

was added to relate the rivers with the sources of pollution. 
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Figure 6. TBox and ABox statements for the INWS pollutants ontology module 

III. 3. 4   Use Cases 

Considering the domain of water quality management two use cases were approached to 

illustrate the usability of INWS ontologies. In particular, a stream data scenario from the 

domain of surface water quality management and static data scenario from the domain of 

drinking water quality management. 

Use Case 1: Surface Water Quality Management 

In absence of real sensor observation data the INWS ontology was investigated in the domain 

of surface waters with simulated SQL data. An SQL stream data generator was employed to 

produce simulated water quality data. For detailed description of the dataset the reader is 

advised to refer Appendix B Section 10.1. The generated data are then converted to RDF data 
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through D2RQ7 mapping tool. Populating the INWS ontology with the D2RQ generated data 

in Protégé implied difficulties on rendering object property instances. Namely, instead of 

rdf:Description statements, Protégé 3.58 expects abbreviated syntax for object 

property instances. The following D2RQ generated code snippet describes an object relation 

linking the sensor node instance sn3 with a sensor node location instance sl3: 

<rdf:Description rdf:about="sn3"> 

  <dul:hasLocation rdf:resource="sl3"/> 

  <rdf:type rdf:resource="&ont;SensingNode"/> 

</rdf:Description> 

The same assertion in terms of abbreviated RDF/XML syntax (expected in Protégé) is: 

<SensingNode rdf:about="sn3"> 

  <dul:hasLocation rdf:resource="sl3"/> 

</ont:SensingNode> 

In order to enable this translation SWOOP [107] was used to load the D2RQ generated RDF 

data and produce the abbreviated syntax description of object property instances. SWOOP 

derived ontology is then imported in Protégé 3.5 by populating corresponding class and 

property assertions of the core ontology. 

For this case study the following assumptions were asserted into the core ontology: 

 Axiom ssn:featureOfInterest owl:hasValue 

RiversWaterMeasurement was added to indicate that all observation‘s feature 

of interest is river water quality 

 ssn:sensingMethodUsed owl:hasValue SimulatedData 

 ssn:includesEvent owl:hasValue ScheduledObservation 

For example, Figure 7 illustrates a fragment of an observation instance of stream data, 

namely oo11724. As can be observed from the figure: the observation instance  is a water 

temperature measurement, which is a river feature  (oo11724 ssn:observedProperty 

Temperature, Temperature ssn:isPropertyOf 

RiversWaterMeasurement); it was produced by a device named d1 (oo11724 

ssn:observedBy d1); it was sampled on 2013-02-13 at 09:32:22 and it has the same 

entry system time since there is no latency i.e. data are already in machine (oo11724 

ssn:observationSamplingTime v11724, oo11724 hasObservationTime 

                                                 
7
 D2RQ Accessing Relational Databases as Virtual RDF Graphs, http://d2rq.org/ 

8
 Protégé ontology editor, http://protege.stanford.edu/ 
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"2013-02-13T09:32:22.133"^^<xsd: date>); it‘s measured value is 15.58 

(oo11724 ssn:observationResult so11724,  so11724 ssn:hasValue  

ov11724,  ov11724 dul:hasDataValue "15.58"^^<xsd:double>); it was 

measured from s2 sensing node (hasSensingNode sn2) and the sample position is 

21.0E0 for longitude, and 42.0E0 latitude (oo11724 observationResultLocation  

l11724,  l11724 geo:lat "42.0E0"^^<xsd:double>,  l11724 

geo:long "21.0E0"^^<xsd:double>). 

 

Figure 7. TBox and ABox statements for the surface waters case study 

To query about each sensor node for which water quality elements is observing, the following 

SQWRL [109] query can be applied: 

ssn:Observation(?x) ∧ inws:hasSensingNode(?x, ?y) ∧ 

ssn:observedProperty(?x, ?z) ∧ sqwrl:makeSet(?sx, ?x) ∧ 

sqwrl:groupBy(?sx, ?z) → sqwrl:select(?y, ?z) 

 

For our simulated data this query produced the output depicted in Figure 7. 



The INWS ontology 

 

39 

 

Use Case 2: Drinking Water Quality Management 

Drinking waters represent another water quality management domain. INWS ontology 

supports population with data from this domain. CSV data available from [99] were 

converted to RDF to populate the ontology. In Appendix A are given the conversion details 

and mapping mechanisms. Data were taken from measurements made in 15 measurement 

sites in the city of Tetova (Macedonia) during three summer months of 2012: June, July and 

August.  

 

Figure 8. A sample rule output 

Axiom ssn:featureOfInterest owl:hasValue 

DrinkingWaterMeasurement was added to indicate that all observation‘s feature of 

interest is drinking water quality. Figure 9 illustrates an observation instance 

AugObserveChloridesT9 representing measured values of Chlorides 

(AugObserveChloridesT9 ssn:observedProperty 

DrinkingWaterChlorides, DrinkingWaterChlorides 

ssn:isPropertyOf DrinkingWaterMeasurement) during August 2012 

(AugObserveChloridesT9  ssn:observationResultTime August2012, 

August2012 ssn:startTime ObservationAugustStart, 

ObservationAugustStart time:inXSDDateTime "2012-08-

01"^^<xsd:date>, August2012 ssn:endTime ObservationAugustEnd, 

ObservationAugustStart time:inXSDDateTime "2012-08-

31"^^<xsd:date>) on measurement point T9 (AugObserveChloridesT9 

ssn:observationResultLocation T9) with measured Chloride value 8.3 

(AugObserveChloridesT9 ssn:observationResult 

AugOutputChloridesT9, AugOutputChloridesT9 ssn:hasValue 

AugValueChloridesT9, AugValueChloridesT9 dul:hasDataValue 

"8.3"^^<xsd:decimal>). 
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Figure 9. TBox and ABox statements for the drinking waters case study  

If one would like to calculate the median of June temperature observations, the following 

SQWRL rule produced the same result obtained in [99] through Excel formulas: 

ssn:Observation(?x) ∧ ssn:observedProperty(?x, 

DrinkingWaterTemperature) ∧ ssn:observationResult(?x, ?r) ∧ 

ssn:hasValue(?r, ?v) ∧ dul:hasDataValue(?v, ?val)  ∧ 

sqwrl:makeSet(?sv, ?val) ∧ sqwrl:median(?m, ?sv) → 

sqwrl:select(?m) 

III. 4   An expert system for validating the INWS ontology 

The INWS ontology was validated with an expert system [100]. It was developed using the 

Java Expert System Shell (Jess) [72]. Jess is a rule engine and scripting environment written 

in Java. The main characteristics of the Jess system for WQM system are described in this 

section. Namely, it classifies water bodies based on observed water quality values and 

investigates eventual sources of water quality degradation. However, the proposed approach 

does not support stream data which is subject to be included in another proposed approach 

StreamJess described in the next chapter. 
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As depicted in Figure 10, our system‘s architecture consists of three layers: data, INWS 

ontology and rules layer. The RDF data (up left) and RDF streams (up right) constitute the 

data layer (grey track). Arrows describe data flow direction. Domain specific ABox 

knowledge which does not change or changes ―slowly‖ is formulated in the form of RDF data 

e.g. river names. RDF streams are defined as a sequence of RDF triples that are continuously 

produced and annotated with a timestamp [9]. Water quality measured values, annotated as 

RDF streams, will continuously populate the core ontology. In particular, a single RDF 

stream will hold information of observed water quality value, timestamp and location. The 

middle part of Figure 10 represents the INWS ontology (green track) described in the previous 

section. The rule layer (yellow track) consists of common rules (bottom left) and continuous 

rules (bottom right).  

 

Figure 10. INWS conceptual framework: data layer (grey track), ontology layer (green track) and rules 

layer (yellow track) 

Jess rules were decided to be used as a platform for implementing our system of reasoning 

over the INWS ontology framework. As a production rule system, Jess supports closed-world 

and non-monotonic reasoning. Moreover, it has a tight integration with Java through Jess‘s 

Java API and Protégé through JessTab
9
 plugin. JessTab is a plug-in for the Protégé

10
 

ontology editor and knowledge-engineering framework that allows one to use Jess and 

Protégé together. The system was validated with simulated data, but it was developed for use 

within the InWaterSense project with real data. 

The Jess implemented architecture of our system and its related components for reasoning 

over the INWS ontology are presented in Figure 11. Namely, input data in their available 

                                                 
9
 http://www.jessrules.com/jesswiki/view?JessTab 

10
 Protégé ontology editor, http://protege.stanford.edu/ 
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format, say SQL, are transformed into RDF streams using D2RQ
11

 tool. SWOOP [72] is used 

to load the D2RQ generated RDF data and produce the abbreviated RDF/XML syntax for 

object property instances to be readable by Protégé [62]. RDF data streams are next imported 

into the core ontology. The set of rules for water quality classification based on WFD 

regulations are defined and may run against the knowledge base. Moreover, a set of rules for 

investigating sources of pollution by observing if eventual critical events appear are defined 

and may be activated. A simple user interface was developed using Java Swing
12

, which 

offers a user to monitor water quality based on the WFD regulations and to eventually find 

the possible sources of pollution. 

 

Figure 11. Jess implemented architecture for WQM 

III. 4. 1   Implementation of a water quality monitoring scenario 

To implement the Scenario 1 using our system interface, as depicted in Figure 12, one should 

select the regulation authority i.e. WFD, select the water quality parameters which are to be 

monitored and press the button ―Classify‖. The JTextArea below the ―Output‖ label serves 

for printing rules messages.  

The system offers multiple selections of water quality parameters. A simple rule is fired at 

application startup to set up the observations interval beginning time from the earliest time of 

observations streams and end time from the latest one. For brevity and clarity, Biochemical 

Oxygen Demand (BOD5) observations will be demonstrated based on WFD classification. 

                                                 
11

 D2RQ Accessing Relational Databases as Virtual RDF Graphs, http://d2rq.org/ 
12

 http://openjdk.java.net/groups/swing/ 
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According to WFD regulations: if BOD5 observations’ average value is between 1.3 and 1.5 

mg O2/l then river belongs to “Good” status of oxygen condition, if the average is below 1.3 

then river belongs to “High” status, else the river belongs to “Moderate” status. Expressing 

this rationale with Jess rules was done through a number of rules. Namely, a rule of primer 

priority creates auxiliary Jess facts holding BOD5 measurement values coming from the RDF 

streams. It is natural to use observation values directly from the ontology mappings, but the 

Jess rule which calculates the average value constrains the usage of Jess facts. 

 

Figure 12. The Jess system interface: initial view (left) and after WFD classification view (right) 

The calculated average value is asserted as a fact into the WM. Finally, another rule 

WFDclassifyWaterBOD does the WFD classification based on the previously asserted 

average value. This rule is illustrates below: 

1 (defrule WFDclassifyWaterBOD 

2 (BODaverage (v ?x)) (CurrentInterval (v ?i)) => 

3 (if (and (< ?x 1.5) (> ?x 1.3)) then (and 

4 (printout t "Status for BOD is: GOOD" crlf) 

5 (make-instance (str-cat "GoodBODStatus" ?*r*) of http://.../inws-

regulations.owl#GoodBODMeasurement map) 

6 (make-instance (str-cat "ObservationInstantBOD" ?*r*) of    

http://.../inws-regulations.owl#ObservationInstant map) 

7 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*)  

8 http://www.w3.org/2006/time#inXSDDateTime 1 ((new Date) toString)) 

9 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*) 

10  http://.../inws-regulations.owl#hasStatus 1  

11   (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*)) 

12 (slot-insert$ (str-cat "http://.../inws-core.owl#" ?i)  

13   http://.../inws-regulations.owl#hasStatus 1  

14   (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*)))) 

15 (if (< ?x 1.3) then <HIGH status classification code here>) 

16 (if (> ?x 1.5) then <MODERATE status classification code here>)) 
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Code in Line 1 serves for declaring a rule definition and its name. Line 2 represent the left 

hand side of the rule while lines 3-16 the right hand side of the rule. The previously 

calculated average value is assigned to variable ?x while the current interval of observations 

present in the WM is assigned to ?i (Line 2). If ?x is between 1.5 and 1.3 begin assertions 

for good status (Line 4-14). Namely, a message is printed out (Line 4); a new instance of 

regulations ontology class GoodBODMeasurement is created (Line 5) (?*r* is a global 

variable holding random integer numbers); a new instance of ObservationInstant 

class is created (Line 6) associated with current date and time through inXSDateTime 

property (Line 7-8). This instance is also related with the instance created in Line 5 through 

hasStatus property (Line 9-11). Current interval instance (Line 12) is associated with the 

newly asserted status instance (Line 13-14). The same steps presented in line 4-14 are 

performed for the high and moderate status, which are omitted for brevity (Line 15-16).  

The second part of Scenario 1 is encoded through a couple of rules. The first one detects 

newly asserted instances of moderate status i.e. instances of ModerateBODMeasurement 

class. If there is at least one instance the second rule will fire and find BOD5 sources of 

pollution discharging in the river body. An example of BOD5 observations status is illustrated 

in Figure 13. BOD5 sources of pollution are also listed after the user has clicked the ―Find 

possible pollutants‖ button. 

 

Figure 13. Scenario 1 example output for BOD5 observations WFD classification and sources of pollution 
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Chapter IV    StreamJess 

This chapter describes StreamJess, our expert system for WQM. Similarly to the system 

described in Section 3.4, it uses Jess rules to enable closed-world, time-aware and non-

monotonic reasoning. However, the main difference between them is that StreamJess enables 

stream data support as contrary to bringing the input data manually, which was the case of 

the previous one. To offer the stream data feature, StreamJess utilizes C-SPARQL [93] 

abilities to filter and aggregate RDF streams on windows. The next section describes the 

proposed system design and its implementation. The chapter closes with Section 4.2, which 

gives evidence of system validation. 

IV. 1   System design and implementation 

This section describes the conceptual architecture of the proposed approach and its 

implementation. The domain of WQM is used as an illustrating case of stream data 

applications. 

The conceptual architecture of StreamJess is depicted in Figure 14. It consists of three layers: 

data, ontology and rules layer. The RDF data (blue track left) and RDF streams (blue track 

right) constitute the data layer. The green track of the figure represents the ontology model. 

The concept of continuous rules described earlier in Section 2.4.3 is depicted by the pink 

track of Figure 14. They will continually infer new facts by reasoning over running RDF 

streams. These rules in StreamJess mainly fall into two broad categories:  

 monitoring rules (pink track left), rules for continuous classification of water bodies 

based on in situ observations, and 
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 investigation rules (pink track right), which fire after monitoring rules detect any 

critical status. The information of sources of pollution stored into the pollutants 

ontology is used to prejudge the causer of the pollution.  

 

Figure 14. StreamJess conceptual architecture 

In another domain, say medicine, the monitoring rules will continually classify the human‘s 

health status, while the investigation ones will try to identify the potential sources of the 

disease in cases of critical status detection. In StreamJess, both kinds of rules are loaded at 

system start up together with other Jess Tab commands described in Appendix C.  Grey 

arrows describe data flow direction. As illustrated in Figure 15, our system acts as a pipeline. 

Sensor produced or simulated RDF streams are firstly filtered and aggregated by C-SPARQL 

queries. C-SPARQL results are published as observation data in the working memory and on 

the ontology. The running Jess Rete engine indicates the facts change and infers new 

knowledge according to the loaded rules.   

Before implementing StreamJess, in order to enable Jess rules to reason over stream data, 

three approaches were considered: 

 Extending Jess with stream data reasoning features,  

 Translating Jess to another rule system which supports stream data reasoning 

and 
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 Layering Jess on top of another system to fill the gaps of Jess in support of 

stream data reasoning. 

Extending Jess with stream data reasoning features is very expensive. Event stream 

processing with Jess is a fragile system, the code is complex and a lot of interferences have to 

be taken into account [102]. As the author of [102] argues, code could not be optimized even 

for simple temporal operations over event-streams. Another approach would be to translate 

Jess constructs into any CEP system. To the best of our knowledge there is not any evidence 

of such an approach. Albeit of the translation overhead we do not have confidence of how the 

system would perform.   

 

Figure 15. StreamJess system workflow 

Given the drawbacks if approaching any of the previous two options, it was decided to layer 

Jess over an existing SR system such as C-SPARQL. C-SPARQL supports time-aware 

reasoning on stream data. However, as a query language, it is not intended to have any effect 

on the underlying ontology. In StreamJess, Jess rules are used for populating the knowledge 

base. Moreover, they enable data modifications i.e. non-monotonic reasoning and the tools 

for archiving data. 

Each C-SPARQL query in StreamJess eventually outputs triples of values: the water quality 

name, the location of measurements and the calculated value. Every output triple is mapped 

into a temporary observation class. Furthermore, for each new incoming triple a new call to 
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the Rete method run() is invoked for doing rule-based reasoning. As illustrated in Figure 

15, the Jess engine runs the rules against the temporary observation facts and it eventually 

activates the rule‘s RHS actions. The inferred knowledge forms another set of RDF data 

which is stored back into the ontology for further reasoning. Namely, monitoring rules do the 

water quality classifications based on the WFD regulation rules. In case a critical status is 

detected, investigation rules act to identify the pollution source. 

StreamJess is implemented as a Java console application. The application uses an instance of 

jess.Rete which is created at system start up. It provides the central access point of the 

application as it loads the ontology, builds the working memory, holds the list of rules and 

offers the methods for doing CRUD operations over facts i.e. ontology individuals [19]. 

Multiple C-SPARQL queries and Jess rules can be defined to run over running observations. 

StreamJess is open for loading other SR domain ontologies and write appropriate C-SPARQL 

queries and Jess rules. It is open source software and its installation details can be found on 

Appendix D. 

IV. 2   Examples of StreamJess 

As a proof of concept, StreamJess was implemented in a typical WQM scenario i. e. Scenario 

1, based on WSN. In general, each water quality is monitored and investigated with a 

monitoring rule and an investigation one. A couple of examples are used to validate the 

system performance. Both examples run at the same time over the same RDF streams which 

are filtered out by two different C-SPARQL queries: one for finding the average values of 

water quality observations and another one for considering observation values one by one. 

The simulator was set up to randomly generate observation data for an arbitrary number of 70 

measurement sites and 11 water quality parameters. For details about the dataset format one 

should refer Appendix B Section 10.2. A single sensor observation was arbitrarily set to be 

produced every second and includes 6 RDF streams representing time, location, device and 

quality of observation information. For example, in a 20 seconds window size 120 tuples will 

be produced. Moreover, the system supports registering multiple streamers to run 

concurrently. 
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IV. 2. 1   Example 1: pH observations 

A WFD rule for classifying pH observations looks as follows: The pH as individual value 

should be between 4.5 and 9.0 [83]. Potential sources of pollution from which pH discharges 

could arise include: agricultural fertilizers, farm wastes and silage, effluent discharges from 

sewage treatment works, fish farming, organic waste recycling to land, soil cultivation and 

urban storm water discharges [79]. 

A simple C-SPARQL query to filter out incoming pH observations, i.e. pH RDF streams, is 

described below: 

1 REGISTER STREAM IndObservations AS  

2 PREFIX inws: <http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#> 

3 PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#> 

4 PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#> 

5 SELECT ?qo ?loc ?dv 

6 FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 10s STEP 

10s] 

7 WHERE { 

8 ?o ssn:qualityOfObservation ?qo . 

9 ?o ssn:observationResult ?r . 

10 ?r ssn:hasValue ?v . 

11 ?v dul:hasDataValue ?dv . 

12 ?o inws:observationResultLocation ?loc  

13 FILTER (?qo = inws:pH) 

14 } 

The query name is registered on line 1 and prefixes used in the query are declared on lines 2, 

3 and 4. The query runs against the input RDF streams in the time frame of 10 seconds, 

sliding the window by 10 seconds (line 6). The chosen time frame is arbitrary and can be 

changed as desired. It produces triples of values (line 5): the water quality name (?qo), the 

location of measurements (?loc) and the observation value (?dv). Based on the INWS 

metadata descriptions the incoming observation‘s (?o) water quality name is saved on 

variable ?qo (line 8). To get the observation‘s value, ?o individuals are bound with 

individuals ?r through ssn:observationResult property (line 9). These ones in turn 

are related with individuals of class ssn:ObservationValue (line 10), which are finally 

related with the data value ?dv through dul:hasDataValue property (line 11). The 

location of observations ?loc is get through inws:observationResultLocation 

property. Finally, the list of observations is filtered out to include only pH observations (line 

13). 
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Output query results, i.e. (?qo, ?loc, ?dv) triples, are consumed by Jess Tab  functions 

for asserting new facts into the knowledge base. make-instance and slot-insert$ 

functions are used for creating new class individuals and inserting property values 

respectively. Namely, for every outputted triple, a new observation instance of the temporary 

class tmpObservation (a subclass of the ssn:Observation class) is created. 

tmpObservation holds the most current observation data which are retracted after 

StreamJess rules process them. Moreover, after retraction they are archived in the 

ssn:Observation class in the form of historical data. The newly created observation 

individual is further related with ?qo, ?loc  and ?dv values based on the structure of the 

SSN and INWS metadata descriptions. The water quality name ?qo i.e. pH, becomes related 

with the new observation instance through the ssn:qualityOfObservation data 

property. The new observation instance also becomes related with ?loc through 

observationResultLocation object property. The location instance is of type Point 

of the basic geo location vocabulary, which means that it possesses longitude and latitude 

properties. A new ssn:SensorOutput individual is also created for holding the observed 

value ?dv. It is linked with the observation instance through ssn:observationResult 

property. Meanwhile, a new instance of class ssn:ObservationValue is created to be 

related with the previously created ssn:SensorOutput individual through 

ssn:hasValue property. The ?dv value is assigned to it through dul:hasDataValue 

data property. 

To implement the scenario of this example a monitoring rule was designated for deciding the 

pH status and another one for identifying the eventual sources of pollution. The monitoring 

rule looks like follows (ontologies‘ full IRI are omitted for brevity): 

1 (defrule classifyPHObsValues 

2 (declare (salience 54)) 

3 (object (is-a ssn#ObservationValue)  

4 (OBJECT ?ov)(DUL.owl#hasDataValue ?x)) 

5 (object (is-a ssn#SensorOutput)  

6 (OBJECT ?so)(ssn#hasValue ?ov)) 

7 (object (is-a time#Instant)               

8 (OBJECT ?ot)(time#inXSDDateTime ?time)) 

9 (object (is-a inws-core.owl#tmpObservation) 

10 (OBJECT ?o)(ssn#observationResult ?so) 

11 (inws-core.owl#observationResultLocation 

?loc)(ssn#observationResultTime ?ot) 

12 (ssn#qualityOfObservation ?qo&:(eq (instance-name ?qo) inws-

core.owl#pH))) 
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13 => 

14 (bind ?*r* (random)) 

15 (printout t "(StreamJess)") 

16 (if (and (> ?x 4.5) (< ?x 9))then (and  

17 (printout t "(" ?*r* ") pH status is GOOD/HIGH" crlf "On: " ?time crlf 

"In: " (instance-name ?loc) crlf) 

18 (make-instance (str-cat "GoodHighPHStatus" ?*r*) of inws-

regulations.owl#GoodHighPHMeasurement map) 

19 (slot-insert$ (str-cat "GoodHighPHStatus" ?*r*)                            

inws-core.owl#observationResultLocation 1 ?loc) 

20 (slot-insert$ (str-cat "GoodHighPHStatus" ?*r*) 

ssn#observationResultTime 1 ot) 

21 (slot-set ?loc                                 inws-

regulations.owl#isPolluted FALSE)) 

22 else (and 

23 (printout t "(" ?*r* ") pH status is MODERATE" crlf "On: " ?time crlf 

"In: " (instance-name ?loc) crlf) 

24 (make-instance (str-cat "ModeratePHStatus" ?*r*) of inws-

regulations.owl#tmpModeratePHMeasurement map)                         

25 (slot-insert$ (str-cat "ModeratePHStatus" ?*r*) inws-

core.owl#observationResultLocation  1 ?loc) 

26 (slot-insert$ (str-cat "ModeratePHStatus" ?*r) 

ssn#observationResultTime 1 ?ot)                     

27 (slot-set ?loc                                 inws-

regulations.owl#isPolluted TRUE))) 

28 (make-instance (str-cat (instance-name ?o) ?*r*) of ssn#Observation 

map) 

29 (slot-insert$ (str-cat (instance-name ?o) ?*r*) inws-

core.owl#observationResultLocation 1 ?loc) 

30 (slot-insert$ (str-cat (instance-name ?o) ?*r*) ssn#observationResult 1 

?so) 

31 (slot-insert$ (str-cat (instance-name ?o) ?*r*) 

ssn#observationResultTime 1 ?ot) 

32 (slot-insert$ (str-cat (instance-name ?o) ?*r*) 

ssn#qualityOfObservation 1 inws-core.owl#pH) 

33 (unmake-instance ?o)) 

The first line serves for declaring rule‘s definition and asserting its name. The second one is 

for declaring the rule priority. The left hand side (LHS) of the rule (lines 3-12) matches all 

pH observation individuals (?o) present in the tmpObservation class. The right hand 

side (RHS) of the rule (lines 14-31) asks if the matched observation value (?x) falls between 

the interval of values 4.5 and 9. If so, the observation is classified in ―good/high‖ status (lines 

16-21), otherwise it becomes ―moderate‖ (lines 22-27). After the classification takes place the 
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observation individual is stored in the ssn:Observation class (lines 28-32) and the 

temporary observation individual (?o) gets retracted from the knowledge base (line 33).  

Concretely, for each matched individual from temporary observation class ?o, on the RHS a 

new random value is generated to be used for new individual names (line 14). An information 

string is printed out in the console to indicate that the upcoming outputs are processed by 

StreamJess rules (line 15). The code in line 16 asks whether the observation value ?x falls 

between the allowed values for ―good/high‖ status. If so, the user gets informed about the 

status detected at measurement site ?loc on time ?time. Next, a new individual of 

GoodHighPHMeasurement class gets created (line 18) and related with the location (line 

19) and time (line 20) of measurement. Moreover, the pollution status of the measurement 

site ?loc is modified to ―clean‖ by changing its isPolluted value to ―false‖ (line 21). 

str-cat command is used to concatenate strings. If the if condition specified on line 16 

fails then the actions for specifying ―moderate‖ status are activated. The steps to do this are 

analogical to the ones used for specifying ―good/high‖ status. Namely, before setting the 

status of the measurement site as ―polluted‖ (line 27) the new status instance is created to be 

of type tmpModeratePHMeasurement (line 24). These instances are temporary because 

the investigation rule to find potential pH sources of pollution will make use of them and 

after that will delete them. Prior to deletion the status instance is stored as a new instance of 

ModeratePHMeasurement class as historical data (lines 28-32) copying all ?o 

properties. The retraction is performed for preventing investigations to be activated only 

once. The pH investigation rule is described below: 

1 (defrule findPHsourcesOfPollution 

2 (declare (salience 553)) 

3 (object (is-a epa.owl#MeasurementSite) (OBJECT ?loc) (inws-

pollutants.owl#hasSourcesOfPollution $?sitepoll)) 

4 (object (is-a inws-regulations.owl#tmpModeratePHMeasurement) (OBJECT 

?mob) (inws-core.owl#observationResultLocation ?loc) 

(ssn#observationResultTime ?ot)) 

5 =>  

6 (bind ?*r* (random)) 

7 (make-instance (str-cat (instance-name ?mob) ?*r*) of inws-

regulations.owl#ModeratePHMeasurement map) 

8 (slot-insert$ (str-cat (instance-name ?mob) ?*r*) inws-

core.owl#observationResultLocation 1 ?loc) 

9 (slot-insert$ (str-cat (instance-name ?mob) ?*r*) 

ssn#observationResultTime 1 ?ot) 

10 (foreach ?poll ?sitepoll  
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11  (foreach ?pollLsItem (slot-get ?poll inws-

pollutants.owl#potentialPollutant) 

12   (if(eq (instance-name ?pollLsItem) inws-core.owl#pH) then 

13    (printout t "pH pollution source: " (instance-name ?poll) " crlf) 

14    (slot-insert$ (str-cat (instance-name ?mob) ?*r*) inws-

regulations.owl#foundPollutionSources 1 (instance-name ?poll))))) 

15 (unmake-instance ?mob)) 

The rule binds the temporary ―moderate‖ status pH observations into ?mob variable and gets 

its location ?loc and time ?ot (line 4). The code in line 3 relates the list of sources of 

pollution present on the measurement site ?loc into the list variable $?sitepoll. The 

RHS of the rule starts with archiving the temporary status instance ?mob (lines 6-9). Namely, 

in absence of a Jess or Jess Tab mechanism to change the instance class assignment, the 

temporary status instance is copied in a new instance of class ModeratePHMeasurement. 

Afterwards, the list members of ?sitepoll is iterated (line 10) to match only those sources 

of pollution which could increase pH discharges (lines 11-12). Namely, for each source of 

pollution in ?sitepoll i.e. present on the measurement site, its potential pollutants list 

?pollLsItem is checked if it includes pH. The matching one‘s name will be printed out 

(line 13). As per saving historical data the archived status instance gets related with the list of 

pollution sources through foundPollutionSources property (line 14). Finally, the 

temporary status instance ?mob gets discarded from the knowledge base.  An example output 

of Example 1 is illustrated in Figure 16. As can be observed, C-SPARQL query 

IndObservations has produced three output results. Two of these results (#1 and #3) 

have been classified with ―good/high‖ status by rule classifyPHObsValues, while the 

remaining one (#2) with ―moderate‖ status. Since the result #2 has been classified as a critical 

status the investigation rule findPHsourcesOfPollution has fired and identified that 

potential source of the pollution is ―urban storm water discharges‖ on site ms11. 

 

Figure 16. An output excerpt of the running Example 1 
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IV. 2. 2   Example 2: Biochemical Oxygen Demand (BOD5) observations  

A WFD rule for classifying - BOD5 observations is as follows: If BOD5 measurements in mg 

O2/l is less than 1.3 (mean), then river belongs to ―high‖ status of oxygen condition; if it is 

less than 1.5 then river belongs to ―good‖ status of oxygen condition; otherwise the river 

belongs to ―moderate‖ status of oxygen condition [83]. Potential sources of pollution from 

which BOD5 discharges could arise include: contaminated land, farm wastes and silage, fish 

farming, effluent discharges from sewage treatment works, landfill sites and urban storm 

water discharges [79]. 

The C-SPARQL query to calculate the water quality observed average value on each window 

is given below: 

1 REGISTER STREAM AvgObservations AS  

2 PREFIX inws: <http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#> 

3 PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#> 

4 PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#> 

5 SELECT ?qo ?loc (AVG(?dv) AS ?avg)  

6 FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 20s STEP 

20s] 

7 WHERE { 

8 ?o ssn:qualityOfObservation ?qo . 

9 ?o ssn:observationResult ?r . 

10 ?r ssn:hasValue ?v . 

11 ?v dul:hasDataValue ?dv . 

12 ?o inws:observationResultLocation ?loc  

13 FILTER (?qo != inws:pH) 

14 } 

15 GROUP BY ?qo ?loc 

This query is similar to IndObservations query described previously. The lines 2-4 and 

6-12 are the same. As opposed to it, this query filters the RDF streams to include all but those 

of pH observations (line 13). Moreover, it uses aggregate functions such as AVG (line 5) to 

calculate the average value of observations which are firstly grouped by water quality name 

and then by location of measurement (line 15). It is arbitrary set to run every 20 seconds 

sliding the window by 20 seconds (line 6).  

Similar to Example 1, the output query results, i.e. (?qo, ?loc, ?avg) triples, are 

consumed by Jess Tab  functions to create new tmpObservation instances. Afterwards, 

the following monitoring rule, similar to classifyPHObsValues, classifies BOD5 

observations: 
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1 (defrule classifyBOD5ObsValues 

... 

12(ssn#qualityOfObservation ?qo&:(eq   (instance-name ?qo)(instance-name 

inws-core.owl#BOD)))) 

=> 

... 

16 (if (and (< ?x 1.5) (> ?x 1.3)) then (and 

17 (printout t "(" ?*r* ") BOD status is GOOD" crlf "On: " ?time crlf "In: 

" (instance-name ?loc) crlf) 

18 (make-instance (str-cat "GoodBODStatus" ?*r*) of inws-

regulations.owl#GoodBODMeasurement map) 

19 (slot-insert$ (str-cat "GoodBODStatus" ?*r*) inws-

core.owl#observationResultLocation 1 ?loc) 

 ... 

20 (slot-insert$ (str-cat "GoodBODStatus" ?*r*) ssn#observationResultTime 

1 ?ot) 

... 

22 (if (< ?x 1.3) then <HIGH status classification code here>) 

23 (if (> ?x 1.5) then <MODERATE status classification code here>)) 

Similarly to the rule classifyPHObsValues lines 3-12 bind BOD5 observation data 

present in the temporary class tmpObservation with their corresponding variables. Lines 

16-20 encode the semantics of the expression ―if it is less than 1.5 then river belongs to 

―good‖ status of oxygen condition‖ from the example statement. Classification of water 

bodies into ―high‖ (line 22) and ―moderate‖ (line 23) status is omitted because it‘s analogical 

with lines 16-20 with the appropriate change on the name of the status, the corresponding 

class name and the setting of the pollution status of the site.  

The streams processed by the C-SPARQL query AvgObservations will result in zero or 

many BOD5 observations. The number of BOD5 observations will depend on the number of 

measurement sites. For example, as illustrated in Figure 17, C-SPARQL processing of RDF 

streams has resulted with 3 new observations on 3 measurement sites: ms10, ms11 and 

ms12. Two observations have been classified as of ―moderate‖ status (Figure 17 line #1 and 

#2) and one of ―high‖ status (Figure 17 #3). 

Whenever a critical i.e. ―moderate‖ BOD5 measurement is detected the following 

investigation rule to detect BOD5 potential sources of pollution is activated: 

1 (defrule findBOD5SourcesOfPollution 

... 

=>   

...  
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7 (make-instance (str-cat (instance-name ?mob) ?*r*) of inws-

regulations.owl#ModerateBODMeasurement map) 

...  

12 (if(eq (instance-name ?pollLsItem) inws-core.owl#BOD) then  

13 (printout t "BOD pollution source: " (instance-name ?poll) crlf) 

... 

Similar to findPHsourcesOfPollution rule, this one will cause the Rete engine to 

detect newly asserted individuals of tmpModerateBODMeasurement on a specified 

measurement site. In fact, the LHS of the rules is the same. It will get the sources of pollution 

on that site which in turn are filtered out to include only BOD5 potential pollutants (lines 9-

13). Each of the matched sources of pollution will be printed out in the console as shown in 

observation #1 and #2 in Figure 17. Namely, a ―moderate‖ BOD5 status is detected on sites 

ms11 and ms10. Potential sources of pollution include urban storm water discharges and 

fish farming on site ms11 while urban storm water is potential source of BOD5 discharges on 

site ms10. 

 

Figure 17. An output excerpt of the running Example 2 

IV. 2. 3   Example 3: The ‘undetermined status’ 

In StreamJess, the feature of NAF is enabled in the stream processing level. Recall the 

Section 2.4.1 example of assigning the ‗undetermined status‘ to measurement sites to which 

the data are missing. The SPARQL support for NAF was utilized as described in the 

following query. 

REGISTER STREAM undefinedMeasurmentSites  AS 

PREFIX inwsp: <http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#> 



StreamJess 

 

57 

 

PREFIX rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX twcc: <http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#> 

SELECT ?ms 

FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 60s STEP 60s] 

FROM <http://inwatersense.uni-pr.edu/ontologies/data.rdf> 

WHERE {  

?ms rdf:type twcc:MeasurementSite 

OPTIONAL { ?ms inwsp:isPolluted ?tf } .  
FILTER (!BOUND(?tf))  

}   

After (C-SPARQL) processing and (Jess) reasoning on each observation instance a 

measurement site will be related with a ―true‖ or ―false‖ value through isPolluted 

property. This query will match the remaining measurement sites, present in the background 

knowledge base (data.rdf file), for which no pollution status is recorded. The query is 

arbitrarily set to run every minute. On each query output result the matching measurement 

sites‘ isPolluted status is set to ‗undefined‘ through Jess Tab make-instance 

construct.  
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Chapter V    C-SWRL 

The previous chapter described how production rules can be enabled to reason over stream 

data. Here will be described C-SWRL, a unified Semantic Web approach for rule-based 

reasoning over stream data. Similarly to StreamJess, it complements state of the art query 

processing engine C-SPARQL [93] with the W3C recommended Semantic Web rule language 

SWRL. The chapter is organized as follows. Section 5.1 describes the prototypical design and 

implementation. System validation is presented in Section 5.2 through examples in the 

domain of WQM. Section 5.3 describes the challenges encountered while building C-SWRL.  

V. 1   System design and implementation 

C-SWRL conceptual architecture is the same as StreamJess‘s one depicted in Figure 13. 

However, it uses SWRL rules to reason over stream data. At the system design phase three 

approaches were considered: 

 Extending SWRL with stream data reasoning features,  

 Translating SWRL to another rule system which supports stream data reasoning and 

 Layering SWRL on top of another system to fill the gaps of SWRL in support of 

stream data reasoning. 

Extending SWRL with stream data reasoning features is very expensive since none of the 

required reasoning features described in Section 1. 2. State-of-the-art SWRL extensions may 

support one, but fail on another feature. For example, JNOMO [85] is a SWRL extension for 

enabling non-monotonic reasoning, but it does not support time-aware reasoning. JNOMO 

[85] is also an example of translating SWRL into Jena [12]. Moreover, an intelligent tutoring 

system framework introduced in [73] and SweetJess [107] represent further examples of rules 

interoperability systems with translating SWRL and RuleML respectively into Jess rules 
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[107]. These implementations do not deal with the different nature of stream data and they 

also have the potential of losing information while translating the constructs. Given the 

drawbacks if approaching any of the previous two options, it was decided to layer SWRL 

over an existing SR system such as C-SPARQL. C-SPARQL is specifically designed for 

stream data applications. It supports closed-world and time-aware reasoning on stream data. 

However, as a query language, it is not intended to have any effect on the underlying 

ontology. Analogical to StreamJess, C-SWRL uses C-SPARQL output RDF streams as input 

for SWRL, instead of Jess, to infer and assert new knowledge to ontologies. Firstly, input 

RDF streams filtering and aggregation is done by C-SPARQL. Secondly, based on C-

SPARQL output RDF streams, OWLAPI [173] constructs are invoked for asserting new 

OWL individuals in a temporary class holding all observation‘s information. Finally, these 

individuals are processed by SWRL continuous rules loaded at application startup which 

include monitoring and investigation rules, defined in the previous chapter. Recall that, the 

information of sources of pollution stored into the pollutants ontology is used to prejudge the 

causer of the pollution. 

SWRLAPI [89] methods are called for doing SWRL rule-based reasoning. SWRL inference 

occurs at each window processing. Namely, monitoring rules detect the temporary 

observation data and classify the observation into appropriate status based on WFD standards 

e.g. good, high or moderate. Whenever a moderate status is detected the investigation rules 

fire to assert the polluted site and potential sources of pollution. Since this process is 

continuous and iterative, to avoid reasserting of individuals into appropriate classes, the 

temporary observation class needs to be cleared at each window processing. This was done 

by using the OWLAPI‘s removeAxiom construct. The same construct was used to enable 

system‘s non-monotonic behavior. Namely, SWRL‘s ability to assert new information in 

conjunction with OWLAPI‘s one to remove information enables the modification of the 

measurement site‘s pollution status. At each window processing, which processes an 

observation on a particular measurement site, the last known pollution status gets removed 

from the knowledge base (by OWLAPI constructs) and a new status is inferred based on the 

SWRL rules. In particular, this was managed through the object property isPolluted 

relating measurement sites with one of the instances true or false. Thus, one can query for 

measurement sites‘ state at any time of C-SWRL running application. Moreover, every time a 

measurement site gets polluted a new instance of the class PollutedSite is asserted 

related with time and pollutants information.  
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C-SWRL is implemented in Java following the availability of Java codes of C-SPARQL, 

OWLAPI and SWRLAPI. The system is open for loading different SSN-based domain 

ontologies, write appropriate C-SPARQL queries and SWRL rules. Moreover, instead of C-

SPARQL and SWRL, with less effort different SPARQL-like query processing engines 

coupled with different rule languages can be integrated, respectively. C-SWRL is open source 

software and its installation details can be found on Appendix D. 

V. 2   System validation 

As with validation of StreamJess, BOD5 and pH observations will be used to validate the 

prototype of C-SWRL. The same validation settings configured for StreamJess, described in 

Section 3.2 were also applied for validation of C-SWRL. Figure 18 illustrates a screenshot of 

the C-SWRL console output of the running examples 1 and 2. 

 

 

Figure 18. An output excerpt of the running examples 1 and 2 on C-SWRL 
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V. 2. 1   Example 1: BOD5 classification 

Recall Section 3.2.2 which describes the WFD rule for classification of BOD5 observations. 

The same query, AvgObservations, output triples are used to populate corresponding 

ontology classes. Namely, at every query execution, for each new triple (?qo, ?loc, 

?avg), a new individual of a temporary INWS class tmpObservation is asserted into 

the ontology using OWLAPI constructs. This individual indicates a new input observation 

has arrived. Following the INWS ontology design this individual is associated through:  

 ssn:qualityOfObservation with the water quality parameter name i.e. ?qo,  

 observationResultLocation property with ?loc, 

 ssn:observationResult with new ssn:SensorOutput instance, which in turn  

is related with a new ssn:ObservationValue instance through ssn:hasValue 

property, which finally is associated with the observation‘s average value ?avg through 

dul:hasDataValue.  

 ssn:observationResultTime with the system‘s timestamp 

Next, the SWRL rule engine is executed firing the registered SWRL monitoring rules. These 

rules include the following ones for BOD5 WFD classification (user-defined prefixes are 

omitted for brevity): 

1. tmpObservation (?x) ^ qualityOfObservation(?x,BiochemicalOxygenDemand)  

^ observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ hasDataValue(?e,?z) ^ 

swrlb:greaterThan(?z, 1.3) ^ swrlb:lessThan(?z, 1.5) -> 

GoodBODMeasurement(?x) ^ tmpGoodBODMeasurement(?x) ^ isPolluted(?ms, 

false) ^ Observation(?x) 

2. tmpObservation (?x) ^ qualityOfObservation(?x,BiochemicalOxygenDemand)  

^ observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ hasDataValue(?e,?z) ^ 

swrlb:lessThan(?z, 1.3) ->  HighBODMeasurement(?x) ^ 

tmpHighBODMeasurement(?x) ^ isPolluted(?ms, false) ^ Observation(?x) 

3. tmpObservation (?x) ^ qualityOfObservation(?x, BiochemicalOxygenDemand)  

^ observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ hasDataValue(?e,?z) ^ 

swrlb:greaterThan(?z, 1.5) -> ModerateBODMeasurement(?x) 

^tmpModerateBODMeasurement(?x) ^ isPolluted(?ms, true) ^ Observation(?x) 

 

The first rule matches the individuals (?x) of the temporary class related to BOD5 

measurements and checks its average value. If it is between 1.3 and 1.5 then the status is 

―good‖ i.e. the individual is asserted as of type GoodBODMeasurement. The same 
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matching is done with the second and third rule respectively. For the second one the average 

value is checked to be lower than 1.3 for its classification. If so, the status is ―high‖ i.e. the 

individual is asserted as of type HighBODMeasurement. In the third rule the average 

value is checked to be greater than 1.5 for classifying in ―moderate‖ status i.e. class 

ModerateBODMeasurement. A temporary class tmpModerateBODMeasurement is 

used for investigation of sources of pollution. In the first and second rule the respective 

temporary classes are used for displaying the calculated status to the user interface. In each 

RHS of the rules the temporary observation individual gets stored in the class 

Observation as per historical data records. Moreover, the isPolluted object property 

is used to maintain the current state of the measurement site. It is set to ‗false‘ in the cases of 

―good‖ and ―high‖ statuses while it is set to ‗true‘ when detecting ―moderate‖ status.  In the 

running example the firing of rules has produced one ―moderate‖ and one ―good‖ status, as 

illustrated in the lower part of Figure 17 i.e. the lines starting with (C-SWRL) label followed 

by the detected status information. Since, the first C-SPARQL calculated average value is 

1.503 which is greater than 1.5 the third rule has fired asserting new individuals in 

ModerateBODMeasurement and tmpModerateBODMeasurement.  

New individual in the class tmpModerateBODMeasurement will cause to fire the 

following investigation rule, which is also registered at application startup: 

4.tmpModerateBODMeasurement(?x) ^ observationResultTime(?x, ?t) ^ 

observationResultLocation(?x, ?ms) ^ hasSourcesOfPollution(?ms, 

?pollsrc) ^ potentialPollutant(?pollsrc, BiochemicalOxygenDemand) -

>  foundPollutionSources(?x, ?pollsrc) 

This rule binds the ―moderate‖ status observations (?x) with measurement site‘s (?ms) 

nearby BOD5 sources of pollution (?pollsrc) extracted from the knowledge base. The 

observations (?x) satisfying the LHS clauses will become related with the matching pollution 

sources. These results will be displayed to the user interface right after the ―moderate‖ status 

detection like is shown on the first C-SPARQL result  in the lower part of Figure 17. It can be 

observed from the figure that the potential sources of pollution caused on ms11 are ―urban 

storm water discharges‖ and ―landfill sites‖.  

At the end of each window processing and reasoning, the current status of the sites are 

queried and printed out. On Figure 17, the last statuses for measurement sites ms10 and 

ms11 are ―clean‖ and ―polluted‖, respectively 
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V. 2. 2   Example 2: pH classifications 

The query to filter individual pH measurements is much simpler than the BOD5 one 

(IndObservations query from Section 3.2.1). No aggregation function is used in the 

SELECT statement and thus no grouping is needed. The FILTER clause uses the equal 

symbol rather than the unequal one. pH observations monitoring rules are similar to the ones 

(1-3) for BOD5. The main difference is the need for expressing disjunction in the body of the 

rules for classification of ―moderate‖ statuses. Namely, two rules are used to encapsulate 

each of the interval values (-∞, 4.5) and (9, +∞). Similarly to the investigation rule for 

identifying BOD5 sources of pollution, pH investigation rule uses 

tmpModeratePHMeasurement previously asserted individuals to identify the potential 

sources of pollution in the polluted site. 

An Example 2 output excerpt is depicted in the upper part of Figure 18. Two ―moderate‖ 

statuses have been detected on ms10 and ms11 and the corresponding potential sources of 

pollution have been identified, while a ―good/high‖ status is detected on ms12. A summary 

of the latest status of each observed measurement site is printed out at the end of the 

processed window. 

V. 3   Discussion and challenges 

Following are described the challenges that appeared while building C-SWRL. 

V. 3. 1   Fact modification and retraction 

SWRL‘s inability to modify or retract the facts from the knowledge base in C-SWRL was 

resolved with the help of OWLAPI construct removeAxiom. In absence of a dedicated 

OWLAPI construct for modifying ABox the technique ―remove and assert‖ was used. Thus, 

the issue of modifying the measurement site‘s pollution status was managed by firstly 

removing its previously asserted status and then asserting the new one through firing of 

SWRL rules.  
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V. 3. 2   Aggregates 

Following the SWRL‘s OWA, in C-SWRL, aggregate operations over stream data are done 

by C-SPARQL. Query results are next deployed into the ontology through OWLAPI add 

axiom construct, which will further trigger the firing of the matching rules. 

V. 3. 3   Negation as Failure 

NAF feature is enabled in the stream processing level. Recall Section 2 example of assigning 

the ‗undetermined status‘ to measurement sites to which the data are missing. The SPARQL 

support for NAF was utilized as described in the following query. 

REGISTER STREAM undefinedMeasurmentSites  AS 

PREFIX inwsp: <http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#> 

PREFIX rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX twcc: <http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#> 

SELECT ?ms 

FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 60s STEP 60s] 

FROM <http://inwatersense.uni-pr.edu/ontologies/data.rdf> 

WHERE {  

?ms rdf:type twcc:MeasurementSite 

OPTIONAL { ?ms inwsp:isPolluted ?tf } .  
FILTER (!BOUND(?tf))  

}   

 

A measurement site will be related with a ―true‖ or ―false‖ value through isPolluted 

property after (C-SPARQL) processing and (SWRL) perform reasoning on each observation 

instance. This query will match the remaining measurement sites, present in the background 

knowledge base (data.rdf file), for which no pollution status is recorded. The query is 

arbitrarily set to run every minute. On each query output result the matching measurement 

sites‘ isPolluted status is set to ‗undefined‘ through OWLAPI add axiom construct. 

V. 3. 4   Continuous rule feature 

Continuous rule feature in C-SWRL was implemented with the help of C-SPARQL‘s time or 

tuple-based windows. The rule engine gets activated after each arrival of new query results. 

Similarly to C-SPARQL, the ideal solution would be to adapt the window feature on SWRL. 
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This approach encapsulates stream data processing and reasoning at the same time. Filtering 

data streams may be easily realized through temporal built-ins such as 

SWRLTemporalBuiltInLibrary
13

, but the aggregate functions are hardly implementable in 

SWRL following its OWA. 

 

  

                                                 
13

 https://github.com/protegeproject/swrlapi/wiki/SWRLTemporalBuiltInLibrary 
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Chapter VI    Related Works 

This chapter elaborates the related works of the main contributions of this thesis, namely the 

INWS ontology, StreamJess and C-SWRL. The following subsections will explicitly describe 

the current state-of-the-art developments as compared to our approaches. 

VI. 1   State of the art Ontologies for WQM 

A large number of WQM systems have been developed in the last decades. One of the first 

WQM systems that has benefited from the ontological knowledge representation is 

OntoWEDDS [9]. The inclusion of ontological reasoning alongside case-based and rule-

based reasoning has resulted with significant improvement. In the rest of this section identify 

some of the current WQM systems as compared to our approach. 

In order to provide a portal for WQM, Tetherless World Constellation (TWC)14 has 

developed Semantic Water Quality Portal15 (TWC-SWQP) described in [90]. They are 

pioneers for including regulations ontology. However, their approach is very basic since it 

only finds the excessive threshold measurements and classifies the polluted data sources. This 

ontology was reused and eventually extended for supporting regulations standards we are 

interested in. WFD regulations for example are more specific by specifying different quality 

statuses (high, good, moderate, poor or bad) based on the category of the water quality 

element (biological, physic-chemical, hydro morphological). Another issue is the core 

ontology. TWC-SWQP core ontology is not completely suitable for our purpose. For 

example, it does not model sensors. However, some of TWC-SWQP core ontology concepts 

was reused, e.g. MeasurementSite and WaterMeasurement while from the 

regulations ontology the concepts like PollutedFacility and PollutedSite. 

                                                 
14

 TWC, http://tw.rpi.edu/web/TWC 
15

 TWC-SWQP, http://aquarius.tw.rpi.edu/projects/semantaqua/ 
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Another distinction from our approach is the OWL2 classification inference used in TWC-

SWQP. Instead, SWRL rules will be used in conjunction with OWL restrictions to support 

regulations features.  

An ontology which models sensors is the SSN ontology. This ontology is the main building 

block of our core ontology. It was extended with some other ontologies to fulfill the system‘s 

requirements. An earlier version of this ontology has been used by Taylor and Ledinger in 

[16] for designing an ontology-based complex event processing system in the field of 

heterogeneous sensor networks. Complex Event Processing (CEP) represents an area dealing 

with timely detection of events inferred from complex correlations of stream values. In [16] 

authors translate the event ontology into CEP statements for processing of events. Another 

CEP approach has been taken by Anicic et al. [14] who combine the reasoning power of 

Semantic Web with real-time detection of events affinity of CEP.  Opposed to CEP 

approaches our tendency is to build a pure Semantic Web approach by relying on Semantic 

Web standards and recommendations such as OWL and SWRL. In our previous work [3] it is 

stated the aware of the challenges appearing from the likes of open world and monotonicity 

semantics. CEP systems described in [14, 16] are implemented in Prolog, which is a Logic 

Programming language. This implies that CEP adopts the closed world assumption and non-

monotonic reasoning. But the question is, are we confident on preferring one over the other 

i.e. open over closed world assumption or monotonic over non-monotonic reasoning or one 

should support both opposite ―worlds‖. For example, if none of the observed quality elements 

has passed a threshold in closed world one may end up with a conclusion that the water body 

is healthy but in terms of open world one cannot infer this. There may still be any other 

condition which will probably classify the water body as polluted. 

VI. 2   StreamJess related works 

Two main strategies exist for systems combining ontologies with rules: hybrid and 

homogeneous approaches [3, 49]. In the former one, also called loosely-coupled approach, 

the reasoning is done by interfacing existing rule reasoner with existing ontology reasoner, 

while in the latter one, also called tightly-coupled approach, both ontologies and rules are 

embedded into the same logical language without making a priori distinction between the rule 

predicates and the ontology predicates [49].  



Related Works 

 

68 

 

VI. 2. 1   Hybrid approaches 

Hybrid approaches layer different non-DL rule systems on top of DL ontologies like: 

production rules, CEP, LP, answer set programming (ASP), etc. In the literature this approach 

is also referred to as, integration of ontologies and rules with strict semantic separation [49] 

In our previous work [3], was described in more detail about each one of these approaches 

and their pros and cons. In general, hybrid solutions have achieved the desired system 

behavior while main drawbacks include: translation and reasoner issues and side-effects 

occurrence.  

The first approaches combining ontologies with production rules are described in [49, 13]. 

Sottara et al. (2012) model a hybrid Environmental Decision Support System (EDSS) for 

Waste-Water Treatment Plants (WWTP). As an application of production rules they infer 

invalid NO3 measurement values. They argue that the WWTP domain should be modeled 

through ontologies, for modeling sensor data, paired with decision-making rules, for 

processing incoming sensor data and recommending actions to be taken. Another system 

implemented in terms of production rules has been designed by Chau (2007) in the domain of 

water quality modeling. Namely, the system simulates human expertise during the problem 

solving of coastal hydraulic and transport processes. Both forward-chaining and backward-

chaining are used collectively during the inference process Chau (2007). Even though that 

these approaches, together with our previous work [3] argue that pairing ontologies with 

production rules provides a fruitful solution, they do not make any distinction between stream 

and static data. As such, they do not implement the window feature. 

StreamRule [34] represents the pioneer of coupling stream processing systems with ASP non-

monotonic reasoning. Even though the approach is still much more prototypical it 

demonstrates how non-monotonic and time-aware reasoning can be integrated into a unique 

platform for stream data reasoning. Similarly to our approach, the continuous rule feature is 

implemented through separate steps. Namely, stream filtering and aggregation is done 

through a stream query processor such as CQELS [87], while OClingo [88] is used to enable 

non-monotonic reasoning. In StreamJess C-SPARQL was used for filtering and aggregation 

purposes, while non-monotonic reasoning is achieved through Jess rules and Jess Tab 

functions. Even though that CQELS outperforms C-SPARQL [92], C-SPARQL was 

preferred to follow its advantage to use nested aggregations and negation [97, 92]. Moreover, 

temporal operators are planned to be supported, which lack any support in CQELS [97]. The 
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main distinction of the stream reasoning component between StreamRule and StreamJess fall 

on the strategy of the inference process. Namely, OClingo, as LP-based approach, follows the 

backward chaining approach. It means to start from the conclusion of the rule and try to 

match the facts of the rule‘s condition part. Jess uses the Rete algorithm [70] to do fast 

pattern matching, which is natively forward chaining strategy. Even though the algorithm is 

ideally suited for complex event detection, it does not support temporal reasoning [13]. 

Moreover, it saves the states between cycles, which is not preferred in situations when most 

of the data change. However, its extensions are in place to support stream reasoning e.g. [13], 

[81] and [43]. Jess also supports backward chaining, which is effectively simulated in terms 

of forward chaining rules [109]. The forward chaining technique starts from the rule‘s 

condition part and finds the facts satisfying the rule‘s conclusion. Both approaches have their 

pros and cons: backward chaining is more memory efficient while forward chaining is faster 

but consumes more memory [62]. Jess was decided to be used because of the ability to use 

both strategies. Regarding the implemented features StreamRule lacks the historical data 

management component, which is one of the key requirements of SR tools [80]. StreamJess 

keeps evidence of every previous environment state. For example, one can query the INWS 

ontology for a particular measurement site‘s pollution status of the past. OClingo feeds back 

the reasoning results into Java runtime for further processing or display, while in StreamJess, 

the results are also deployed back into the knowledge base and thus the memory gets released 

and the data are available for query and retrieval. This was implemented through the Jess 

Tab‘s save-project function, which is called after processing each C-SPARQL window or 

alternatively be set to run periodically.  

Recently, Ali et al. (2016) describe the descendant of StreamRule, which support C-SPARQL 

aside of CQELS. The system supports reasoning even in incomplete information cases 

through NAF, but like StreamRule it does not support historical data management. The 

SPARQL support of NAF was utilized in StreamJess to complement the difficulties for 

enabling NAF in Jess. Moreover, the reasoning results are returned as a JSON object to the 

corresponding web socket clients, while in StreamJess the reasoning results are returned as 

standard RDF data populating corresponding ontology classes. Their stream reasoning 

component is tested only with small amounts of input data. Our initial experimental results on 

StreamJess show better performance than the OClingo component implemented in 

StreamRule and [62] for small inputs, while system‘s performance evaluation for larger 

inputs is part of our future works. Jess is memory-intensive application, but recent Java 
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Virtual Machines include flexible and configurable garbage collection subsystem which is 

responsible for finding and deleting unused objects [62]. As argued by Hill (2003), the 

adjustment of two parameters: heap size and the object nursery size, has resulted with an 

improved 25% better performance. 

Rscale [69] is another industrially-approved reasoning system which utilizes OWL 2 RL 

language profile to infer new knowledge. It enables incremental reasoning, non-monotonic 

and closed-world reasoning through translation of facts and rules into SQL tables and queries 

respectively. However, it does not support time-aware reasoning.  

ETALIS [14] together with EP-SPARQL [15] enables CEP with stream reasoning. Even 

though ETALIS offers reasoning on time and location spaces it does not implement the 

windows feature. Time-based windows are supported through its wrapper EP-SPARQL, but 

complicated aggregations within windows are not supported [97]. Moreover, there is no 

support for triple-based windows too.   

VI. 2. 2   Semantic Web approaches 

In the literature this approach is also referred to as interaction of ontologies and rules with 

tight semantic integration [49]. Even though the tight coupling of the model the rule language 

has distinct advantages e.g. no mapping mechanism is required between them, these 

approaches mainly suffer from limited expressiveness or decidability [49]. Thus, to date, 

there is not a tight-coupled approach which supports all the stream reasoning requirements. 

Approaches described by Keßler et al. (2009) and Wei and Barnaghi (2009) do not make any 

distinction between stream and static data, while also lack implementation. They prove that 

SWRL can be used to infer new and approximate knowledge in stream data domains. 

However, their approach does not consider time-aware and non-monotonic reasoning. 

Recently, a SPARQL extension [42] that uses CONSTRUCT/WHERE clauses to express 

rules has been proposed. Yet again this approach does not consider non-monotonic reasoning. 

The works presented in [77] and [78] describe a Rete-based [70] approach of RDFS 

entailment rules for producing data in a continuous manner. Although supporting time-aware 

and incremental reasoning, the approach does not deal with non-monotonic and closed-world 

reasoning. JNOMO [85] shows how SWRL can be extended to embrace non-monotonicity, 

CWA and NAF. Namely, NotExist operator is defined to ―close‖ the world and to enable 
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fact retraction. However, it does not deal with stream data, while inclusion of temporal 

reasoning is envisioned as per future works. 

VI. 3   C-SWRL related works 

As in the previous section, C-SWRL‘s related works will be divide into two broad categories: 

hybrid and homogeneous approaches.  

VI. 3. 1   Hybrid approaches 

Hybrid approaches layer different non-DL rule systems on top of ontologies like: production 

rules, CEP, LP, answer set programming (ASP), etc. In the literature this approach is also 

referred to as, integration of ontologies and rules with strict semantic separation [49]. In our 

previous work [3], is described in more detail about each one of these approaches and their 

pros and cons. In general, hybrid solutions have achieved the desired system behavior. 

However, some evident drawbacks are summarized as follows: 

 Translation issues: In these approaches, the ontology is translated into the 

corresponding formalisms of the underlying rule system. A drawback of this 

translation is that a possible loss of information may occur. For example, translating 

complex sub-class statements consisting of disjunction of classes or expressed with 

existential quantification are not possible into Plausible Logic [66].  

 Reasoner issues: Since the ontology and the rules are treated separately then a rule 

engine and a DL reasoner will run concurrently [14].  As argued in [14], some 

inferences would no longer be derived after separating OWL and rules.  

 Side-effects occurrence: When adding a new rule, in some hybrid approaches a 

possible side-effect may occur. For example, in production rule systems adding a rule 

may require extra work because of the algorithm used for executing the rules [64]. 

This makes it harder for domain experts to write rules without IT support. In some 

cases (as shown in [64]), development layers are conflate to each other making rules 

maintenance more laborious.  

A similar approach to C-SWRL is followed by StreamRule [34], the pioneer of coupling 

stream processing with ASP non-monotonic reasoning. Even though the approach is still 

much more prototypical it demonstrates how non-monotonic and time-aware reasoning can 
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be integrated into a unique platform for stream data reasoning. The continuous rule feature is 

implemented through separate steps. Namely, stream filtering and aggregation is done 

through a stream query processor such as CQELS [87], while OClingo [88] is used to enable 

non-monotonic reasoning. In C-SWRL C-SPARQL is used for filtering and aggregation 

purposes, and OWLAPI for non-monotonic reasoning. Even though that CQELS outperforms 

C-SPARQL [92], C-SPARQL was preferred following its advantage to use nested 

aggregations and negation [97, 92]. Moreover, it is a plan to support temporal operators, 

which lack any support in CQELS [97]. Another feature difference between StreamRule and 

C-SWRL is the historical data management, which is one of the key requirements of SR tools 

[80]. C-SWRL keeps evidence of every previous environment state. For example, one can 

query the ontology for a particular measurement site‘s pollution status of the past. OClingo 

feeds back the reasoning results into Java runtime for further processing or display, while in 

C-SWRL, the results are deployed back into the knowledge base and thus the memory gets 

released and the data are available for query and retrieval. This was implemented through the 

OWLAPI‘s saveOntology function, which is called after processing each C-SPARQL 

window or can be set periodically.  

Recently, Ali et al. (2016) proposed another non-monotonic ASP-based SR system, which 

provides support for C-SPARQL query engine. The system supports reasoning even in 

incomplete information cases through NAF feature, but like StreamRule it does not support 

historical data management. Moreover, the reasoning results are returned as a JSON object to 

the corresponding web socket clients, while in C-SWRL the reasoning results are returned as 

standard RDF data populating corresponding ontology classes. 

Rscale [69] is another industrially-approved reasoning system which leverages OWL 2 RL 

language profile to infer new knowledge. It enables incremental reasoning, non-monotonic 

and closed-world reasoning through translation of facts and rules into SQL tables and queries 

respectively. However, it does not support time-aware reasoning, and as a non-Semantic Web 

approach follows the hybrid approach disadvantages.  

ETALIS [14] together with EP-SPARQL [15] enables CEP with stream reasoning. Even 

though ETALIS offers reasoning on time and location spaces it does not implement the 

windows feature. Time-based windows are supported through its wrapper EP-SPARQL, but 

complicated aggregations within windows are not supported [97]. Moreover, there is no 

support for triple-based windows too.   
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VI. 3. 2   Semantic Web approaches 

In the literature this approach is also referred to as interaction of ontologies and rules with 

tight semantic integration [49]. Even though using SWRL with OWL has distinct advantages, 

these approaches mainly suffer from limited expressiveness or undecidability [49]. In C-

SWRL, the required expressivity is extended by C-SPARQL and OWLAPI functions. 

Namely, CWA reasoning has been accomplished by the former one while non-monotonic 

reasoning by the collaboration of SWRL with OWLAPI functions. Additionally, works 

described in [38], [39] and [84] prove that decidability can be retained by the so-called DL-

safe rules. For example, retaining decidability in [84] is done through restricting the interface 

between OWL and rules i.e. rules apply only to individuals explicitly introduced in the ABox. 

State of the art homogeny approaches, like the ones described in [6, 37], do not make any 

distinction between stream and static data, while also lack implementation. They prove that 

SWRL can be used to infer new and approximate knowledge in stream data domains. 

However, their approach does not consider time-aware and non-monotonic reasoning. 

Recently, a SPARQL extension [42] that uses CONSTRUCT/WHERE clauses to express 

rules has been proposed. Yet again this approach does not consider non-monotonic reasoning. 

The works presented in [77] and [78] describe a Rete-based [70] approach of RDFS 

entailment rules for producing data in a continuous manner. Although supporting time-aware 

and incremental reasoning, the approach does not deal with non-monotonic and closed-world 

reasoning. JNOMO [85] shows how SWRL can be extended to embrace non-monotonicity, 

CWA and NAF. Namely, NotExist operator is defined to ―close‖ the world and to enable 

fact retraction. However, it does not deal with stream data, while inclusion of temporal 

reasoning is envisioned as per future works. 
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Chapter VII    Conclusion and Future Works 

VII. 1   Conclusions 

Until recently most of the SR research has been dedicated on ontology and query processing 

developments. Dealing with Big Data issues through query processing is not enough. In fact, 

their use is intended for answering the user queries by not having any effect on the underlying 

knowledge base. The works on this thesis go beyond the query processing achievements and 

thus focus on rule level implications of stream data. Following their expressivity limitations, 

the Semantic Web rules have been neglected or somehow omitted when doing inference on 

stream data domains. Thus, the main contribution of this paper is in establishing a unique 

Semantic Web rule system, so called C-SWRL, capable for expressive reasoning over stream 

data. The INWS ontology was developed following this vision, an SSN-based ontology 

framework for WSNs in WQM. Moreover, a production rules system, StreamJess, was 

developed to show how this model can be used to reason over stream data. The rest of this 

chapter describes the specific contributions of this thesis.   

INWS ontology. Chapter 3 of this thesis describes the ontology that was built for modeling 

WQM systems based on WSNs. It is a SSN ontology extension that further captures the 

semantics of the specifics of this particular domain of discourse. It was shown how our 

approach differs from other ontological knowledge representations. Namely, the SSN 

ontology is designed for sensors and it does not deal with water body‘s classification. As 

such, it was used as a basis for building the INWS core ontology. Moreover, INWS supports 

different status classifications as opposed to TWC-SWQP ontology, which classifies water 

bodies into status ―polluted‖ or not.  

StreamJess. SWRL lacks the required expressivity level to reason over stream data. As an 

alternative, it was built StreamJess, a production rule system capable of expressive reasoning 

over stream data. It layers Jess on top of C-SPARQL to enable time-aware, closed-world and 

non-monotonic reasoning on stream data domains. Jess and Jess Tab functions were used to 

enable non-monotonic reasoning. Chapter 4 also described how StreamJess differs from other 

state-of-the-art approaches. Specifically, StreamJess supports both forward and backward-

chaining, which offers us the opportunity to observe the trade-off between speed and memory 
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consumption. The system was validated in a WQM case study by running multiple C-

SPARQL queries and Jess rules at the same time over the same RDF streams. Example 1 

demonstrated how C-SPARQL queries can be used to filter RDF streams in time windows. 

The outputted results were processed by Jess rules to classify individual pH observations into 

appropriate WFD statuses. Furthermore, an investigation rule fired in case of critical status 

detection and identified the potential sources of pollution. Example 2 illustrated how WFD 

classification can be realized based on the average value of the observations. Except filtering 

the RDF streams were aggregated and then grouped by measurement site to classify and 

investigate BOD5 observations.  

C-SWRL. OWL and SWRL‘s OWA and monotonic reasoning provide the main challenging 

issues while building stream data applications. As a result, current state-of-the-art SR 

approaches have avoided Semantic Web rule standards and relied on CWA and non-

monotonic rule-based systems. A SR system was built based on SWRL and thus proved the 

main hypothesis of this thesis. SWRL rules were layered on top of a state-of-the-art stream 

processing system, such as C-SPARQL, to enable time-aware, closed-world and non-

monotonic reasoning on stream data applications. It was shown that for non-monotonic 

reasoning purposes, C-SWRL uses SWRL together with OWLAPI constructs to modify the 

knowledge base. Moreover, NAF was implemented in the stream processing level. 

Furthermore, decidability issues induced by the combination of OWL and SWRL have been 

tackled by a number of works [38, 39, 84]. 

VII. 2   Future Works 

Our main activity as per future work remains the evaluation of the developed systems i.e. 

StreamJess and C-SWRL. Our initial findings show that evaluating C-SWRL proves difficult 

due to the nature of our system, code availability of related systems and published evaluation 

results. Regarding the stream processing level it has been discovered that C-SPARQL yields 

considerably lower throughput compared to JTALIS and CQELS [45]. Thus, our main 

evaluation concern remains the stream reasoning component. We agree with Barbieri et al. 

[26] urgency for development of specialized reasoners for stream data applications. It is also 

planned to compare C-SWRL performance against StreamJess [6]. Moreover, following the 

Jess‘s ability to support both forward and backward chaining, it is also planned to evaluate 
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StreamJess on both strategies and find the optimal trade-off between memory consumption 

and execution time.  

As per incremental reasoning, it is believed that maintaining materializations on rules 

following ontology changes do not differ for stream data domains. However, a deeper 

research in this direction remains per future work. 

Our future work also includes enabling temporal operators (serial, sequence, etc.) on C-

SWRL. It is planned to build the application layer that will offer the user to pose queries over 

historical data, offer the possibility to select which measurement sites and/or water quality to 

monitor, etc. 
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Chapter VIII    Appendix A – Drinking water 

observations dataset 

In this appendix will be demonstrated the conversion of CSV data into RDF. The data set 

consists of drinking waters quality measurements made in summer 2012, namely June, July 

and August on 15 measurements sites in the region of the city of Tetova. According to [45] 

during the lab analysis the following parameters were investigated: THMs, water 

temperature, turbidity, residual chlorine, pH, electrical conductivity (EC), the total residue 

after of evaporation (TRAE), total dissolved solids (TDS), chemical oxygen demand (COD), 

total organic carbon (TOC), dissolved organic carbon (DOC), ultra-violet absorbance in 254 

nm (UV254), specific ultra-violet absorbance (SUVA), nitrates and chlorides. Data were 

available in CSV format for three months. A CSV to RDF converter tool named QUIDICRC 

- QUIck 'n DIrty Csv to RDF Converter, a product of MIND-SWAP Project, was used to 

model data appropriately for importing in SSN ontology. Figure 18 represents the measured 

values in each measurement point (the first column), for each water quality parameter (the 

rest columns) during August 2012. 

 

Figure 18. Input CSV file: August2012.csv 
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A fragment of mapping file inwd.map.August.txt is given below indicating the 

chlorides values during August on each measurement site.  

<rdf:Description rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugObserveChlorides{{Sample Point}}"> 

  <rdf:type 

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Observation"/> 

  <ssn:observationResult rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#AugOutputChlorides{{Sample Point}}"/> 

  <ssn:observationResultTime rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#August2012"/> 

  <inws:observationResultLocation rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#{{Sample Point}}"/> 

  <ssn:featureOfInterest rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterFeature"/> 

  <ssn:hasQualityOfObservation rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterChlorides"/> 

</rdf:Description> 

<rdf:Description rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugOutputChlorides{{Sample Point}}"> 

  <rdf:type 

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#SensorOutput"/> 

  <ssn:hasValue rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#AugValueChlorides{{Sample Point}}"/> 

</rdf:Description> 

<rdf:Description rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugValueChlorides{{Sample Point}}"> 

  <rdf:type 

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#ObservationValue"/> 

  <dul:hasDataValue 

rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">{{Chlorides}

}</dul:hasDataValue> 

</rdf:Description> 

 

All parameter values for each month are coded in the mapping file similarly to the code 

above.  The following QUIDICRC command was used to obtain the RDF data format:  

quidicrc.pl map="inwd.map.August.txt" in="August2012.csv" 

out="CSV\output_August2012.rdf" 
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A fragment of the output RDF file output_August2012.rdf is provided below 

illustrating a conversion result as from the mapping fragment-code given above for 

measurement point T9 of chlorides values. 

<ssn:Observation rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugObserveChloridesT9"> 

   <ssn:observationResult> 

      <ssn:SensorOutput rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugOutputChloridesT9"> 

         <ssn:hasValue> 

            <ssn:ObservationValue rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugValueChloridesT9"><dul:hasDataValue 

rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">8.3</dul:hasDataVal

ue> 

            </ssn:ObservationValue> 

         </ssn:hasValue> 

      </ssn:SensorOutput> 

   </ssn:observationResult> 

   <ssn:observationResultTime rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#August2012"/> 

   <ssn:hasQualityOfObservation rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterChlorides"/> 

   <ssn:featureOfInterest rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterFeature"/> 

</ssn:Observation> 

 

Generated RDF files for each month were imported into the INWS ontology. Because the 

exact time of observations was not available, it was used the month of the observations 

encoded as OWL time ontology Interval individuals. An observation is related through 

property ssn:observationResultTime with a time interval instance, which in turn 

has ssn:startTime and ssn:endTime individuals of class Instant (a time ontology 

class). Individuals of class Instant are related with XML Schema date time data type 

through property inXSDDateTime. 
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Chapter IX    Appendix B – Rivers quality 

observations dataset 

During our experiments for the case of river‘s quality observations dataset two kinds of data 

were taken: 

 Offline SQL data generator 

 RDF streams generator 

IX. 1   Offline SQL data generator 

This kind of dataset was used for validating the INWS ontology with the expert system 

described in Section 3.3. As previously described in this section, simulated SQL data were 

transformed into RDF format with D2RQ data converter and then loaded on application 

startup. The mapping file is large, thus for brevity, will be given some examples of it here.  

At the beginning, namespaces are set up like the following: 

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . 

Then, the database connection is configured like follows: 

map:database a d2rq:Database; 

d2rq:jdbcDriver 

"com.microsoft.sqlserver.jdbc.SQLServerDriver"; 

d2rq:jdbcDSN"jdbc:sqlserver://EDI-

PC:1433;instanceName=./SQLEXPRESS;user=sa;password=****;Databa

seName=WaterQuality"; . 

And then follow the mapping to class instances and property relations. Namely, a class 

instance mapping example is encoded as follows: 
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map:Observation a d2rq:ClassMap; 

d2rq:dataStorage map:database; 

d2rq:uriPattern "http://inwatersense.uni-

pr.edu/ontologies/inws-

core.owl#oo@@dbo.WorkingDataStreams.Id|urlify@@"; 

d2rq:class ssn:Observation; . 

Each tuple of the SQL table WorkingDataStreams is converted into RDF instance of the 

class ssn:Observation. Namely, new instance names are formed by appending to the 

string http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#oo 

the ID value of the tuple. 

To illustrate the building of object property relations within instances it was used the 

following D2RQ commands: 

map:Observation_SensorOutput a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Observation; 

d2rq:property ssn:observationResult; 

d2rq:refersToClassMap map:SensorOutput; 

d2rq:join "dbo.WorkingDataStreams.Id => 

dbo.WorkingDataStreams.Id"; . 

This code relates ssn:Observation individuals with ssn:SensorOutput ones 

through ssn:observationResult object property. A data property assertion is made in 

the following form: 

map:ObservationEntryTimeInstance_TimeInstance a 

d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:ObservationEntryTimeInstance; 

d2rq:property time:inXSDDateTime; 

d2rq:column "dbo.WorkingDataStreams.EntryDate"; 

d2rq:datatype xsd:dateTime; . 

This code excerpt relates all time instances i.e. of class time:Instant with the DateTime 

values taken from the database, which will become related through 

time:inXSDDateTime data property. 
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IX. 2   RDF streams generator 

This dataset was used for validating StreamJess and C-SWRL. The data generator simulates 

sensor data in the following RDF streams general format. A single sensor observation 

includes information about the water quality parameter name, the measured value and 

measurement location. 

(http://inwatersense.uni-pr.edu/stream#obs_60 

http://www.w3.org/1999/02/22-rdf-syntax-ns#type 

http://inwatersense.uni-pr.edu/ontologies/inws-

core.owl#tmpObservation . (1481034750573)) 

(http://inwatersense.uni-pr.edu/stream#obs_60 

http://purl.oclc.org/NET/ssnx/ssn#qualityOfObservation 

http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#pH . 

(1481034750573)) 

(http://inwatersense.uni-pr.edu/stream#obs_60 

http://purl.oclc.org/NET/ssnx/ssn#observationResult 

http://inwatersense.uni-pr.edu/stream#so_60 . (1481034750573)) 

(http://inwatersense.uni-pr.edu/stream#so_60 

http://purl.oclc.org/NET/ssnx/ssn#hasValue 

http://inwatersense.uni-pr.edu/stream#ov_60 . (1481034750573)) 

(http://inwatersense.uni-pr.edu/stream#ov_60 http://www.loa-

cnr.it/ontologies/DUL.owl#hasDataValue 

10.493^^http://www.w3.org/2001/XMLSchema#double . 

(1481034750573)) 

Namely, a new tmpObservation individual obs_60 is created. It becomes related with 

the quality of observation, in this case pH through ssn:qualityOfObservation. 

Moreover, it is related with so_60 through ssn:observationResult, which in turn 

is related with ov_60 through hasValue property. The latest instance is related through 

dul:hasDataValue with the measured value, namely 10.493. The quality name, 

measurement site and the measured value are randomly generated. 
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Chapter X    Appendix C – Mapping Jess initial facts  

The  following Jess Tab commands are executed at each startup of StreamJess application: 

 

(mapclass http://purl.oclc.org/NET/ssnx/ssn#Observation) 

(mapclass http://purl.oclc.org/NET/ssnx/ssn#SensorOutput) 

(mapclass http://purl.oclc.org/NET/ssnx/ssn#ObservationValue) 

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

regulations.owl#WFDstatus) 

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

core.owl#WaterQuality) 

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

core.owl#tmpObservation) 

(mapclass http://www.w3.org/2006/time#Instant) 

(mapclass 

http://sweet.jpl.nasa.gov/2.1/realmHydroBody.owl#BodyOfWater) 

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#Pollutant) 

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#PollutionSources) 

(mapclass 

http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#WaterMeasurement) 

(mapclass http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#MeasurementSite) 

(reset) 

 

; import Java classes 

(import java.util.Random) 

(import java.util.Date) 

 

; A global random variable for building unique OWL resources 

(bind ?*r* (random)) 

 

(printout t "All StreamJess initial components loaded..." crlf) 
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Chapter XI    Appendix D – Stream reasoning 

systems source codes 

The Stream Reasoning systems developed within this thesis, C-SWRL and StreamJess, 

extend C-SPARQL with non-monotonic capabilities. Namely, C-SWRL is a unique Semantic 

Web system for reasoning over stream data, while StreamJess is a Jess system capable of 

expressive reasoning over stream data.  

The systems are written in Java 1.8. The "ready to go packs" are NetBeans projects. They are 

open source applications and are published on: http://streamreasoning.uni-pr.edu. 

To install and start using C-SWRL on your machine you should download application‘s 

source distribution from the Download section of http://streamreasoning.uni-pr.edu. Unzip 

the zip file into your local folder. Import the project into your NetBeans. Download and 

import all the jar libraries into your project including: C-SPARQL
17

 v0.9.6, OWL API
18

 

v4.0.2, SWRLTab
19

  v1.0, SWRL API Drools Engine
20

 v1.0 and JUnit
21

 v4.10. A Getting 

Started tutorial is also available from the web page. 

Similarly, to install and start using StreamJess on your machine you should download 

application‘s source distribution from the Download section of http://streamreasoning.uni-

pr.edu. Unzip the zip file into your local folder. Import the project into your NetBeans. 

Download a copy of the InWaterSense ontology Protege project including all ontology 

modules from the Download section. Download and import all the jar libraries into your 

                                                 
17

 http://streamreasoning.org/resources/c-sparql 
18

 http://owlapi.sourceforge.net/ 
19

 https://github.com/protegeproject/swrltab 
20

 https://github.com/protegeproject/swrlapi-drools-engine 
21

 http://junit.org/junit4/ 
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project including: C-SPARQL  v0.9.6, Jess
22

  v7.1p2, Jess Tab
23

  v1.7 and Protégé
24

  v3.5. A 

Getting Started tutorial is also available from the web page. 

 

  

 

  

                                                 
22

 http://www.jessrules.com/ 
23

 http://www.jessrules.com/jesswiki/view?JessTab 
24

 http://protege.stanford.edu/ 
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