

PHD STUDIES

THESIS:

RULE-BASED REASONING OVER STREAM

DATA ON SEMANTIC WEB

CANDIDATE: MENTOR:

MSc. Edmond Jajaga Prof. Dr. Lule Ahmedi

Tetovë, 2017

Abstract

2

Abstract

Semantic technologies have been extensively used for integrating stream data applications.

However, using SWRL, which has become the de facto standard rule language in Semantic

Web, has never been used in stream data applications. Its open world assumption and

monotonic nature makes SWRL powerless for doing continuous inference over stream data.

For example, using aggregate functions on a particular window of streams cannot be

expressed in SWRL.

Semantic Web standard query language, SPARQL, has been extensively used in stream data

applications. A number of its extensions have been developed to enable powerful stream

processing capabilities including data filtering and aggregation functions. One of them, C-

SPARQL, is a framework which supports continuous querying over data streams combined

with ―static‖ knowledge bases. However, stream processing systems cannot modify the

knowledge base.

State of the art stream reasoning systems have achieved the desired expressivity and

scalability level. However, as hybrid approach they suffer from translation, reasoner and side-

effects issues.

The purpose of this thesis, therefore, is to provide a unified Semantic Web stream reasoning

framework that further supports continuous inference over stream data. It was developed C-

SWRL, a system that uses SWRL rules in conjunction with C-SPARQL filtering and

aggregation of RDF streams to enable closed-world and time-aware reasoning over stream

data. Moreover, the non-monotonic behavior is supported with the use of OWLAPI

constructs. In particular, it is shown how negation as failure (NAF) can be enabled in this

system. C-SWRL is presented by means of examples in water quality monitoring.

Abstract

3

Moreover, the contribution of this thesis also includes the development of an ontology for

water quality management called INWS ontology. Namely, it is an SSN-based ontology to

support water quality classification based on different regulation authorities such as Water

Framework Directive. Furthermore, to demonstrate its usage, StreamJess was developed,

which is an expert system which uses INWS ontology for water quality monitoring and

investigation of potential sources of pollution.

Table of Contents

4

Table of Contents

Abstract .. 2

Chapter I Introduction .. 9

Chapter II Preliminaries ... 12

II. 1 Semantic Web .. 12

II. 1. 1 Semantic Web technologies ... 13

II. 2 Stream Reasoning ... 16

II. 3 Semantic Web trends on reasoning over stream data ... 18

II. 3. 1 Ontologies and queries ... 19

II. 3. 2 Rules ... 20

II. 4 Hypothesis and problem statement .. 22

II. 4. 1 Closed-world and non-monotonic reasoning ... 23

II. 4. 2 Incremental reasoning .. 24

II. 4. 3 Time-aware reasoning .. 24

Chapter III The INWS ontology .. 26

III. 1 Introduction ... 26

III. 2 Requirements Specification .. 27

III. 3 The Ontology Model ... 28

III. 3. 1 The Core Ontology ... 29

III. 3. 2 Regulations Ontology ... 33

III. 3. 3 Pollutants ontology ... 35

III. 3. 4 Use Cases .. 36

III. 4 An expert system for validating the INWS ontology.. 40

III. 4. 1 Implementation of a water quality monitoring scenario 42

Chapter IV StreamJess ... 45

IV. 1 System design and implementation .. 45

IV. 2 Examples of StreamJess ... 48

IV. 2. 1 Example 1: pH observations ... 49

IV. 2. 2 Example 2: Biochemical Oxygen Demand (BOD5) observations 54

Table of Contents

5

IV. 2. 3 Example 3: The ‗undetermined status‘ ... 56

Chapter V C-SWRL ... 58

V. 1 System design and implementation.. 58

V. 2 System validation ... 60

V. 2. 1 Example 1: BOD5 classification .. 61

V. 2. 2 Example 2: pH classifications .. 63

V. 3 Discussion and challenges ... 63

V. 3. 1 Fact modification and retraction .. 63

V. 3. 2 Aggregates ... 64

V. 3. 3 Negation as Failure .. 64

V. 3. 4 Continuous rule feature .. 64

Chapter VI Related Works ... 66

VI. 1 State of the art Ontologies for WQM ... 66

VI. 2 StreamJess related works .. 67

VI. 2. 1 Hybrid approaches .. 68

VI. 2. 2 Semantic Web approaches .. 70

VI. 3 C-SWRL related works... 71

VI. 3. 1 Hybrid approaches .. 71

VI. 3. 2 Semantic Web approaches .. 73

Chapter VII Conclusion and Future Works ... 74

VII. 1 Conclusions ... 74

VII. 2 Future Works ... 75

Chapter VIII Appendix A – Drinking water observations dataset ... 77

Chapter IX Appendix B – Rivers quality observations dataset ... 80

IX. 1 Offline SQL data generator .. 80

IX. 2 RDF streams generator ... 82

Chapter X Appendix C – Mapping Jess initial facts .. 83

References .. 86

List of Figures

6

List of Figures

Figure 1. The Semantic Web cake ... 13
Figure 2. A RDF triple example from the domain of WQM ... 14
Figure 3. An ontology excerpt ... 15

Figure 4. Ontology framework modules .. 29
Figure 5. WFD categorization of water quality elements in Protégé class/hierarchy terms 34
Figure 6. TBox and ABox statements for the INWS pollutants ontology module 36
Figure 7. TBox and ABox statements for the surface waters case study 38

Figure 8. A sample rule output .. 39
Figure 9. TBox and ABox statements for the drinking waters case study 40

Figure 10. INWS conceptual framework: data layer (grey track), ontology layer (green track)

and rules layer (yellow track) .. 41

Figure 11. Jess implemented architecture for WQM ... 42
Figure 12. The Jess system interface: initial view (left) and after WFD classification view

(right) ... 43

Figure 13. Scenario 1 example output for BOD5 observations WFD classification and sources

of pollution ... 44

Figure 14. StreamJess conceptual architecture .. 46
Figure 15. StreamJess system workflow .. 47
Figure 16. An output excerpt of the running Example 1 ... 53
Figure 17. An output excerpt of the running Example 2 ... 56

Figure 18. An output excerpt of the running examples 1 and 2 on C-SWRL.......................... 60

List of Figures

7

List of Figures

8

List of Tables

Table 1. INWS ontology namespaces .. 30

Table 2. Ontology class specifications of INWS core ontology .. 31
Table 3. Ontology properties specifications of INWS ontology.. 32

Introduction

9

Chapter I Introduction

Sensor measurements, social networks, health monitoring, smart cities and other massive data

sources are continuously producing massive amount of data called stream data. Stream data

are defined as unbounded sequences of time-varying data elements [99]. Reasoning with

these kinds of data with Semantic Web techniques has eventually contributed in a new

research area called Stream Reasoning (SR). The aim to derive high level knowledge from

low level data streams is one of the challenging requirements which cannot be easily

achieved with the classic solutions for data stream and complex event processing and with

reasoning engines for static data [40]. The World Wide Web Consortium (W3C) RDF Stream

Processing Community Group
1
 has set their mission to define common model for producing,

transmitting and continuously querying RDF Streams. However, even though different works

exist (e. g. ETALIS [14], StreamRule [34] etc.), rule-based reasoning over RDF streams still

remains vastly unexplored.

In this thesis is proposed a unified Semantic Web approach for rule-based reasoning over

stream data, thus complementing state of the art query processing engine e.g. C-SPARQL

[93] with the W3C recommended Semantic Web rule language SWRL.

Semantic technologies have proved evidence of efficient implementations on stream data

domains [3]. Firstly, OWL ontologies have been widely used for modeling stream data

domains, e.g., the SSN ontology [4]. Secondly, querying these knowledge bases has been

merely done by SPARQL extensions e.g. C-SPARQL [93], EP-SPARQL [15], etc. However,

the windows opened over streams can determine changes in the static information sources.

Managing the knowledge bases and reasoning with background and streaming data is merely

done by rule systems. Although layering different rule systems over ontologies has already

been suggested, using Semantic Web recommended rule languages, SWRL [150] and RIF

1
 Cf. https://www.w3.org/community/rsp/.

Introduction

10

[171], over stream data has to the best of our knowledge not been considered to date. Thus, as

described in our works [3, 148, 5], there is an inherent need for a Semantic Web unified rule

system capable of reasoning with stream data.

In line with this vision was developed the INWATERSENSE (hereinafter referred to as INWS)

ontology [5] and an expert system [100] demonstrating its usage. Moreover, StreamJess [6]

was developed to enable stream reasoning with production rules. More importantly,

Continuous SWRL (or simply C-SWRL) [cswrl] was developed to represent a SWRL system

for reasoning with stream data. It utilizes C-SPARQL definition of RDF streams and

windows that further supports non-monotonic and time-aware reasoning on stream data.

Publications from this thesis. The initial works on this thesis were published in [3] (cf.

Section 2.3), describing Semantic Web trends on reasoning over stream data including latest

developments on ontology, query and rule layer. The INWS ontology model is described in

[5] (cf. Chapter 3). A Jess expert system demonstrating the INWS ontology usage is

described in [100] (cf. Section 3.3), whereas its stream data version appeared in [6] (cf.

Chapter 4). The main contribution of this thesis is presented in [cswrl] (cf. Chapter 5).

Outline. The material provided in this thesis is organized as follows: Chapter 2 describe

current trends on representing stream data with semantic technologies and their pros and

cons. The next subsection states the hypothesis and presents the motivation that inspired the

works on this thesis.

Chapter 3 describes the INWS ontology, an ontology framework for modeling the domain of

the water quality monitoring (WQM) systems, which is used as a case study throughout this

thesis. INWS ontology consists of three ontology modules: core, regulations and pollutants.

All these modules are integrated into a single ontology to serve as a single access point for

the rules to enable WQM and investigation of potential sources of pollution. The model was

validated with Jess rules described in Section 3.4.1.

An expert system, StreamJess, capable of expressive reasoning over stream data is elaborated

in Chapter 4. It layers Jess on top of C-SPARQL to enable time-aware, closed-world and

non-monotonic reasoning on stream data domains. Namely, with a couple of examples in the

WQM domain it demonstrates the usage of the INWS ontology coupled with production rules

i.e. Jess rules.

Chapter 5 unfolds the main contribution of the work providing an explanation of the overall

architecture of the C-SWRL. It describes how SWRL can be enabled to run efficiently on

Introduction

11

stream data domains. Moreover, it explains how the required reasoning features missing in

SWRL are fulfilled by a stream processing system such as C-SPARQL.

The relation of the INWS ontology and C-SWRL compared to their counterparts is explained

in Chapter 6, while the challenges behind building them and related discussion take part on

Chapter 7.

Finally, Chapter 8 outlines the perspectives and concludes the thesis.

Preliminaries

12

Chapter II Preliminaries

This chapter provides a general summary of the Semantic Web and Stream Reasoning. The

definitions and formalisms of both paradigms are given in short borrowed and cited from the

related literature. Moreover, the Semantic Web trends on reasoning over stream data are

described and moreover the motivations inspiring the works on this thesis are highlighted.

They set the stage for the presentation of the work which commences in the following chapter.

Namely, the description of Semantic Web standards for data modeling, querying and

reasoning takes place on the next section. Section 2.2 describes the notions of reasoning,

stream data, stream reasoning, windows and continuous processing. Literature review on

ontology models and rule-based approaches for stream data applications are presented in

Section 2.3. The chapter concludes with hypothesis and problem statement of the study of this

thesis.

II. 1 Semantic Web

The importance of the World Wide Web (WWW) and its impact on our everyday life is huge.

At every single moment people are sharing information worldwide. They share them on

social networks, web sites, web-based applications etc. This has led in a situation where there

are too much data and less semantics. The inventor of WWWs, Sir Tim Berners-Lee, came

with another brilliant idea. He proposed to represent Web content in a form that is more

easily machine-processable and to use intelligent techniques to take advantage of these

representations. This paradigm opened up the way for new developments on the Web and

was formalized as a new discipline called Semantic Web. However, this does not mean to

eliminate all current developments on the Web, instead the Semantic Web technologies are

built to equip the human-directed information with machine-processable affinities.

Preliminaries

13

The development of the Semantic Web has a lot of industry momentum, and governments are

investing heavily. The U.S. government has established the DARPA Agent Markup

Language (DAML) Project, and the Semantic Web is among the key action lines of the

European Union‘s Sixth Framework Programme [110].

Figure 1. The Semantic Web cake

II. 1. 1 Semantic Web technologies

This section recalls current recommended standards for building Semantic Web applications.

For a concise illustration of the relation between the layers of Semantic Web applications will

be consulted the popular Semantic Web cake depicted in Figure 1.

Only definitions of the main layers will be presented below necessary for understanding the

description of this thesis.

RDF data. The first important thing is the data model. The W3C has set RDF (Resource

Description Framework) as a de facto standard for building Semantic Web models. As the

name may suggest, it describes the Web objects, called resources, and the relations between

them. Uniform Resource Identifiers (URIs) are used to uniquely identify each resource. They

can be URLs or any other unique identifiers.

The main idea behind RDF is the constitution of the so-called triples (subject, predicate,

object) between resources. For example, the statement ―Landfill sites are discharging on the

body of the river Sitnica‖, represented as RDF triple (in three forms of representation) looks

as depicted in Figure 2.

Preliminaries

14

RDF Schema. RDF Schema (RDFS) makes semantic information machine accessible, in

accordance with the Semantic Web vision. RDFS is an extension of RDF, which allows users

to describe resources using its vocabularies. For the readers familiar with SQL databases,

RDFS is to RDF, what is SQL schema to SQL data. RDFS defines classes and properties of

specific application domains.

TRIPLE

(http://inwatersense.uni-pr.edu/ontologies/inws-
core.owl#Sitnica, hasSourcesOfPollution, landfill_sites)

SEMANTIC NET

XML-based

<body:River rdf:about="http://inwatersense.uni-
pr.edu/ontologies/inws-core.owl#Sitnica">
<hasSourcesOfPollution rdf:resource="#landfill_sites"/>

</body:River>

Figure 2. A RDF triple example from the domain of WQM

OWL ontologies. The expressivity of RDF and RDF Schema that was described previously

is deliberately very limited. RDF is (roughly) limited to binary ground predicates, and RDF

Schema is (roughly) limited to a subclass hierarchy and a property hierarchy, with domain

and range definitions of these properties. However, the Web Ontology Working Group of

W3C identified a number of characteristic use cases for the Semantic Web that would require

much more expressiveness than RDF and RDF Schema offer. A number of research groups in

both the United States and Europe had already identified the need for a more powerful

ontology modeling language. This led to a joint initiative to define a richer language, called

DAML+OIL (the name is a join of the names of the U.S. proposal DAML-ONT and the

European language OIL). DAML+OIL in turn was taken as the starting point for the W3C

Web Ontology Working Group in defining OWL, the language that is aimed to be the

standardized and broadly accepted ontology language of the Semantic Web [110].

hasSourcesOfPollution

http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#Sitnica

#landfill_sites

Preliminaries

15

OWL builds upon RDF and RDFS and has the same kind of syntax. For ontological

knowledge, one may reason about: class membership, equivalence of classes, consistency and

classification. Ontologies are defined as explicit and formal specification of a

conceptualization [19]. Typically, an ontology consists of a finite list of terms and the

relationships between these terms. The terms denote important concepts (classes of objects)

of the domain. For example, in the case of WQM data model, as shown in Figure 3, the class

of measurement sites is a sub class of the class of bodies of water; the fact that potential

sources of pollution may discharge in a particular measurement site is captured by the

relation hasSourcesOfPollution linking instances of MeasurementSites with

PollutionSources ones.

Figure 3. An ontology excerpt

SPARQL queries. The default query language for RDF is SPARQL. It is a W3C standard

query language since January 15
th

, 2008. The main principle behind SPARQL is to match

RDF triples based on the values provided for the subject, predicate and object positions. It

supports variables instantiation on each of these positions to output the matching graph of

triples. The body of the query follows the SQL-like approach in the form of SELECT-

FROM-WHERE, where SELECT clause specifies the projection of the retrieved results,

FROM specifies the source being queried and WHERE clause is used to apply constraints

over the matched triples. An example query to return all the individuals of the

ssn:Observation class might be like follows:

PREFIX ssn:<http://purl.oclc.org/NET/ssnx/ssn#>

SELECT ?x
WHERE {
 ?x rdf:type ssn:Observation .
}

The PREFIX command is used to register namespaces for omitting them on the body of the

query.

Preliminaries

16

SWRL rules. The recommended rule language of the Semantic Web is Semantic Web Rule

Language (SWRL). It is a W3C member submission since May 21
st
, 2004. As an inference

system, SWRL extends OWL axioms with Horn-like rules. The rules are composed in the

form of implication between an antecedent (body) and consequent (head). Both rule‘s body

and head consist of zero or more atoms. Atoms on these rules are OWL concepts: C(x) and

P(x, y), where C is an OWL class, P is an OWL property and x, y are variables, OWL

individuals or OWL data values. Moreover, predicates sameAs(x, y),

differentFrom(x, y) and builtIn(r, x, ...) are added to the language to

include the semantics of interpreting same and different objects and SWRL built-in libraries,

respectively. For example, a SWRL rule to populate the class PHPollutedSite with

individuals of class MeasurementSite, which sources of pollution include pH ones can

be defined as follows:

 MeasurementSite(?x) ∧ hasSourcesOfPollution(?x, ?y) ∧

potentialPollutant(?y, pH) → PHPollutedSite(?x)

Namely, this rule binds the measurement sites with variable ?x and matches them with the

sources of pollution ?y present on each particular measurement site. Furthermore, each

potential pollutant ?y is checked whether it is equal to pH, if so the matched ?x

measurement sites will also become individuals of class PHPollutedSite.

Another Semantic Web rule language is the Rule Interchange Format (RIF). Since its primer

purpose is for exchanging rules between different rule paradigms, it was decided to omit the

study of its application on SR domains.

II. 2 Stream Reasoning

Reasoning is defined as the ability to generate non-trivial conclusions from premises or

assumptions [111]. The known asserted facts are termed as explicit knowledge, while the

inferred ones as implicit knowledge. The choice of RDF as data model, in combination with

ontological languages (e.g., OWL), enables the implementation of algorithms that can

―reason‖ on existing data to infer new knowledge [80]. However, this approach considers

data change occurs in low frequency rate. In social networks, smart cities, WSNs etc. data is

Preliminaries

17

super dynamic. On the time of writing this thesis
2
 each second are produced 7 426 tweets,

754 photos are uploaded on Instagram, 2 365 Skype calls are made, etc. On the other side,

sensors, logging systems, etc. are producing huge amounts. For example, it is estimated that

312 million gigabytes of data are produced by car sensors worldwide
3
. In this situations, the

reasoning tool need to process gigantic ―on the fly‖ data, e.g. sensor data, by combining them

with data that changes slowly and with background domain-specific knowledge. These new

settings have opened up new challenges known as Stream Reasoning (SR). It utilizes

Semantic Web techniques for reasoning with stream data [99]. Stream data are defined as

unbounded sequences of time-varying data elements [99]. In the literature SR is defined as

“logical reasoning in real time on gigantic and inevitably noisy data streams in order to

support the decision process of extremely large numbers of concurrent users” [29].

In fact, SR is a combination of Data Stream Management Systems (DSMSs), which have been

developed by the database community and Complex Event Processing (CEP) systems, which

have been developed by the community working on event based systems [80]. Namely, SR

utilizes the DSMS‘s notion of windows and continuous processing and CEP‘s representation

of events (data streams) with timestamp. SR can further effectively handle background

knowledge and perform reasoning.

The following statements define the notions of windows and continuous processing as

described in [80]:

Window. Traditional reasoning problems are based on the idea that all the information

available should be taken into account when solving the problem. In SR, this principle is

eliminated and the reasoning is restricted to a certain window of concern, which consists of a

subset of statement recently observed on the stream while previous information is ignored.

This is necessary for different reasons. First of all, ignoring older statements allow us to save

computing resources in terms of memory and processing time to react to important events in

real time. Further, in many real-time applications there is a silent assumption that older

information becomes irrelevant at some point.

Continuous Processing. Traditional reasoning approaches are based on the idea that the

reasoning process has a well-defined beginning (when a request is posed to the reasoner) and

end (when the result is delivered by the system). In SR, one will move from this traditional

model to a continuous processing model, where requests in terms of reasoning goals are

2
 Metrics taken from http://www.internetlivestats.com/one-second/, on 30.11.2016

3
 Metrics taken from http://www.ibmbigdatahub.com/blog/big-data-wheels, on 30.11.2016

Preliminaries

18

registered at the reasoner and are continuously evaluated against a knowledge base that is

constantly changing.

II. 3 Semantic Web trends on reasoning over stream data

Semantic Web applications are growing day to day. Meanwhile Semantic Web standards are

also maturing. Sensor rapid development and deployment in different disciplines including

weather forecasting, water quality management, civic planning for traffic management etc.

requires efficient machine communication. Many organizations and institutions have taken

initiatives to take advantage from the synthesis of both ―worlds‖ to provide semantics on

different application domains. In 2008, Kno.e.sis initiated a project for building Semantic

Sensor Web assembling sensor metadata from all over the world. The initiative is aligned-

well with standardization efforts of W3C and Open Geospatial Consortium (OGC), in

particular with Semantic Web and Semantic Web Enablement (SWE) activities, respectively.

In fact, Semantic Sensor Web represents a synergy of both initiatives by semantic annotating

of simple sensor data i.e. time, spatial and thematic data. In line with Semantic Sensor Web

the W3C Semantic Sensor Network Incubator group (the SSN-XG) recently produced an

OWL 2 [11] ontology named SSN [4], which enhances OGC SWE simple spatial and

temporal concepts with semantic annotation for analyzing and Linked Data publishing. The

SSN ontology models sensor data in four main perspectives: sensor, observation, system and

feature and property perspectives.

Sensor data are an example of stream data which are rapidly changing data. These huge

amounts of data need to be quickly consumed and reasoned over. For example, if a particular

water quality parameter drops from its allowed threshold then this information needs to be

consumed quickly and an appropriate decision should follow. Sensors continually produce

water quality parameter values. Historical and real-time data produced by sensors require a

flexible knowledge management system. An area which deals with continues execution of

queries over stream data is Data Stream Management Systems (DSMS). As indicated in [22]

it lacks the ability to reason about complex tasks and lacks a protocol for wide publication.

The Semantic Web fulfills these gaps but caching all the knowledge for rapidly changing

information is inappropriate. Similar to DSMS is Complex Event Processing (CEP) which

provides on-the-fly analysis of event streams, but cannot perform reasoning tasks [15].

Following the pros and cons of DSMS and CEP a new research area has been investigated by

Preliminaries

19

the community, namely Stream Reasoning [22]. Stream Reasoning integrates data streams,

the Semantic Web and reasoning techniques into a unique platform. Unlike in a traditional

reasoning environment, where all the information is taken into account, in stream reasoning

there are two concepts which indicate the distinguished approach. The window concept

restricts the reasoning to a certain subset of statements recently observed on the stream while

previous information is ignored, furthermore continuous processing means continuous

evaluation of streams against the knowledge base which is constantly changing.

In general, querying RDF triples of stream data has been leveraged with different SPARQL

extensions like: Streaming SPARQL [24], Continuous SPARQL (C-SPARQL) [23] and

Time-Annotated SPARQL [25].

This thesis is mainly focused on the Semantic Web rule layer. State-of-the-art rule-based

systems for dealing with sensor data reasoning are mainly:

 Hybrid systems e.g. CEP with Semantic Web in [14] and [15], production rules with

Semantic Web in [13] and [27].

 Pure Semantic Web rule systems as given in [37], [109] and [21], but which do not

deal with the streaming nature of sensor data.

The following subsections describe state-of-the-art ontology, query and rule systems for

reasoning over stream data e.g., sensor data.

II. 3. 1 Ontologies and queries

Ontologies are defined as formal specification of a shared conceptualization [19]. Because of

its knowledge reuse and sharing, the ontological knowledge model has been widely leveraged

for representing WSNs. One of the first WSNs which has benefited from including the

ontological model into its knowledge base is OntoWEDDS [9], a decision-support system for

wastewater management, which extends its previous version‘s case-based and rule-based

reasoning with WaWO [10] ontology. The evaluation results have yielded an improvement of

70-100% successful diagnosis and no impasse situations including WaWO reasoning, against

60-70% and 10 out of 57 impasse situations without using it.

Interoperability between sensors and sensing systems was enabled with the development of

the SSN ontology. Its foundation is based on DOLCE-UltraLight
4
 (DUL) ontology. To model

4
 http://www.loa-cnr.it/ontologies/DUL.owl

Preliminaries

20

a knowledge base of sensor networks one would include SSN interested features extending it

with units, location, feature and time ontologies [4]. Additional classes and properties can be

defined and added to model specific domain knowledge.

There are also initiatives dealing with sensor streaming data on query level. Shahriar et al.

(2011) proposes smart query system considering both streaming data and historical data from

marine sensor networks. ES3N [18] and C-SPARQL [23] are also dealing with sensor stream

data. C-SPARQL is an extension of SPARQL for supporting stream data querying. Query

processing is an important issue on the Semantic Sensor Web [26], but it is out of the scope

of this thesis. Instead, the focus is on the rule layer reasoning.

II. 3. 2 Rules

As claimed in the previous section almost every sensor network knowledge base is modeled

through OWL ontologies. The Semantic Sensor Web foundation has enabled semantic

enrichment of simple sensor data through these ontologies. However, inferring new and

implicit knowledge from known facts represented in ontological terms is enabled through a

powerful mechanism known as rule-based reasoning. In general, the limited expressivity of

SWRL [26], which currently has the status of W3C submission, has forced the community to

consider hybrid systems while keeping the knowledge base modeled in the form of

ontologies. Specifically, for the domain of sensor data an obstacle appears from the

continuous flow of data. These data need to be consumed quickly and efficiently infer new

knowledge by combining them with the background knowledge. Because of this nature when

trying to infer logical consequences from sensor data different rule systems are considered by

the community. In the remaining of this section they will be described briefly.

Association Rules Mining

Ding et al. (2011) have proposed a framework for association rule mining and scoping in

spatial datasets [8]. For example, they have used an association rule to infer dangerous

arsenic levels with 100% confidence.

As envisioned by Bhatnaghar and Kochhar, association rules mining performing on stream

data are increasingly in need. They are employed in the estimation of missing data streams of

data generated by sensors and frequency estimation of internet packet streams [7].

Preliminaries

21

Production Rules

Sottara et al. (2012) models a hybrid Environmental Decision Support System (EDSS) for

Waste-Water Treatment Plants (WWTP). They argue that the WWTP domain should be

modeled through ontologies, for modeling sensor data, in pair with decision-making rules, for

processing incoming sensor data and recommending actions to be taken. As an example of

production rule they infer invalid NO3 measurement values.

Another production rules implemented system has been designed by Chau (2007) in the

domain of water quality modeling. Namely, the system simulates human expertise during the

problem solving of coastal hydraulic and transport processes. Both forward-chaining and

backward-chaining are used collectively during the inference process [13].

Event Processing

Another hybrid approach while dealing with sensor data reasoning is using OWL ontologies

and CEP which is a similar area as Stream Reasoning. Taylor and Leidinger (2011) translate

the whole OWL ontology, which models the event definition and optimization and extends an

early version of SSN ontology, into CEP statements for processing in an event processing

engine. Unlike this approach, Anicic et al. (2011) have taken the advantage of both ―worlds‖

synthesizing the ability of CEP systems to process real-time complex events within multiple

streams of atomic occurrences and the Semantic Web i.e. ontological ability to effectively

handle background knowledge and perform reasoning. The later approach has resulted with a

new rule-based language ETALIS [14] and EP-SPARQL [15], a query language extending

the SPARQL language with event processing and stream reasoning capabilities. Both are

implemented in Prolog, which has its foundations in Logic Programming (LP).

Semantic Web rules

As previously mentioned on Section 2.1.1, the recommended rule system for Semantic Web

applications is SWRL. However, since 2005 the W3C has formed the Rule Interchange

Format (RIF) Working Group for building a standard for exchanging rules among rule

systems. As a result, the initiative has offered to the community a family of languages with

well-founded syntax and semantics. Namely, for the logic-based rule systems, i.e. first-order

and LP, the group has defined Basic Logic Dialect (RIF-BLD) and a subset the RIF Core

Dialect. As for action rules system, i.e. production rules and reactive rules, the group has

defined Production Rule Dialect (RIF-PRD). An extensibility framework, Framework for

Preliminaries

22

Logic Dialects (RIF-FLD), has been also defined motivated by the diversity of the logical

theories underlying the different logic-based rule systems.

RIF offers a unique standard for rule exchange between different rule systems and was not

intended to bring a one-fits-all rule language. On the other side, SWRL‘s tight coupling with

OWL provides no translation and reasoner issues. Because RIF is an exchange rule language

and using SWRL with OWL has distinct advantages, studying SWRL applications over

stream data domains was set as the main subject of this thesis.

Dealing with sensor data, a pure Semantic Web approach has been implemented by Keßler et

al. (2009). They have utilized the SWRL‘s ability to express free variables and the use of its

built-ins for modeling mathematical functions which has fulfilled the OWL‘s lack of

mathematical processing capabilities. The approach is tested for geographical information

retrieval (GIR) task for recommending personalized surf spots based on user location and

preferences. A similar approach is taken by Wei and Barnaghi (2009) who demonstrate how

rule-based reasoning can be performed over sensor observation and measurement data within

the terms of Semantic Sensor Web. They emphasize the ability of rules not just to infer

accurate but also approximate knowledge.

Henson et al. (2009) have used Jena Semantic Web Framework [12] as an engine for

reasoning with rules implemented for Semantic Sensor Web on weather domain. Using Jena

rules they infer new knowledge about sensor observation data and link the newly generated

relations with original observation time and location data.

II. 4 Hypothesis and problem statement

The main hypothesis of this thesis is to prove that the Semantic Web rule layer technologies

are capable for reasoning over stream data.

Layering SWRL rules over OWL ontologies is a recommended approach to be considered

while building Semantic Web applications. SWRL supports declarative programming. Using

a formal, declarative rules language that operates over a formal and declarative model, such

as OWL, has distinct advantages. First of all SWRL rules are not bound to a particular

execution algorithm when reasoning with a backward-chaining engine [64]. Unlike in

production systems the rule expert should not be aware of any side-effects. No side-effects

means no need to prioritize rules or have knowledge of the execution algorithm, simplifying

rule design and maintenance [64]. Secondly, no translation or mapping system is required

Preliminaries

23

between OWL DL model and SWRL rules. SWRL works directly with OWL classes and

properties.

On the other side, using SWRL, which has become the de facto standard rule language in

Semantic Web, has never been used in stream data applications. Its open world assumption

and monotonic nature makes SWRL powerless for doing continuous inference over stream

data. For example, using aggregate functions on a particular window of streams cannot be

expressed in SWRL. A SR system should support reasoning over both streaming information

and background data [153]. Moreover, some specific requirements about this property

already mentioned in state of the art systems e. g. StreamRule [34], should also be

considered. Namely, SR rule systems need to support a conjunction of reasoning features

like: closed-world, non-monotonic, incremental and time-aware reasoning. The following

subsections discuss these features in more detail.

II. 4. 1 Closed-world and non-monotonic reasoning

OWL and SWRL‘s open world assumption (OWA) and monotonic reasoning do not offer the

desired expressivity level required in Stream Reasoning application domains. For example,

modifying the river pollution status is not allowed through SWRL rules. Following the

SWRL‘s monotonic nature a measurement site instance firstly asserted as ―clean‖ cannot be

later modified to ―polluted‖.

Non-monotonic operators, aggregates and negation, are common requirements for processing

data streams [80]. For example, aggregate operations are present in almost every rule for

classifying water bodies into corresponding statuses [83] e.g. finding arsenic observations‘

average value. OWA‘s approach means one cannot ―close‖ the world to calculate an average

value. The SWRL‘s query language SQWRL [55] allows this through the use of

sqwrl:average [148]. However, that approach is not supported, since using SQWRL

constructs in SWRL rules for asserting new knowledge is not allowed [41].

Additionally, a number of example rules need to infer new knowledge in absence of a fact or

incomplete knowledge, the concept known as NAF. For example, the rule ―assign

‗undetermined status‘ to those remaining bodies of water where the agency is not, by that

date, in a position to assign a reliable interim classification due to a lack of data or other

reason‖ [83] cannot be expressed in SWRL.

Preliminaries

24

II. 4. 2 Incremental reasoning

Pre-computing and storing of implicit ontology entailments is a process known as

materialization. Every time a change occurs, a new materialization need to be computed,

which in Semantic Web is known as incremental maintenance of materialization [71]. In SR

applications, change to the facts occurs ―regularly‖. A technique for computing ontological

entailments on SR is presented in [94]. It uses LP, respectively Datalog rules to compute

incremental materialization for window-based changes of ontological entailments. This

approach is concerned with computing complete and correct materialization enforced by

changes to facts, i.e., facts are added or removed from the knowledge base.

According to [71], changes to the ontology will typically require changes in the rules.

Authors of [71] describe a technique of this type of incremental materialization. The

frequency of changes to the ontology in SR applications does not differ from the traditional

Semantic Web ones. Therefore, the techniques developed for this type of incremental

materialization intended for ―static‖ knowledge bases would also be suitable for stream data

knowledge bases.

II. 4. 3 Time-aware reasoning

SR systems should include time-annotated data i.e. the time model, and like Complex Event

Processing (CEP) should offer explicit operators for capturing temporal patterns over

streaming information [80]. INWS ontology implements the time model through OWL Time

ontology [86]. Supporting temporal operators (serial, sequence, etc.) means the system can

express the following example rule: Enhanced phosphorus levels in surface waters (that

contain adequate nitrogen) can stimulate excessive algal growth [79]. If before excessive

algal growth, enhanced phosphorus level has been observed then more probably the change

of phosphorus levels has caused the algal growth. Thus, a sequence of these events needs to

be tracked to detect the occurrence of this complex event.

Moreover, in order to enable reasoning in terms of time and quantity intervals of continuous

and possibly infinite streams, the SR notion of windows needs to be adapted for rules [34]. In

traditional settings, rules operate over all asserted facts in the ontology. This is not practical

with stream data as data flow is massive and rules may not always consider all RDF streams.

Thus, the concept of continuous rules is defined as follows:

Preliminaries

25

Definition 1. Rules that are evaluated against a particular set of RDF streams selected by a

time or tuple window are called continuous rules.

Rather than evaluating rules against all static and on-the-fly RDF streams as in traditional

Semantic Web rule systems, continuous rules will run against a time or quantity constrained

window. For example, a continuous rule to assert which sensors provided observation

measurements that are above allowed average threshold the last 3 minutes, sliding the

window every minute, will be easily expressible with the help of the time-based window.

The INWS ontology

26

Chapter III The INWS ontology

The purpose of this chapter is to describe the model of the WQM domain, which is used to

validate our developed SR systems described in the following chapters. Namely, both Jess

[72] and SWRL rules will be used to perform rule-based reasoning over the proposed model

on this chapter on StreamJess and C-SWRL, respectively. StreamJess is a production rule

system reasoning with stream data, while C-SWRL is a unique Semantic Web system for

reasoning over stream data.

The chapter resumes with introductory notes followed by ontology requirements

specifications on Section 3.2. The model design comes in Section 3.3 by describing its

modules and two case studies for its usability testing. Finally, an expert system was

developed to validate the approach.

III. 1 Introduction

The old-fashioned approach of monitoring water quality by collecting water samples

manually and transporting them to a laboratory for analyses is expensive, time-consuming,

prone to miss fluctuations of pollutant concentrations such as periodic release of toxins, may

be limited by weather conditions, and does not allow for continuous data collection [32, 56].

On the other side, the technological improvements on the sensor and network capabilities for

long range data distribution and storage provide a capable platform to utilize low cost, high

performance and real-time monitoring Wireless Sensor Networks (WSN) for WQM.

Sensor data processing encapsulates processing historical data stored on permanent

databases, as well as real-time stream data. Thus, a flexible knowledge management system is

required to represent the water domain knowledge. The research community has integrated

different representational schemes. Modern approaches are mainly ontology-based [4, 35, 42,

The INWS ontology

27

47, 49, 50]. The ontological capability of knowledge reuse and sharing is the main reason

why the ontologies are best suited for modeling water quality monitoring domains.

The current state-of-the-art WSNs are employing diverse Semantic Web technologies to not

just automate real-time monitoring of water health, but also enrich it with semantics.

Different intelligent real-time WQM systems are established and currently in place, be it

centrally managed (e.g. [35]) or distributed on sensor nodes (e.g. [50]). Query answering has

been leveraged in [35, 51] over water domain ontologies, while in [37, 38, 6] ontologies in

pair with rules are used for efficient WSN. Yet in terms of support for WQM of semantic

technologies, according to [45], there is to date no WSN for WQM able to address all

requirements on water quality standards set up by the Water Framework Directive (WFD)

[46] which represents one of the main environmental challenges in EU water policy [60].

The recent emergence of Semantic Sensor Web (SSW) has enabled the interoperability of

heterogeneous WSNs. The SSN ontology [4], an OWL2 [55] ontology, offers a unique

knowledge management base for WSNs. It is used as a foundation for development of the

INWS ontology, an ontology for WQM.

III. 2 Requirements Specification

Firstly, an ontology will be build to model a WSN for WQM system. In traditional settings,

WSN architecture for WQM is composed of spatially distributed (1) sensor nodes (also called

motes) for capturing water quality values through one or more sensor probes or automatic

samplers, (2) gateway nodes (also called sink nodes), usually one per site, for data gathering

and transferring to a (3) remote monitoring center which retrieves data, performs some

validation rules, stores them in a database, and eventually raises an alarm event if any

parameter value is out of its threshold or any other alarming event occurs.

Secondly, the ontology should model the observations made by sensing devices, e.g., by

sensor probes or automatic samplers. Observation data must be recorded such as: location

(latitude and longitude of the sensor node), time (the sampling and entry system time), and

the water quality element (e.g., pH, temperature etc.). Additionally, the ontology needs to

model devices. In particular, the ontology shall model data on where the devices are deployed

(i.e., in which sensor nodes), what RFID they hold, and the type of devices.

The INWS ontology

28

Thirdly, the system should support classification of sensor observations based on different

regulation authorities. It remains per future work to classify the observation with four

regulation authorities: the WFD, UNECE standards [57] (statistical classification of surface

freshwater quality for the maintenance of aquatic life), etc.

Finally, the ontology should model pollution sources. Pollutant is any facility or entity

discharging to the water body.

A typical scenario for WQM in a WSN platform is as below:

Scenario 1. Water quality sensor probes are deployed in different measurement sites of a

river. A sensor probe emits water quality values. One may want to (1) classify the water body

into the appropriate status according to WFD regulations and (2) identify the possible polluter

if the values are below the allowed standard.

III. 3 The Ontology Model

This section describes the INWS ontology, which will fulfill the requirements specified in the

previous section. According to [35], three types of water quality monitoring knowledge need

to be modeled: observational data items (e.g., the amount of ammonia in water) collected by

sensing devices, regulations (e.g., safe drinking water acts) published by authorities, and

water domain knowledge maintained by scientists (e.g., water-relevant contaminants, bodies

of water, etc.). This model will be extended to capture the knowledge of sources of pollution.

Namely, it consists of four ontology modules:

 The core ontology, consisting of classes and relationships for deploying real-time

observational water quality data coming from data sources i.e. sensors and lab

measurements

 The regulations ontology, a module which deals with permitted water parameter

thresholds regulated by different authorities

 The pollutants ontology, a module representing pollutants entities and their attributes

 Water expert rules, a module representing if-then water expert rules

In order to reason with ontology modules in general, or to express Scenario 1 in particular, all

of these modules will be integrated into a single ontology. As depicted in Figure 4, sensor

observation data are consumed in the core ontology. Water expert rules will classify water

bodies to appropriate status following the regulations ontology model and core ontology

The INWS ontology

29

observation data. Additionally, expert rules based on polluting semantics modeled in the

pollutants ontology identify the pollution causes.

Figure 4. Ontology framework modules

III. 3. 1 The Core Ontology

Following the ontology design pattern used in [35], the core ontology will represent

observational water quality data together with the corresponding descriptive metadata,

including the type and unit of the data item as well as the provenance metadata such as the

locations of sensor nodes, the time when the data item was observed and optionally the test

methods and devices used to generate the observation. The SSN ontology has recently

emerged as main upper ontology for modeling WSN knowledge bases. It can describe sensors

in terms of capabilities, measurement processes, observations and deployments. Thus, this

ontology is best suited to be used for our core ontology. It will eventually be extended with

additional classes and relationships as needed by the system requirements. For example, for

representing time related features OWL Time5 ontology was used, while asserting geo

location attributes longitude and latitude was realized through the basic geo location

vocabulary6. The complete list of ontology namespaces used by the ontology modules is

described in Table 1.

Because SWRL [27] rules are going to be employed in our framework, Protégé 3.5 was used

as the main ontology development environment. Version 3 was chosen over 4 because of

version 3‘s SWRL built-ins support. But, the SSN ontology is an OWL2 ontology which

5
 http://www.w3.org/TR/owl-time/

6
 http://www.w3.org/2003/01/geo/

The INWS ontology

30

cannot be directly imported in version 3. Hence, the desired SSN features were imported

extending them with other ontologies.

Table 1. INWS ontology namespaces

Prefix Namespace Description

 http:// inwatersense.uni-pr.edu/ontologies/inws-

core.owl#

INWS core ontology

ssn http://purl.oclc.org/NET/ssnx/ssn# The SSN ontology

body http://sweet.jpl.nasa.gov/2.1/realmHydroBody.owl

Describes water bodies like

river, basin etc.

chem http://sweet.jpl.nasa.gov/2.1/matr.owl# Chemical substances

ontology

elem http://sweet.jpl.nasa.gov/2.1/matrElement.owl# Chemical elements ontology

dul http://www.loa-cnr.it/ontologies/DUL.owl# Descriptive Ontology for

Linguistic and Cognitive

Engineering

event http://www.csiro.au/EventOntology# CSIRO event ontology

geo http://www.w3.org/2003/01/geo/wgs84_pos# Geographical location

ontology

qu http://www.purl.oclc.org/NET/ssnx/qu/qu# Library for Quantity Kinds

and Units

qurec http://www.purl.oclc.org/NET/ssnx/qu/qu-rec20# Ontology for Quantity Kinds

and Units: units and

quantities definitions

time http://www.w3.org/2006/time# OWL Time Ontology

twcc http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl# TWC-SWQP core ontology

twcp http://escience.rpi.edu/ontology/semanteco/2/0/poll

ution.owl#

TWC-SWQP pollution

ontology

In Table 2, a summary of the concept additions following the imported SSN features is

presented, whereas in Table 3 are listed the added properties. For brevity, OP is used as for

“object property” notation and DP for “datatype property”. For example,

CentralMonitoringNode is modeled as both geo:Point and ssn:Platform,

since it is an entity to which gateway nodes can be attached and it has geo location attributes.

The INWS ontology

31

A property hasDevice was added to indicate anything that is related with a particular

device e.g. a sensor node consisting of a set of devices.

Table 2. Ontology class specifications of INWS core ontology

Class Description and Axioms

event:Alert The class of all alerts. Has subclass event:EmailAlert

and event:SMSAlert.

DeviceType The class of device types which include: sensors, auto

samplers, RFIDs etc.

AutoSampler The class of auto samplers. Subclass of ssn:Device.

WaterFeature Subclass of ssn:FeatureOfInterest.

ssn:hasProperty some WaterQuality

twcc:WaterMeasurement Represents measurements as water feature. Subclass of

WaterFeature.

time:Instant The class of time individuals.

hasObservationTime some xsd:datetime

time:Interval The class of time intervals.

dul:hasIntervalDate some xsd:datetime

body:Basin Each basin passes through only one municipality. Each basin

involves one or more rivers.

hasAnnualFlowing only xsd:float

hasFlowingDirection some string

hasFlowingQuantity some float

hasMunicipality some Municipality.

Municipality In a community passes only one basin and some rivers.

hasCatchment only body:Basin

hasCatchment exactly 1

hasRiver some body:River.

body:River The class of all rivers.

hasBasin some body:Basin

CentralMonitoringNode Subclass of geo:Point and ssn:Platform.

GatewayNode Subclass of geo:Point and ssn:Platform.

hasCentralMonitoringNode some

CentralMonitoringNode

hasMeasurementSite only

twcc:MeasurementSite

The INWS ontology

32

hasSensingNode only SensingNode

SensingNode Subclass of geo:Point and ssn:Platform.

dul:hasLocation only SensingNodeLocation

hasDevice some ssn:Device

hasDevice min 1 ssn:Sensor

hasDevice max 1 AutoSampler

hasRFID min 1.

SensingNodeLocation Subclass of twcc:MeasurementSite.

RiversWaterQuality Subclass of WaterQuality. Super class of categories of

quality elements: Biological, Hydromorphological

and Physico-chemical.

Regarding the SSN features the following modifications/extensions were applied in order to

fulfill the needs for the WQM domain:

 In ssn:Sensor class were added subclasses based on the water quality element

measured by the sensor. For example, DissolvedOxygenSensor will hold

sensor devices measuring dissolved oxygen. A sensor measuring more than one

element can be instance of more than one ssn:Sensor subclasses.

 In the ssn:Observation class to describe the observation location the following

two axioms observationResultLocation only geo:Point and

observationResultLocation min 0 were added.

 In the class ssn:Platform the following axiom has been added

dul:attachedSystem owl:hasValue InWaterSense indicating that all

ssn:Platform instances will be attached to our system instance named

InWaterSense.

 A ssn:FeatureOfInterest subclass WaterFeature was added, having a

subclass twcc:WaterMeasurement, which in turn will eventually hold instance

RiversWaterMeasurement for our first case study and

DrinkingWaterMeasurement for the second one.

Table 3. Ontology properties specifications of INWS ontology

Property Description and Axioms Type

hasDevice Anything that has as its range ssn:Device. OP

The INWS ontology

33

hasMeasurementSite Anything that has as its range

twcc:MeasurementSite. Inverse property of

isMeasurementSiteOf.

OP

isMeasurementSiteOf Anything that has as its domain

MeasurementSite

isDeviceType Is used to represent device types. Domain: Device.

Range: DeviceType.

OP

observationResultLocation Domain: ssn:Observation. Range:

geo:Point.

OP

twcc:hasMeasurement Is sub property of ssn:hasProperty. Has sub

properties:

ssn:hasMeasurementCapability and

ssn:hasMeasurementProperty

OP

hasObservationStartTime Used for describing start time of intervals for

observations. Range: xsd:datetime

DP

hasObservationEndTime Used for describing end time of intervals for

observations. Range: xsd:datetime

DP

hasObservationTime Used for describing an instant time of observations.

Range: xsd:datetime

DP

geo:lat and geo:long For expressing geo location parameters. DP

III. 3. 2 Regulations Ontology

According to [35], regulations concerning water quality have not been modeled as part of any

existing ontology so far. Their attempt has resulted with a basic regulations ontology

following different authoritative water quality regulations. Based on our system requirements

the regulation ontologies will be modeled following the WFD regulations [46]. The system is

open to include other regulation authorities.

A class Standard holds all the regulations authorities. In the next subsection the WFD

regulations ontology will be described, while the others are suggested as future works.

The INWS ontology

34

The WFD regulations ontology

The WFD regulations classify water quality parameters into three broad categories:

biological, hydromorphological and physico-chemical [46]. This categorization is illustrated

in ontological class-hierarchy representation in Figure 5.

In WFD, instead of classifying water bodies as polluted or clean as was used in [35], water

bodies are classified through five statuses and corresponding color: high/blue, good/green,

moderate/yellow, poor/orange and bad/red. In WFD a general rule, called one-out-all-out,

applies: The quality element with the lowest (worst) status for a water body determines the

overall ecological status [46].

Figure 5. WFD categorization of water quality elements in Protégé class/hierarchy terms

A class named WFDSurfaceWaterStatus was used to capture the status hierarchy. The

semantics of status/color pairs are captured through owl:equivalentClass. To express

the WFD ecological status provided for different quality category a class

EcologicalStatus was created. Since the latest class is about WFD regulations there is

an owl:Restriction restricting the hasStandard property to have values only from

WFD class. Class twcc:WaterMeasurement was reused as a super class of all water

quality statuses e.g. HighAmmoniaMeasurement.

The INWS ontology

35

In [35] regulation status is expressed through OWL property restrictions. Based on SSN

ontology design pattern it was impossible to do this in ontology level. This is a consequence

of involvement of more individuals representing a single sensor data stream. SWRL‘s support

of free variables is a suitable solution for expressing this rationale. For example, the

following WFD rule ―If total ammonia is less than 0.04 (mean), than river belongs to the

high status of nutrient conditions‖ assuming that observations are queried after 2013-02-13

on 09:11, can be expressed through the following SQWRL query:

ssn:Observation(?x) ∧ ssn:observedProperty(?x, Ammonia) ∧

ssn:observationResultTime(?x, ?y) ∧ hasObservationTime(?y,

?z) ∧ temporal:after(?z, "2013-02-13T09:11:00") ∧

ssn:observationResult(?x, ?r) ∧ ssn:hasValue(?r, ?v) ∧

dul:hasDataValue(?v, ?val) ∧ sqwrl:makeSet(?sv, ?val) ∧

sqwrl:avg(?avg, ?sv) ∧ swrlb:greaterThan(?avg, 0.04) →

HighAmmoniaMeasurement(?o)

III. 3. 3 Pollutants ontology

The pollutants ontology will model facilities and other entities discharging wastes in water

bodies. The semantics modeled in this ontology in cooperation with other ontology modules

will help to identify the possible cause of the pollution.

The INWS pollutants ontology was designed based on examples of sources of pollution

and the potential pollutant discharges which could arise described in [79]. As depicted in

Figure 6, two classes were added: PollutionSources, describing the sources of

pollution e.g. urban storm water discharges, and Pollutants, representing contaminants

present in the environment or which might enter the environment which, due to its properties

or amount or concentration, causes harm e.g., heavy metals. A property

potentialPollutant links individuals of PollutionSources and Pollutants

(based on the Table on page 3 in [79]). PollutionSources class was also linked with a

string through two properties: pollutionSourceName, representing the name of the

pollution source, and pollutionType, representing the type of the pollution source which

can be point, diffuse or both of them. Moreover, a property hasSourcesOfPollution

was added to relate the rivers with the sources of pollution.

The INWS ontology

36

Figure 6. TBox and ABox statements for the INWS pollutants ontology module

III. 3. 4 Use Cases

Considering the domain of water quality management two use cases were approached to

illustrate the usability of INWS ontologies. In particular, a stream data scenario from the

domain of surface water quality management and static data scenario from the domain of

drinking water quality management.

Use Case 1: Surface Water Quality Management

In absence of real sensor observation data the INWS ontology was investigated in the domain

of surface waters with simulated SQL data. An SQL stream data generator was employed to

produce simulated water quality data. For detailed description of the dataset the reader is

advised to refer Appendix B Section 10.1. The generated data are then converted to RDF data

The INWS ontology

37

through D2RQ7 mapping tool. Populating the INWS ontology with the D2RQ generated data

in Protégé implied difficulties on rendering object property instances. Namely, instead of

rdf:Description statements, Protégé 3.58 expects abbreviated syntax for object

property instances. The following D2RQ generated code snippet describes an object relation

linking the sensor node instance sn3 with a sensor node location instance sl3:

<rdf:Description rdf:about="sn3">

 <dul:hasLocation rdf:resource="sl3"/>

 <rdf:type rdf:resource="&ont;SensingNode"/>

</rdf:Description>

The same assertion in terms of abbreviated RDF/XML syntax (expected in Protégé) is:

<SensingNode rdf:about="sn3">

 <dul:hasLocation rdf:resource="sl3"/>

</ont:SensingNode>

In order to enable this translation SWOOP [107] was used to load the D2RQ generated RDF

data and produce the abbreviated syntax description of object property instances. SWOOP

derived ontology is then imported in Protégé 3.5 by populating corresponding class and

property assertions of the core ontology.

For this case study the following assumptions were asserted into the core ontology:

 Axiom ssn:featureOfInterest owl:hasValue

RiversWaterMeasurement was added to indicate that all observation‘s feature

of interest is river water quality

 ssn:sensingMethodUsed owl:hasValue SimulatedData

 ssn:includesEvent owl:hasValue ScheduledObservation

For example, Figure 7 illustrates a fragment of an observation instance of stream data,

namely oo11724. As can be observed from the figure: the observation instance is a water

temperature measurement, which is a river feature (oo11724 ssn:observedProperty

Temperature, Temperature ssn:isPropertyOf

RiversWaterMeasurement); it was produced by a device named d1 (oo11724

ssn:observedBy d1); it was sampled on 2013-02-13 at 09:32:22 and it has the same

entry system time since there is no latency i.e. data are already in machine (oo11724

ssn:observationSamplingTime v11724, oo11724 hasObservationTime

7
 D2RQ Accessing Relational Databases as Virtual RDF Graphs, http://d2rq.org/

8
 Protégé ontology editor, http://protege.stanford.edu/

The INWS ontology

38

"2013-02-13T09:32:22.133"^^<xsd: date>); it‘s measured value is 15.58

(oo11724 ssn:observationResult so11724, so11724 ssn:hasValue

ov11724, ov11724 dul:hasDataValue "15.58"^^<xsd:double>); it was

measured from s2 sensing node (hasSensingNode sn2) and the sample position is

21.0E0 for longitude, and 42.0E0 latitude (oo11724 observationResultLocation

l11724, l11724 geo:lat "42.0E0"^^<xsd:double>, l11724

geo:long "21.0E0"^^<xsd:double>).

Figure 7. TBox and ABox statements for the surface waters case study

To query about each sensor node for which water quality elements is observing, the following

SQWRL [109] query can be applied:

ssn:Observation(?x) ∧ inws:hasSensingNode(?x, ?y) ∧

ssn:observedProperty(?x, ?z) ∧ sqwrl:makeSet(?sx, ?x) ∧

sqwrl:groupBy(?sx, ?z) → sqwrl:select(?y, ?z)

For our simulated data this query produced the output depicted in Figure 7.

The INWS ontology

39

Use Case 2: Drinking Water Quality Management

Drinking waters represent another water quality management domain. INWS ontology

supports population with data from this domain. CSV data available from [99] were

converted to RDF to populate the ontology. In Appendix A are given the conversion details

and mapping mechanisms. Data were taken from measurements made in 15 measurement

sites in the city of Tetova (Macedonia) during three summer months of 2012: June, July and

August.

Figure 8. A sample rule output

Axiom ssn:featureOfInterest owl:hasValue

DrinkingWaterMeasurement was added to indicate that all observation‘s feature of

interest is drinking water quality. Figure 9 illustrates an observation instance

AugObserveChloridesT9 representing measured values of Chlorides

(AugObserveChloridesT9 ssn:observedProperty

DrinkingWaterChlorides, DrinkingWaterChlorides

ssn:isPropertyOf DrinkingWaterMeasurement) during August 2012

(AugObserveChloridesT9 ssn:observationResultTime August2012,

August2012 ssn:startTime ObservationAugustStart,

ObservationAugustStart time:inXSDDateTime "2012-08-

01"^^<xsd:date>, August2012 ssn:endTime ObservationAugustEnd,

ObservationAugustStart time:inXSDDateTime "2012-08-

31"^^<xsd:date>) on measurement point T9 (AugObserveChloridesT9

ssn:observationResultLocation T9) with measured Chloride value 8.3

(AugObserveChloridesT9 ssn:observationResult

AugOutputChloridesT9, AugOutputChloridesT9 ssn:hasValue

AugValueChloridesT9, AugValueChloridesT9 dul:hasDataValue

"8.3"^^<xsd:decimal>).

The INWS ontology

40

Figure 9. TBox and ABox statements for the drinking waters case study

If one would like to calculate the median of June temperature observations, the following

SQWRL rule produced the same result obtained in [99] through Excel formulas:

ssn:Observation(?x) ∧ ssn:observedProperty(?x,

DrinkingWaterTemperature) ∧ ssn:observationResult(?x, ?r) ∧

ssn:hasValue(?r, ?v) ∧ dul:hasDataValue(?v, ?val) ∧

sqwrl:makeSet(?sv, ?val) ∧ sqwrl:median(?m, ?sv) →

sqwrl:select(?m)

III. 4 An expert system for validating the INWS ontology

The INWS ontology was validated with an expert system [100]. It was developed using the

Java Expert System Shell (Jess) [72]. Jess is a rule engine and scripting environment written

in Java. The main characteristics of the Jess system for WQM system are described in this

section. Namely, it classifies water bodies based on observed water quality values and

investigates eventual sources of water quality degradation. However, the proposed approach

does not support stream data which is subject to be included in another proposed approach

StreamJess described in the next chapter.

The INWS ontology

41

As depicted in Figure 10, our system‘s architecture consists of three layers: data, INWS

ontology and rules layer. The RDF data (up left) and RDF streams (up right) constitute the

data layer (grey track). Arrows describe data flow direction. Domain specific ABox

knowledge which does not change or changes ―slowly‖ is formulated in the form of RDF data

e.g. river names. RDF streams are defined as a sequence of RDF triples that are continuously

produced and annotated with a timestamp [9]. Water quality measured values, annotated as

RDF streams, will continuously populate the core ontology. In particular, a single RDF

stream will hold information of observed water quality value, timestamp and location. The

middle part of Figure 10 represents the INWS ontology (green track) described in the previous

section. The rule layer (yellow track) consists of common rules (bottom left) and continuous

rules (bottom right).

Figure 10. INWS conceptual framework: data layer (grey track), ontology layer (green track) and rules

layer (yellow track)

Jess rules were decided to be used as a platform for implementing our system of reasoning

over the INWS ontology framework. As a production rule system, Jess supports closed-world

and non-monotonic reasoning. Moreover, it has a tight integration with Java through Jess‘s

Java API and Protégé through JessTab
9
 plugin. JessTab is a plug-in for the Protégé

10

ontology editor and knowledge-engineering framework that allows one to use Jess and

Protégé together. The system was validated with simulated data, but it was developed for use

within the InWaterSense project with real data.

The Jess implemented architecture of our system and its related components for reasoning

over the INWS ontology are presented in Figure 11. Namely, input data in their available

9
 http://www.jessrules.com/jesswiki/view?JessTab

10
 Protégé ontology editor, http://protege.stanford.edu/

The INWS ontology

42

format, say SQL, are transformed into RDF streams using D2RQ
11

 tool. SWOOP [72] is used

to load the D2RQ generated RDF data and produce the abbreviated RDF/XML syntax for

object property instances to be readable by Protégé [62]. RDF data streams are next imported

into the core ontology. The set of rules for water quality classification based on WFD

regulations are defined and may run against the knowledge base. Moreover, a set of rules for

investigating sources of pollution by observing if eventual critical events appear are defined

and may be activated. A simple user interface was developed using Java Swing
12

, which

offers a user to monitor water quality based on the WFD regulations and to eventually find

the possible sources of pollution.

Figure 11. Jess implemented architecture for WQM

III. 4. 1 Implementation of a water quality monitoring scenario

To implement the Scenario 1 using our system interface, as depicted in Figure 12, one should

select the regulation authority i.e. WFD, select the water quality parameters which are to be

monitored and press the button ―Classify‖. The JTextArea below the ―Output‖ label serves

for printing rules messages.

The system offers multiple selections of water quality parameters. A simple rule is fired at

application startup to set up the observations interval beginning time from the earliest time of

observations streams and end time from the latest one. For brevity and clarity, Biochemical

Oxygen Demand (BOD5) observations will be demonstrated based on WFD classification.

11

 D2RQ Accessing Relational Databases as Virtual RDF Graphs, http://d2rq.org/
12

 http://openjdk.java.net/groups/swing/

The INWS ontology

43

According to WFD regulations: if BOD5 observations’ average value is between 1.3 and 1.5

mg O2/l then river belongs to “Good” status of oxygen condition, if the average is below 1.3

then river belongs to “High” status, else the river belongs to “Moderate” status. Expressing

this rationale with Jess rules was done through a number of rules. Namely, a rule of primer

priority creates auxiliary Jess facts holding BOD5 measurement values coming from the RDF

streams. It is natural to use observation values directly from the ontology mappings, but the

Jess rule which calculates the average value constrains the usage of Jess facts.

Figure 12. The Jess system interface: initial view (left) and after WFD classification view (right)

The calculated average value is asserted as a fact into the WM. Finally, another rule

WFDclassifyWaterBOD does the WFD classification based on the previously asserted

average value. This rule is illustrates below:

1 (defrule WFDclassifyWaterBOD

2 (BODaverage (v ?x)) (CurrentInterval (v ?i)) =>

3 (if (and (< ?x 1.5) (> ?x 1.3)) then (and

4 (printout t "Status for BOD is: GOOD" crlf)

5 (make-instance (str-cat "GoodBODStatus" ?*r*) of http://.../inws-

regulations.owl#GoodBODMeasurement map)

6 (make-instance (str-cat "ObservationInstantBOD" ?*r*) of

http://.../inws-regulations.owl#ObservationInstant map)

7 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*)

8 http://www.w3.org/2006/time#inXSDDateTime 1 ((new Date) toString))

9 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*)

10 http://.../inws-regulations.owl#hasStatus 1

11 (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*))

12 (slot-insert$ (str-cat "http://.../inws-core.owl#" ?i)

13 http://.../inws-regulations.owl#hasStatus 1

14 (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*))))

15 (if (< ?x 1.3) then <HIGH status classification code here>)

16 (if (> ?x 1.5) then <MODERATE status classification code here>))

The INWS ontology

44

Code in Line 1 serves for declaring a rule definition and its name. Line 2 represent the left

hand side of the rule while lines 3-16 the right hand side of the rule. The previously

calculated average value is assigned to variable ?x while the current interval of observations

present in the WM is assigned to ?i (Line 2). If ?x is between 1.5 and 1.3 begin assertions

for good status (Line 4-14). Namely, a message is printed out (Line 4); a new instance of

regulations ontology class GoodBODMeasurement is created (Line 5) (?*r* is a global

variable holding random integer numbers); a new instance of ObservationInstant

class is created (Line 6) associated with current date and time through inXSDateTime

property (Line 7-8). This instance is also related with the instance created in Line 5 through

hasStatus property (Line 9-11). Current interval instance (Line 12) is associated with the

newly asserted status instance (Line 13-14). The same steps presented in line 4-14 are

performed for the high and moderate status, which are omitted for brevity (Line 15-16).

The second part of Scenario 1 is encoded through a couple of rules. The first one detects

newly asserted instances of moderate status i.e. instances of ModerateBODMeasurement

class. If there is at least one instance the second rule will fire and find BOD5 sources of

pollution discharging in the river body. An example of BOD5 observations status is illustrated

in Figure 13. BOD5 sources of pollution are also listed after the user has clicked the ―Find

possible pollutants‖ button.

Figure 13. Scenario 1 example output for BOD5 observations WFD classification and sources of pollution

StreamJess

45

Chapter IV StreamJess

This chapter describes StreamJess, our expert system for WQM. Similarly to the system

described in Section 3.4, it uses Jess rules to enable closed-world, time-aware and non-

monotonic reasoning. However, the main difference between them is that StreamJess enables

stream data support as contrary to bringing the input data manually, which was the case of

the previous one. To offer the stream data feature, StreamJess utilizes C-SPARQL [93]

abilities to filter and aggregate RDF streams on windows. The next section describes the

proposed system design and its implementation. The chapter closes with Section 4.2, which

gives evidence of system validation.

IV. 1 System design and implementation

This section describes the conceptual architecture of the proposed approach and its

implementation. The domain of WQM is used as an illustrating case of stream data

applications.

The conceptual architecture of StreamJess is depicted in Figure 14. It consists of three layers:

data, ontology and rules layer. The RDF data (blue track left) and RDF streams (blue track

right) constitute the data layer. The green track of the figure represents the ontology model.

The concept of continuous rules described earlier in Section 2.4.3 is depicted by the pink

track of Figure 14. They will continually infer new facts by reasoning over running RDF

streams. These rules in StreamJess mainly fall into two broad categories:

 monitoring rules (pink track left), rules for continuous classification of water bodies

based on in situ observations, and

StreamJess

46

 investigation rules (pink track right), which fire after monitoring rules detect any

critical status. The information of sources of pollution stored into the pollutants

ontology is used to prejudge the causer of the pollution.

Figure 14. StreamJess conceptual architecture

In another domain, say medicine, the monitoring rules will continually classify the human‘s

health status, while the investigation ones will try to identify the potential sources of the

disease in cases of critical status detection. In StreamJess, both kinds of rules are loaded at

system start up together with other Jess Tab commands described in Appendix C. Grey

arrows describe data flow direction. As illustrated in Figure 15, our system acts as a pipeline.

Sensor produced or simulated RDF streams are firstly filtered and aggregated by C-SPARQL

queries. C-SPARQL results are published as observation data in the working memory and on

the ontology. The running Jess Rete engine indicates the facts change and infers new

knowledge according to the loaded rules.

Before implementing StreamJess, in order to enable Jess rules to reason over stream data,

three approaches were considered:

 Extending Jess with stream data reasoning features,

 Translating Jess to another rule system which supports stream data reasoning

and

StreamJess

47

 Layering Jess on top of another system to fill the gaps of Jess in support of

stream data reasoning.

Extending Jess with stream data reasoning features is very expensive. Event stream

processing with Jess is a fragile system, the code is complex and a lot of interferences have to

be taken into account [102]. As the author of [102] argues, code could not be optimized even

for simple temporal operations over event-streams. Another approach would be to translate

Jess constructs into any CEP system. To the best of our knowledge there is not any evidence

of such an approach. Albeit of the translation overhead we do not have confidence of how the

system would perform.

Figure 15. StreamJess system workflow

Given the drawbacks if approaching any of the previous two options, it was decided to layer

Jess over an existing SR system such as C-SPARQL. C-SPARQL supports time-aware

reasoning on stream data. However, as a query language, it is not intended to have any effect

on the underlying ontology. In StreamJess, Jess rules are used for populating the knowledge

base. Moreover, they enable data modifications i.e. non-monotonic reasoning and the tools

for archiving data.

Each C-SPARQL query in StreamJess eventually outputs triples of values: the water quality

name, the location of measurements and the calculated value. Every output triple is mapped

into a temporary observation class. Furthermore, for each new incoming triple a new call to

StreamJess

48

the Rete method run() is invoked for doing rule-based reasoning. As illustrated in Figure

15, the Jess engine runs the rules against the temporary observation facts and it eventually

activates the rule‘s RHS actions. The inferred knowledge forms another set of RDF data

which is stored back into the ontology for further reasoning. Namely, monitoring rules do the

water quality classifications based on the WFD regulation rules. In case a critical status is

detected, investigation rules act to identify the pollution source.

StreamJess is implemented as a Java console application. The application uses an instance of

jess.Rete which is created at system start up. It provides the central access point of the

application as it loads the ontology, builds the working memory, holds the list of rules and

offers the methods for doing CRUD operations over facts i.e. ontology individuals [19].

Multiple C-SPARQL queries and Jess rules can be defined to run over running observations.

StreamJess is open for loading other SR domain ontologies and write appropriate C-SPARQL

queries and Jess rules. It is open source software and its installation details can be found on

Appendix D.

IV. 2 Examples of StreamJess

As a proof of concept, StreamJess was implemented in a typical WQM scenario i. e. Scenario

1, based on WSN. In general, each water quality is monitored and investigated with a

monitoring rule and an investigation one. A couple of examples are used to validate the

system performance. Both examples run at the same time over the same RDF streams which

are filtered out by two different C-SPARQL queries: one for finding the average values of

water quality observations and another one for considering observation values one by one.

The simulator was set up to randomly generate observation data for an arbitrary number of 70

measurement sites and 11 water quality parameters. For details about the dataset format one

should refer Appendix B Section 10.2. A single sensor observation was arbitrarily set to be

produced every second and includes 6 RDF streams representing time, location, device and

quality of observation information. For example, in a 20 seconds window size 120 tuples will

be produced. Moreover, the system supports registering multiple streamers to run

concurrently.

StreamJess

49

IV. 2. 1 Example 1: pH observations

A WFD rule for classifying pH observations looks as follows: The pH as individual value

should be between 4.5 and 9.0 [83]. Potential sources of pollution from which pH discharges

could arise include: agricultural fertilizers, farm wastes and silage, effluent discharges from

sewage treatment works, fish farming, organic waste recycling to land, soil cultivation and

urban storm water discharges [79].

A simple C-SPARQL query to filter out incoming pH observations, i.e. pH RDF streams, is

described below:

1 REGISTER STREAM IndObservations AS

2 PREFIX inws: <http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#>

3 PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

4 PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>

5 SELECT ?qo ?loc ?dv

6 FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 10s STEP

10s]

7 WHERE {

8 ?o ssn:qualityOfObservation ?qo .

9 ?o ssn:observationResult ?r .

10 ?r ssn:hasValue ?v .

11 ?v dul:hasDataValue ?dv .

12 ?o inws:observationResultLocation ?loc

13 FILTER (?qo = inws:pH)

14 }

The query name is registered on line 1 and prefixes used in the query are declared on lines 2,

3 and 4. The query runs against the input RDF streams in the time frame of 10 seconds,

sliding the window by 10 seconds (line 6). The chosen time frame is arbitrary and can be

changed as desired. It produces triples of values (line 5): the water quality name (?qo), the

location of measurements (?loc) and the observation value (?dv). Based on the INWS

metadata descriptions the incoming observation‘s (?o) water quality name is saved on

variable ?qo (line 8). To get the observation‘s value, ?o individuals are bound with

individuals ?r through ssn:observationResult property (line 9). These ones in turn

are related with individuals of class ssn:ObservationValue (line 10), which are finally

related with the data value ?dv through dul:hasDataValue property (line 11). The

location of observations ?loc is get through inws:observationResultLocation

property. Finally, the list of observations is filtered out to include only pH observations (line

13).

StreamJess

50

Output query results, i.e. (?qo, ?loc, ?dv) triples, are consumed by Jess Tab functions

for asserting new facts into the knowledge base. make-instance and slot-insert$

functions are used for creating new class individuals and inserting property values

respectively. Namely, for every outputted triple, a new observation instance of the temporary

class tmpObservation (a subclass of the ssn:Observation class) is created.

tmpObservation holds the most current observation data which are retracted after

StreamJess rules process them. Moreover, after retraction they are archived in the

ssn:Observation class in the form of historical data. The newly created observation

individual is further related with ?qo, ?loc and ?dv values based on the structure of the

SSN and INWS metadata descriptions. The water quality name ?qo i.e. pH, becomes related

with the new observation instance through the ssn:qualityOfObservation data

property. The new observation instance also becomes related with ?loc through

observationResultLocation object property. The location instance is of type Point

of the basic geo location vocabulary, which means that it possesses longitude and latitude

properties. A new ssn:SensorOutput individual is also created for holding the observed

value ?dv. It is linked with the observation instance through ssn:observationResult

property. Meanwhile, a new instance of class ssn:ObservationValue is created to be

related with the previously created ssn:SensorOutput individual through

ssn:hasValue property. The ?dv value is assigned to it through dul:hasDataValue

data property.

To implement the scenario of this example a monitoring rule was designated for deciding the

pH status and another one for identifying the eventual sources of pollution. The monitoring

rule looks like follows (ontologies‘ full IRI are omitted for brevity):

1 (defrule classifyPHObsValues

2 (declare (salience 54))

3 (object (is-a ssn#ObservationValue)

4 (OBJECT ?ov)(DUL.owl#hasDataValue ?x))

5 (object (is-a ssn#SensorOutput)

6 (OBJECT ?so)(ssn#hasValue ?ov))

7 (object (is-a time#Instant)

8 (OBJECT ?ot)(time#inXSDDateTime ?time))

9 (object (is-a inws-core.owl#tmpObservation)

10 (OBJECT ?o)(ssn#observationResult ?so)

11 (inws-core.owl#observationResultLocation

?loc)(ssn#observationResultTime ?ot)

12 (ssn#qualityOfObservation ?qo&:(eq (instance-name ?qo) inws-

core.owl#pH)))

StreamJess

51

13 =>

14 (bind ?*r* (random))

15 (printout t "(StreamJess)")

16 (if (and (> ?x 4.5) (< ?x 9))then (and

17 (printout t "(" ?*r* ") pH status is GOOD/HIGH" crlf "On: " ?time crlf

"In: " (instance-name ?loc) crlf)

18 (make-instance (str-cat "GoodHighPHStatus" ?*r*) of inws-

regulations.owl#GoodHighPHMeasurement map)

19 (slot-insert$ (str-cat "GoodHighPHStatus" ?*r*)

inws-core.owl#observationResultLocation 1 ?loc)

20 (slot-insert$ (str-cat "GoodHighPHStatus" ?*r*)

ssn#observationResultTime 1 ot)

21 (slot-set ?loc inws-

regulations.owl#isPolluted FALSE))

22 else (and

23 (printout t "(" ?*r* ") pH status is MODERATE" crlf "On: " ?time crlf

"In: " (instance-name ?loc) crlf)

24 (make-instance (str-cat "ModeratePHStatus" ?*r*) of inws-

regulations.owl#tmpModeratePHMeasurement map)

25 (slot-insert$ (str-cat "ModeratePHStatus" ?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

26 (slot-insert$ (str-cat "ModeratePHStatus" ?*r)

ssn#observationResultTime 1 ?ot)

27 (slot-set ?loc inws-

regulations.owl#isPolluted TRUE)))

28 (make-instance (str-cat (instance-name ?o) ?*r*) of ssn#Observation

map)

29 (slot-insert$ (str-cat (instance-name ?o) ?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

30 (slot-insert$ (str-cat (instance-name ?o) ?*r*) ssn#observationResult 1

?so)

31 (slot-insert$ (str-cat (instance-name ?o) ?*r*)

ssn#observationResultTime 1 ?ot)

32 (slot-insert$ (str-cat (instance-name ?o) ?*r*)

ssn#qualityOfObservation 1 inws-core.owl#pH)

33 (unmake-instance ?o))

The first line serves for declaring rule‘s definition and asserting its name. The second one is

for declaring the rule priority. The left hand side (LHS) of the rule (lines 3-12) matches all

pH observation individuals (?o) present in the tmpObservation class. The right hand

side (RHS) of the rule (lines 14-31) asks if the matched observation value (?x) falls between

the interval of values 4.5 and 9. If so, the observation is classified in ―good/high‖ status (lines

16-21), otherwise it becomes ―moderate‖ (lines 22-27). After the classification takes place the

StreamJess

52

observation individual is stored in the ssn:Observation class (lines 28-32) and the

temporary observation individual (?o) gets retracted from the knowledge base (line 33).

Concretely, for each matched individual from temporary observation class ?o, on the RHS a

new random value is generated to be used for new individual names (line 14). An information

string is printed out in the console to indicate that the upcoming outputs are processed by

StreamJess rules (line 15). The code in line 16 asks whether the observation value ?x falls

between the allowed values for ―good/high‖ status. If so, the user gets informed about the

status detected at measurement site ?loc on time ?time. Next, a new individual of

GoodHighPHMeasurement class gets created (line 18) and related with the location (line

19) and time (line 20) of measurement. Moreover, the pollution status of the measurement

site ?loc is modified to ―clean‖ by changing its isPolluted value to ―false‖ (line 21).

str-cat command is used to concatenate strings. If the if condition specified on line 16

fails then the actions for specifying ―moderate‖ status are activated. The steps to do this are

analogical to the ones used for specifying ―good/high‖ status. Namely, before setting the

status of the measurement site as ―polluted‖ (line 27) the new status instance is created to be

of type tmpModeratePHMeasurement (line 24). These instances are temporary because

the investigation rule to find potential pH sources of pollution will make use of them and

after that will delete them. Prior to deletion the status instance is stored as a new instance of

ModeratePHMeasurement class as historical data (lines 28-32) copying all ?o

properties. The retraction is performed for preventing investigations to be activated only

once. The pH investigation rule is described below:

1 (defrule findPHsourcesOfPollution

2 (declare (salience 553))

3 (object (is-a epa.owl#MeasurementSite) (OBJECT ?loc) (inws-

pollutants.owl#hasSourcesOfPollution $?sitepoll))

4 (object (is-a inws-regulations.owl#tmpModeratePHMeasurement) (OBJECT

?mob) (inws-core.owl#observationResultLocation ?loc)

(ssn#observationResultTime ?ot))

5 =>

6 (bind ?*r* (random))

7 (make-instance (str-cat (instance-name ?mob) ?*r*) of inws-

regulations.owl#ModeratePHMeasurement map)

8 (slot-insert$ (str-cat (instance-name ?mob) ?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

9 (slot-insert$ (str-cat (instance-name ?mob) ?*r*)

ssn#observationResultTime 1 ?ot)

10 (foreach ?poll ?sitepoll

StreamJess

53

11 (foreach ?pollLsItem (slot-get ?poll inws-

pollutants.owl#potentialPollutant)

12 (if(eq (instance-name ?pollLsItem) inws-core.owl#pH) then

13 (printout t "pH pollution source: " (instance-name ?poll) " crlf)

14 (slot-insert$ (str-cat (instance-name ?mob) ?*r*) inws-

regulations.owl#foundPollutionSources 1 (instance-name ?poll)))))

15 (unmake-instance ?mob))

The rule binds the temporary ―moderate‖ status pH observations into ?mob variable and gets

its location ?loc and time ?ot (line 4). The code in line 3 relates the list of sources of

pollution present on the measurement site ?loc into the list variable $?sitepoll. The

RHS of the rule starts with archiving the temporary status instance ?mob (lines 6-9). Namely,

in absence of a Jess or Jess Tab mechanism to change the instance class assignment, the

temporary status instance is copied in a new instance of class ModeratePHMeasurement.

Afterwards, the list members of ?sitepoll is iterated (line 10) to match only those sources

of pollution which could increase pH discharges (lines 11-12). Namely, for each source of

pollution in ?sitepoll i.e. present on the measurement site, its potential pollutants list

?pollLsItem is checked if it includes pH. The matching one‘s name will be printed out

(line 13). As per saving historical data the archived status instance gets related with the list of

pollution sources through foundPollutionSources property (line 14). Finally, the

temporary status instance ?mob gets discarded from the knowledge base. An example output

of Example 1 is illustrated in Figure 16. As can be observed, C-SPARQL query

IndObservations has produced three output results. Two of these results (#1 and #3)

have been classified with ―good/high‖ status by rule classifyPHObsValues, while the

remaining one (#2) with ―moderate‖ status. Since the result #2 has been classified as a critical

status the investigation rule findPHsourcesOfPollution has fired and identified that

potential source of the pollution is ―urban storm water discharges‖ on site ms11.

Figure 16. An output excerpt of the running Example 1

StreamJess

54

IV. 2. 2 Example 2: Biochemical Oxygen Demand (BOD5) observations

A WFD rule for classifying - BOD5 observations is as follows: If BOD5 measurements in mg

O2/l is less than 1.3 (mean), then river belongs to ―high‖ status of oxygen condition; if it is

less than 1.5 then river belongs to ―good‖ status of oxygen condition; otherwise the river

belongs to ―moderate‖ status of oxygen condition [83]. Potential sources of pollution from

which BOD5 discharges could arise include: contaminated land, farm wastes and silage, fish

farming, effluent discharges from sewage treatment works, landfill sites and urban storm

water discharges [79].

The C-SPARQL query to calculate the water quality observed average value on each window

is given below:

1 REGISTER STREAM AvgObservations AS

2 PREFIX inws: <http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#>

3 PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

4 PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>

5 SELECT ?qo ?loc (AVG(?dv) AS ?avg)

6 FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 20s STEP

20s]

7 WHERE {

8 ?o ssn:qualityOfObservation ?qo .

9 ?o ssn:observationResult ?r .

10 ?r ssn:hasValue ?v .

11 ?v dul:hasDataValue ?dv .

12 ?o inws:observationResultLocation ?loc

13 FILTER (?qo != inws:pH)

14 }

15 GROUP BY ?qo ?loc

This query is similar to IndObservations query described previously. The lines 2-4 and

6-12 are the same. As opposed to it, this query filters the RDF streams to include all but those

of pH observations (line 13). Moreover, it uses aggregate functions such as AVG (line 5) to

calculate the average value of observations which are firstly grouped by water quality name

and then by location of measurement (line 15). It is arbitrary set to run every 20 seconds

sliding the window by 20 seconds (line 6).

Similar to Example 1, the output query results, i.e. (?qo, ?loc, ?avg) triples, are

consumed by Jess Tab functions to create new tmpObservation instances. Afterwards,

the following monitoring rule, similar to classifyPHObsValues, classifies BOD5

observations:

StreamJess

55

1 (defrule classifyBOD5ObsValues

...

12(ssn#qualityOfObservation ?qo&:(eq (instance-name ?qo)(instance-name

inws-core.owl#BOD))))

=>

...

16 (if (and (< ?x 1.5) (> ?x 1.3)) then (and

17 (printout t "(" ?*r* ") BOD status is GOOD" crlf "On: " ?time crlf "In:

" (instance-name ?loc) crlf)

18 (make-instance (str-cat "GoodBODStatus" ?*r*) of inws-

regulations.owl#GoodBODMeasurement map)

19 (slot-insert$ (str-cat "GoodBODStatus" ?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

 ...

20 (slot-insert$ (str-cat "GoodBODStatus" ?*r*) ssn#observationResultTime

1 ?ot)

...

22 (if (< ?x 1.3) then <HIGH status classification code here>)

23 (if (> ?x 1.5) then <MODERATE status classification code here>))

Similarly to the rule classifyPHObsValues lines 3-12 bind BOD5 observation data

present in the temporary class tmpObservation with their corresponding variables. Lines

16-20 encode the semantics of the expression ―if it is less than 1.5 then river belongs to

―good‖ status of oxygen condition‖ from the example statement. Classification of water

bodies into ―high‖ (line 22) and ―moderate‖ (line 23) status is omitted because it‘s analogical

with lines 16-20 with the appropriate change on the name of the status, the corresponding

class name and the setting of the pollution status of the site.

The streams processed by the C-SPARQL query AvgObservations will result in zero or

many BOD5 observations. The number of BOD5 observations will depend on the number of

measurement sites. For example, as illustrated in Figure 17, C-SPARQL processing of RDF

streams has resulted with 3 new observations on 3 measurement sites: ms10, ms11 and

ms12. Two observations have been classified as of ―moderate‖ status (Figure 17 line #1 and

#2) and one of ―high‖ status (Figure 17 #3).

Whenever a critical i.e. ―moderate‖ BOD5 measurement is detected the following

investigation rule to detect BOD5 potential sources of pollution is activated:

1 (defrule findBOD5SourcesOfPollution

...

=>

...

StreamJess

56

7 (make-instance (str-cat (instance-name ?mob) ?*r*) of inws-

regulations.owl#ModerateBODMeasurement map)

...

12 (if(eq (instance-name ?pollLsItem) inws-core.owl#BOD) then

13 (printout t "BOD pollution source: " (instance-name ?poll) crlf)

...

Similar to findPHsourcesOfPollution rule, this one will cause the Rete engine to

detect newly asserted individuals of tmpModerateBODMeasurement on a specified

measurement site. In fact, the LHS of the rules is the same. It will get the sources of pollution

on that site which in turn are filtered out to include only BOD5 potential pollutants (lines 9-

13). Each of the matched sources of pollution will be printed out in the console as shown in

observation #1 and #2 in Figure 17. Namely, a ―moderate‖ BOD5 status is detected on sites

ms11 and ms10. Potential sources of pollution include urban storm water discharges and

fish farming on site ms11 while urban storm water is potential source of BOD5 discharges on

site ms10.

Figure 17. An output excerpt of the running Example 2

IV. 2. 3 Example 3: The ‘undetermined status’

In StreamJess, the feature of NAF is enabled in the stream processing level. Recall the

Section 2.4.1 example of assigning the ‗undetermined status‘ to measurement sites to which

the data are missing. The SPARQL support for NAF was utilized as described in the

following query.

REGISTER STREAM undefinedMeasurmentSites AS

PREFIX inwsp: <http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#>

StreamJess

57

PREFIX rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX twcc: <http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#>

SELECT ?ms

FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 60s STEP 60s]

FROM <http://inwatersense.uni-pr.edu/ontologies/data.rdf>

WHERE {

?ms rdf:type twcc:MeasurementSite

OPTIONAL { ?ms inwsp:isPolluted ?tf } .
FILTER (!BOUND(?tf))

}

After (C-SPARQL) processing and (Jess) reasoning on each observation instance a

measurement site will be related with a ―true‖ or ―false‖ value through isPolluted

property. This query will match the remaining measurement sites, present in the background

knowledge base (data.rdf file), for which no pollution status is recorded. The query is

arbitrarily set to run every minute. On each query output result the matching measurement

sites‘ isPolluted status is set to ‗undefined‘ through Jess Tab make-instance

construct.

C-SWRL

58

Chapter V C-SWRL

The previous chapter described how production rules can be enabled to reason over stream

data. Here will be described C-SWRL, a unified Semantic Web approach for rule-based

reasoning over stream data. Similarly to StreamJess, it complements state of the art query

processing engine C-SPARQL [93] with the W3C recommended Semantic Web rule language

SWRL. The chapter is organized as follows. Section 5.1 describes the prototypical design and

implementation. System validation is presented in Section 5.2 through examples in the

domain of WQM. Section 5.3 describes the challenges encountered while building C-SWRL.

V. 1 System design and implementation

C-SWRL conceptual architecture is the same as StreamJess‘s one depicted in Figure 13.

However, it uses SWRL rules to reason over stream data. At the system design phase three

approaches were considered:

 Extending SWRL with stream data reasoning features,

 Translating SWRL to another rule system which supports stream data reasoning and

 Layering SWRL on top of another system to fill the gaps of SWRL in support of

stream data reasoning.

Extending SWRL with stream data reasoning features is very expensive since none of the

required reasoning features described in Section 1. 2. State-of-the-art SWRL extensions may

support one, but fail on another feature. For example, JNOMO [85] is a SWRL extension for

enabling non-monotonic reasoning, but it does not support time-aware reasoning. JNOMO

[85] is also an example of translating SWRL into Jena [12]. Moreover, an intelligent tutoring

system framework introduced in [73] and SweetJess [107] represent further examples of rules

interoperability systems with translating SWRL and RuleML respectively into Jess rules

C-SWRL

59

[107]. These implementations do not deal with the different nature of stream data and they

also have the potential of losing information while translating the constructs. Given the

drawbacks if approaching any of the previous two options, it was decided to layer SWRL

over an existing SR system such as C-SPARQL. C-SPARQL is specifically designed for

stream data applications. It supports closed-world and time-aware reasoning on stream data.

However, as a query language, it is not intended to have any effect on the underlying

ontology. Analogical to StreamJess, C-SWRL uses C-SPARQL output RDF streams as input

for SWRL, instead of Jess, to infer and assert new knowledge to ontologies. Firstly, input

RDF streams filtering and aggregation is done by C-SPARQL. Secondly, based on C-

SPARQL output RDF streams, OWLAPI [173] constructs are invoked for asserting new

OWL individuals in a temporary class holding all observation‘s information. Finally, these

individuals are processed by SWRL continuous rules loaded at application startup which

include monitoring and investigation rules, defined in the previous chapter. Recall that, the

information of sources of pollution stored into the pollutants ontology is used to prejudge the

causer of the pollution.

SWRLAPI [89] methods are called for doing SWRL rule-based reasoning. SWRL inference

occurs at each window processing. Namely, monitoring rules detect the temporary

observation data and classify the observation into appropriate status based on WFD standards

e.g. good, high or moderate. Whenever a moderate status is detected the investigation rules

fire to assert the polluted site and potential sources of pollution. Since this process is

continuous and iterative, to avoid reasserting of individuals into appropriate classes, the

temporary observation class needs to be cleared at each window processing. This was done

by using the OWLAPI‘s removeAxiom construct. The same construct was used to enable

system‘s non-monotonic behavior. Namely, SWRL‘s ability to assert new information in

conjunction with OWLAPI‘s one to remove information enables the modification of the

measurement site‘s pollution status. At each window processing, which processes an

observation on a particular measurement site, the last known pollution status gets removed

from the knowledge base (by OWLAPI constructs) and a new status is inferred based on the

SWRL rules. In particular, this was managed through the object property isPolluted

relating measurement sites with one of the instances true or false. Thus, one can query for

measurement sites‘ state at any time of C-SWRL running application. Moreover, every time a

measurement site gets polluted a new instance of the class PollutedSite is asserted

related with time and pollutants information.

C-SWRL

60

C-SWRL is implemented in Java following the availability of Java codes of C-SPARQL,

OWLAPI and SWRLAPI. The system is open for loading different SSN-based domain

ontologies, write appropriate C-SPARQL queries and SWRL rules. Moreover, instead of C-

SPARQL and SWRL, with less effort different SPARQL-like query processing engines

coupled with different rule languages can be integrated, respectively. C-SWRL is open source

software and its installation details can be found on Appendix D.

V. 2 System validation

As with validation of StreamJess, BOD5 and pH observations will be used to validate the

prototype of C-SWRL. The same validation settings configured for StreamJess, described in

Section 3.2 were also applied for validation of C-SWRL. Figure 18 illustrates a screenshot of

the C-SWRL console output of the running examples 1 and 2.

Figure 18. An output excerpt of the running examples 1 and 2 on C-SWRL

C-SWRL

61

V. 2. 1 Example 1: BOD5 classification

Recall Section 3.2.2 which describes the WFD rule for classification of BOD5 observations.

The same query, AvgObservations, output triples are used to populate corresponding

ontology classes. Namely, at every query execution, for each new triple (?qo, ?loc,

?avg), a new individual of a temporary INWS class tmpObservation is asserted into

the ontology using OWLAPI constructs. This individual indicates a new input observation

has arrived. Following the INWS ontology design this individual is associated through:

 ssn:qualityOfObservation with the water quality parameter name i.e. ?qo,

 observationResultLocation property with ?loc,

 ssn:observationResult with new ssn:SensorOutput instance, which in turn

is related with a new ssn:ObservationValue instance through ssn:hasValue

property, which finally is associated with the observation‘s average value ?avg through

dul:hasDataValue.

 ssn:observationResultTime with the system‘s timestamp

Next, the SWRL rule engine is executed firing the registered SWRL monitoring rules. These

rules include the following ones for BOD5 WFD classification (user-defined prefixes are

omitted for brevity):

1. tmpObservation (?x) ^ qualityOfObservation(?x,BiochemicalOxygenDemand)

^ observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ hasDataValue(?e,?z) ^

swrlb:greaterThan(?z, 1.3) ^ swrlb:lessThan(?z, 1.5) ->

GoodBODMeasurement(?x) ^ tmpGoodBODMeasurement(?x) ^ isPolluted(?ms,

false) ^ Observation(?x)

2. tmpObservation (?x) ^ qualityOfObservation(?x,BiochemicalOxygenDemand)

^ observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ hasDataValue(?e,?z) ^

swrlb:lessThan(?z, 1.3) -> HighBODMeasurement(?x) ^

tmpHighBODMeasurement(?x) ^ isPolluted(?ms, false) ^ Observation(?x)

3. tmpObservation (?x) ^ qualityOfObservation(?x, BiochemicalOxygenDemand)

^ observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ hasDataValue(?e,?z) ^

swrlb:greaterThan(?z, 1.5) -> ModerateBODMeasurement(?x)

^tmpModerateBODMeasurement(?x) ^ isPolluted(?ms, true) ^ Observation(?x)

The first rule matches the individuals (?x) of the temporary class related to BOD5

measurements and checks its average value. If it is between 1.3 and 1.5 then the status is

―good‖ i.e. the individual is asserted as of type GoodBODMeasurement. The same

C-SWRL

62

matching is done with the second and third rule respectively. For the second one the average

value is checked to be lower than 1.3 for its classification. If so, the status is ―high‖ i.e. the

individual is asserted as of type HighBODMeasurement. In the third rule the average

value is checked to be greater than 1.5 for classifying in ―moderate‖ status i.e. class

ModerateBODMeasurement. A temporary class tmpModerateBODMeasurement is

used for investigation of sources of pollution. In the first and second rule the respective

temporary classes are used for displaying the calculated status to the user interface. In each

RHS of the rules the temporary observation individual gets stored in the class

Observation as per historical data records. Moreover, the isPolluted object property

is used to maintain the current state of the measurement site. It is set to ‗false‘ in the cases of

―good‖ and ―high‖ statuses while it is set to ‗true‘ when detecting ―moderate‖ status. In the

running example the firing of rules has produced one ―moderate‖ and one ―good‖ status, as

illustrated in the lower part of Figure 17 i.e. the lines starting with (C-SWRL) label followed

by the detected status information. Since, the first C-SPARQL calculated average value is

1.503 which is greater than 1.5 the third rule has fired asserting new individuals in

ModerateBODMeasurement and tmpModerateBODMeasurement.

New individual in the class tmpModerateBODMeasurement will cause to fire the

following investigation rule, which is also registered at application startup:

4.tmpModerateBODMeasurement(?x) ^ observationResultTime(?x, ?t) ^

observationResultLocation(?x, ?ms) ^ hasSourcesOfPollution(?ms,

?pollsrc) ^ potentialPollutant(?pollsrc, BiochemicalOxygenDemand) -

> foundPollutionSources(?x, ?pollsrc)

This rule binds the ―moderate‖ status observations (?x) with measurement site‘s (?ms)

nearby BOD5 sources of pollution (?pollsrc) extracted from the knowledge base. The

observations (?x) satisfying the LHS clauses will become related with the matching pollution

sources. These results will be displayed to the user interface right after the ―moderate‖ status

detection like is shown on the first C-SPARQL result in the lower part of Figure 17. It can be

observed from the figure that the potential sources of pollution caused on ms11 are ―urban

storm water discharges‖ and ―landfill sites‖.

At the end of each window processing and reasoning, the current status of the sites are

queried and printed out. On Figure 17, the last statuses for measurement sites ms10 and

ms11 are ―clean‖ and ―polluted‖, respectively

C-SWRL

63

V. 2. 2 Example 2: pH classifications

The query to filter individual pH measurements is much simpler than the BOD5 one

(IndObservations query from Section 3.2.1). No aggregation function is used in the

SELECT statement and thus no grouping is needed. The FILTER clause uses the equal

symbol rather than the unequal one. pH observations monitoring rules are similar to the ones

(1-3) for BOD5. The main difference is the need for expressing disjunction in the body of the

rules for classification of ―moderate‖ statuses. Namely, two rules are used to encapsulate

each of the interval values (-∞, 4.5) and (9, +∞). Similarly to the investigation rule for

identifying BOD5 sources of pollution, pH investigation rule uses

tmpModeratePHMeasurement previously asserted individuals to identify the potential

sources of pollution in the polluted site.

An Example 2 output excerpt is depicted in the upper part of Figure 18. Two ―moderate‖

statuses have been detected on ms10 and ms11 and the corresponding potential sources of

pollution have been identified, while a ―good/high‖ status is detected on ms12. A summary

of the latest status of each observed measurement site is printed out at the end of the

processed window.

V. 3 Discussion and challenges

Following are described the challenges that appeared while building C-SWRL.

V. 3. 1 Fact modification and retraction

SWRL‘s inability to modify or retract the facts from the knowledge base in C-SWRL was

resolved with the help of OWLAPI construct removeAxiom. In absence of a dedicated

OWLAPI construct for modifying ABox the technique ―remove and assert‖ was used. Thus,

the issue of modifying the measurement site‘s pollution status was managed by firstly

removing its previously asserted status and then asserting the new one through firing of

SWRL rules.

C-SWRL

64

V. 3. 2 Aggregates

Following the SWRL‘s OWA, in C-SWRL, aggregate operations over stream data are done

by C-SPARQL. Query results are next deployed into the ontology through OWLAPI add

axiom construct, which will further trigger the firing of the matching rules.

V. 3. 3 Negation as Failure

NAF feature is enabled in the stream processing level. Recall Section 2 example of assigning

the ‗undetermined status‘ to measurement sites to which the data are missing. The SPARQL

support for NAF was utilized as described in the following query.

REGISTER STREAM undefinedMeasurmentSites AS

PREFIX inwsp: <http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#>

PREFIX rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX twcc: <http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#>

SELECT ?ms

FROM STREAM <http://inwatersense.uni-pr.edu/stream> [RANGE 60s STEP 60s]

FROM <http://inwatersense.uni-pr.edu/ontologies/data.rdf>

WHERE {

?ms rdf:type twcc:MeasurementSite

OPTIONAL { ?ms inwsp:isPolluted ?tf } .
FILTER (!BOUND(?tf))

}

A measurement site will be related with a ―true‖ or ―false‖ value through isPolluted

property after (C-SPARQL) processing and (SWRL) perform reasoning on each observation

instance. This query will match the remaining measurement sites, present in the background

knowledge base (data.rdf file), for which no pollution status is recorded. The query is

arbitrarily set to run every minute. On each query output result the matching measurement

sites‘ isPolluted status is set to ‗undefined‘ through OWLAPI add axiom construct.

V. 3. 4 Continuous rule feature

Continuous rule feature in C-SWRL was implemented with the help of C-SPARQL‘s time or

tuple-based windows. The rule engine gets activated after each arrival of new query results.

Similarly to C-SPARQL, the ideal solution would be to adapt the window feature on SWRL.

C-SWRL

65

This approach encapsulates stream data processing and reasoning at the same time. Filtering

data streams may be easily realized through temporal built-ins such as

SWRLTemporalBuiltInLibrary
13

, but the aggregate functions are hardly implementable in

SWRL following its OWA.

13

 https://github.com/protegeproject/swrlapi/wiki/SWRLTemporalBuiltInLibrary

Related Works

66

Chapter VI Related Works

This chapter elaborates the related works of the main contributions of this thesis, namely the

INWS ontology, StreamJess and C-SWRL. The following subsections will explicitly describe

the current state-of-the-art developments as compared to our approaches.

VI. 1 State of the art Ontologies for WQM

A large number of WQM systems have been developed in the last decades. One of the first

WQM systems that has benefited from the ontological knowledge representation is

OntoWEDDS [9]. The inclusion of ontological reasoning alongside case-based and rule-

based reasoning has resulted with significant improvement. In the rest of this section identify

some of the current WQM systems as compared to our approach.

In order to provide a portal for WQM, Tetherless World Constellation (TWC)14 has

developed Semantic Water Quality Portal15 (TWC-SWQP) described in [90]. They are

pioneers for including regulations ontology. However, their approach is very basic since it

only finds the excessive threshold measurements and classifies the polluted data sources. This

ontology was reused and eventually extended for supporting regulations standards we are

interested in. WFD regulations for example are more specific by specifying different quality

statuses (high, good, moderate, poor or bad) based on the category of the water quality

element (biological, physic-chemical, hydro morphological). Another issue is the core

ontology. TWC-SWQP core ontology is not completely suitable for our purpose. For

example, it does not model sensors. However, some of TWC-SWQP core ontology concepts

was reused, e.g. MeasurementSite and WaterMeasurement while from the

regulations ontology the concepts like PollutedFacility and PollutedSite.

14

 TWC, http://tw.rpi.edu/web/TWC
15

 TWC-SWQP, http://aquarius.tw.rpi.edu/projects/semantaqua/

Related Works

67

Another distinction from our approach is the OWL2 classification inference used in TWC-

SWQP. Instead, SWRL rules will be used in conjunction with OWL restrictions to support

regulations features.

An ontology which models sensors is the SSN ontology. This ontology is the main building

block of our core ontology. It was extended with some other ontologies to fulfill the system‘s

requirements. An earlier version of this ontology has been used by Taylor and Ledinger in

[16] for designing an ontology-based complex event processing system in the field of

heterogeneous sensor networks. Complex Event Processing (CEP) represents an area dealing

with timely detection of events inferred from complex correlations of stream values. In [16]

authors translate the event ontology into CEP statements for processing of events. Another

CEP approach has been taken by Anicic et al. [14] who combine the reasoning power of

Semantic Web with real-time detection of events affinity of CEP. Opposed to CEP

approaches our tendency is to build a pure Semantic Web approach by relying on Semantic

Web standards and recommendations such as OWL and SWRL. In our previous work [3] it is

stated the aware of the challenges appearing from the likes of open world and monotonicity

semantics. CEP systems described in [14, 16] are implemented in Prolog, which is a Logic

Programming language. This implies that CEP adopts the closed world assumption and non-

monotonic reasoning. But the question is, are we confident on preferring one over the other

i.e. open over closed world assumption or monotonic over non-monotonic reasoning or one

should support both opposite ―worlds‖. For example, if none of the observed quality elements

has passed a threshold in closed world one may end up with a conclusion that the water body

is healthy but in terms of open world one cannot infer this. There may still be any other

condition which will probably classify the water body as polluted.

VI. 2 StreamJess related works

Two main strategies exist for systems combining ontologies with rules: hybrid and

homogeneous approaches [3, 49]. In the former one, also called loosely-coupled approach,

the reasoning is done by interfacing existing rule reasoner with existing ontology reasoner,

while in the latter one, also called tightly-coupled approach, both ontologies and rules are

embedded into the same logical language without making a priori distinction between the rule

predicates and the ontology predicates [49].

Related Works

68

VI. 2. 1 Hybrid approaches

Hybrid approaches layer different non-DL rule systems on top of DL ontologies like:

production rules, CEP, LP, answer set programming (ASP), etc. In the literature this approach

is also referred to as, integration of ontologies and rules with strict semantic separation [49]

In our previous work [3], was described in more detail about each one of these approaches

and their pros and cons. In general, hybrid solutions have achieved the desired system

behavior while main drawbacks include: translation and reasoner issues and side-effects

occurrence.

The first approaches combining ontologies with production rules are described in [49, 13].

Sottara et al. (2012) model a hybrid Environmental Decision Support System (EDSS) for

Waste-Water Treatment Plants (WWTP). As an application of production rules they infer

invalid NO3 measurement values. They argue that the WWTP domain should be modeled

through ontologies, for modeling sensor data, paired with decision-making rules, for

processing incoming sensor data and recommending actions to be taken. Another system

implemented in terms of production rules has been designed by Chau (2007) in the domain of

water quality modeling. Namely, the system simulates human expertise during the problem

solving of coastal hydraulic and transport processes. Both forward-chaining and backward-

chaining are used collectively during the inference process Chau (2007). Even though that

these approaches, together with our previous work [3] argue that pairing ontologies with

production rules provides a fruitful solution, they do not make any distinction between stream

and static data. As such, they do not implement the window feature.

StreamRule [34] represents the pioneer of coupling stream processing systems with ASP non-

monotonic reasoning. Even though the approach is still much more prototypical it

demonstrates how non-monotonic and time-aware reasoning can be integrated into a unique

platform for stream data reasoning. Similarly to our approach, the continuous rule feature is

implemented through separate steps. Namely, stream filtering and aggregation is done

through a stream query processor such as CQELS [87], while OClingo [88] is used to enable

non-monotonic reasoning. In StreamJess C-SPARQL was used for filtering and aggregation

purposes, while non-monotonic reasoning is achieved through Jess rules and Jess Tab

functions. Even though that CQELS outperforms C-SPARQL [92], C-SPARQL was

preferred to follow its advantage to use nested aggregations and negation [97, 92]. Moreover,

temporal operators are planned to be supported, which lack any support in CQELS [97]. The

Related Works

69

main distinction of the stream reasoning component between StreamRule and StreamJess fall

on the strategy of the inference process. Namely, OClingo, as LP-based approach, follows the

backward chaining approach. It means to start from the conclusion of the rule and try to

match the facts of the rule‘s condition part. Jess uses the Rete algorithm [70] to do fast

pattern matching, which is natively forward chaining strategy. Even though the algorithm is

ideally suited for complex event detection, it does not support temporal reasoning [13].

Moreover, it saves the states between cycles, which is not preferred in situations when most

of the data change. However, its extensions are in place to support stream reasoning e.g. [13],

[81] and [43]. Jess also supports backward chaining, which is effectively simulated in terms

of forward chaining rules [109]. The forward chaining technique starts from the rule‘s

condition part and finds the facts satisfying the rule‘s conclusion. Both approaches have their

pros and cons: backward chaining is more memory efficient while forward chaining is faster

but consumes more memory [62]. Jess was decided to be used because of the ability to use

both strategies. Regarding the implemented features StreamRule lacks the historical data

management component, which is one of the key requirements of SR tools [80]. StreamJess

keeps evidence of every previous environment state. For example, one can query the INWS

ontology for a particular measurement site‘s pollution status of the past. OClingo feeds back

the reasoning results into Java runtime for further processing or display, while in StreamJess,

the results are also deployed back into the knowledge base and thus the memory gets released

and the data are available for query and retrieval. This was implemented through the Jess

Tab‘s save-project function, which is called after processing each C-SPARQL window or

alternatively be set to run periodically.

Recently, Ali et al. (2016) describe the descendant of StreamRule, which support C-SPARQL

aside of CQELS. The system supports reasoning even in incomplete information cases

through NAF, but like StreamRule it does not support historical data management. The

SPARQL support of NAF was utilized in StreamJess to complement the difficulties for

enabling NAF in Jess. Moreover, the reasoning results are returned as a JSON object to the

corresponding web socket clients, while in StreamJess the reasoning results are returned as

standard RDF data populating corresponding ontology classes. Their stream reasoning

component is tested only with small amounts of input data. Our initial experimental results on

StreamJess show better performance than the OClingo component implemented in

StreamRule and [62] for small inputs, while system‘s performance evaluation for larger

inputs is part of our future works. Jess is memory-intensive application, but recent Java

Related Works

70

Virtual Machines include flexible and configurable garbage collection subsystem which is

responsible for finding and deleting unused objects [62]. As argued by Hill (2003), the

adjustment of two parameters: heap size and the object nursery size, has resulted with an

improved 25% better performance.

Rscale [69] is another industrially-approved reasoning system which utilizes OWL 2 RL

language profile to infer new knowledge. It enables incremental reasoning, non-monotonic

and closed-world reasoning through translation of facts and rules into SQL tables and queries

respectively. However, it does not support time-aware reasoning.

ETALIS [14] together with EP-SPARQL [15] enables CEP with stream reasoning. Even

though ETALIS offers reasoning on time and location spaces it does not implement the

windows feature. Time-based windows are supported through its wrapper EP-SPARQL, but

complicated aggregations within windows are not supported [97]. Moreover, there is no

support for triple-based windows too.

VI. 2. 2 Semantic Web approaches

In the literature this approach is also referred to as interaction of ontologies and rules with

tight semantic integration [49]. Even though the tight coupling of the model the rule language

has distinct advantages e.g. no mapping mechanism is required between them, these

approaches mainly suffer from limited expressiveness or decidability [49]. Thus, to date,

there is not a tight-coupled approach which supports all the stream reasoning requirements.

Approaches described by Keßler et al. (2009) and Wei and Barnaghi (2009) do not make any

distinction between stream and static data, while also lack implementation. They prove that

SWRL can be used to infer new and approximate knowledge in stream data domains.

However, their approach does not consider time-aware and non-monotonic reasoning.

Recently, a SPARQL extension [42] that uses CONSTRUCT/WHERE clauses to express

rules has been proposed. Yet again this approach does not consider non-monotonic reasoning.

The works presented in [77] and [78] describe a Rete-based [70] approach of RDFS

entailment rules for producing data in a continuous manner. Although supporting time-aware

and incremental reasoning, the approach does not deal with non-monotonic and closed-world

reasoning. JNOMO [85] shows how SWRL can be extended to embrace non-monotonicity,

CWA and NAF. Namely, NotExist operator is defined to ―close‖ the world and to enable

Related Works

71

fact retraction. However, it does not deal with stream data, while inclusion of temporal

reasoning is envisioned as per future works.

VI. 3 C-SWRL related works

As in the previous section, C-SWRL‘s related works will be divide into two broad categories:

hybrid and homogeneous approaches.

VI. 3. 1 Hybrid approaches

Hybrid approaches layer different non-DL rule systems on top of ontologies like: production

rules, CEP, LP, answer set programming (ASP), etc. In the literature this approach is also

referred to as, integration of ontologies and rules with strict semantic separation [49]. In our

previous work [3], is described in more detail about each one of these approaches and their

pros and cons. In general, hybrid solutions have achieved the desired system behavior.

However, some evident drawbacks are summarized as follows:

 Translation issues: In these approaches, the ontology is translated into the

corresponding formalisms of the underlying rule system. A drawback of this

translation is that a possible loss of information may occur. For example, translating

complex sub-class statements consisting of disjunction of classes or expressed with

existential quantification are not possible into Plausible Logic [66].

 Reasoner issues: Since the ontology and the rules are treated separately then a rule

engine and a DL reasoner will run concurrently [14]. As argued in [14], some

inferences would no longer be derived after separating OWL and rules.

 Side-effects occurrence: When adding a new rule, in some hybrid approaches a

possible side-effect may occur. For example, in production rule systems adding a rule

may require extra work because of the algorithm used for executing the rules [64].

This makes it harder for domain experts to write rules without IT support. In some

cases (as shown in [64]), development layers are conflate to each other making rules

maintenance more laborious.

A similar approach to C-SWRL is followed by StreamRule [34], the pioneer of coupling

stream processing with ASP non-monotonic reasoning. Even though the approach is still

much more prototypical it demonstrates how non-monotonic and time-aware reasoning can

Related Works

72

be integrated into a unique platform for stream data reasoning. The continuous rule feature is

implemented through separate steps. Namely, stream filtering and aggregation is done

through a stream query processor such as CQELS [87], while OClingo [88] is used to enable

non-monotonic reasoning. In C-SWRL C-SPARQL is used for filtering and aggregation

purposes, and OWLAPI for non-monotonic reasoning. Even though that CQELS outperforms

C-SPARQL [92], C-SPARQL was preferred following its advantage to use nested

aggregations and negation [97, 92]. Moreover, it is a plan to support temporal operators,

which lack any support in CQELS [97]. Another feature difference between StreamRule and

C-SWRL is the historical data management, which is one of the key requirements of SR tools

[80]. C-SWRL keeps evidence of every previous environment state. For example, one can

query the ontology for a particular measurement site‘s pollution status of the past. OClingo

feeds back the reasoning results into Java runtime for further processing or display, while in

C-SWRL, the results are deployed back into the knowledge base and thus the memory gets

released and the data are available for query and retrieval. This was implemented through the

OWLAPI‘s saveOntology function, which is called after processing each C-SPARQL

window or can be set periodically.

Recently, Ali et al. (2016) proposed another non-monotonic ASP-based SR system, which

provides support for C-SPARQL query engine. The system supports reasoning even in

incomplete information cases through NAF feature, but like StreamRule it does not support

historical data management. Moreover, the reasoning results are returned as a JSON object to

the corresponding web socket clients, while in C-SWRL the reasoning results are returned as

standard RDF data populating corresponding ontology classes.

Rscale [69] is another industrially-approved reasoning system which leverages OWL 2 RL

language profile to infer new knowledge. It enables incremental reasoning, non-monotonic

and closed-world reasoning through translation of facts and rules into SQL tables and queries

respectively. However, it does not support time-aware reasoning, and as a non-Semantic Web

approach follows the hybrid approach disadvantages.

ETALIS [14] together with EP-SPARQL [15] enables CEP with stream reasoning. Even

though ETALIS offers reasoning on time and location spaces it does not implement the

windows feature. Time-based windows are supported through its wrapper EP-SPARQL, but

complicated aggregations within windows are not supported [97]. Moreover, there is no

support for triple-based windows too.

Related Works

73

VI. 3. 2 Semantic Web approaches

In the literature this approach is also referred to as interaction of ontologies and rules with

tight semantic integration [49]. Even though using SWRL with OWL has distinct advantages,

these approaches mainly suffer from limited expressiveness or undecidability [49]. In C-

SWRL, the required expressivity is extended by C-SPARQL and OWLAPI functions.

Namely, CWA reasoning has been accomplished by the former one while non-monotonic

reasoning by the collaboration of SWRL with OWLAPI functions. Additionally, works

described in [38], [39] and [84] prove that decidability can be retained by the so-called DL-

safe rules. For example, retaining decidability in [84] is done through restricting the interface

between OWL and rules i.e. rules apply only to individuals explicitly introduced in the ABox.

State of the art homogeny approaches, like the ones described in [6, 37], do not make any

distinction between stream and static data, while also lack implementation. They prove that

SWRL can be used to infer new and approximate knowledge in stream data domains.

However, their approach does not consider time-aware and non-monotonic reasoning.

Recently, a SPARQL extension [42] that uses CONSTRUCT/WHERE clauses to express

rules has been proposed. Yet again this approach does not consider non-monotonic reasoning.

The works presented in [77] and [78] describe a Rete-based [70] approach of RDFS

entailment rules for producing data in a continuous manner. Although supporting time-aware

and incremental reasoning, the approach does not deal with non-monotonic and closed-world

reasoning. JNOMO [85] shows how SWRL can be extended to embrace non-monotonicity,

CWA and NAF. Namely, NotExist operator is defined to ―close‖ the world and to enable

fact retraction. However, it does not deal with stream data, while inclusion of temporal

reasoning is envisioned as per future works.

Conclusion and Future Works

74

Chapter VII Conclusion and Future Works

VII. 1 Conclusions

Until recently most of the SR research has been dedicated on ontology and query processing

developments. Dealing with Big Data issues through query processing is not enough. In fact,

their use is intended for answering the user queries by not having any effect on the underlying

knowledge base. The works on this thesis go beyond the query processing achievements and

thus focus on rule level implications of stream data. Following their expressivity limitations,

the Semantic Web rules have been neglected or somehow omitted when doing inference on

stream data domains. Thus, the main contribution of this paper is in establishing a unique

Semantic Web rule system, so called C-SWRL, capable for expressive reasoning over stream

data. The INWS ontology was developed following this vision, an SSN-based ontology

framework for WSNs in WQM. Moreover, a production rules system, StreamJess, was

developed to show how this model can be used to reason over stream data. The rest of this

chapter describes the specific contributions of this thesis.

INWS ontology. Chapter 3 of this thesis describes the ontology that was built for modeling

WQM systems based on WSNs. It is a SSN ontology extension that further captures the

semantics of the specifics of this particular domain of discourse. It was shown how our

approach differs from other ontological knowledge representations. Namely, the SSN

ontology is designed for sensors and it does not deal with water body‘s classification. As

such, it was used as a basis for building the INWS core ontology. Moreover, INWS supports

different status classifications as opposed to TWC-SWQP ontology, which classifies water

bodies into status ―polluted‖ or not.

StreamJess. SWRL lacks the required expressivity level to reason over stream data. As an

alternative, it was built StreamJess, a production rule system capable of expressive reasoning

over stream data. It layers Jess on top of C-SPARQL to enable time-aware, closed-world and

non-monotonic reasoning on stream data domains. Jess and Jess Tab functions were used to

enable non-monotonic reasoning. Chapter 4 also described how StreamJess differs from other

state-of-the-art approaches. Specifically, StreamJess supports both forward and backward-

chaining, which offers us the opportunity to observe the trade-off between speed and memory

Conclusion and Future Works

75

consumption. The system was validated in a WQM case study by running multiple C-

SPARQL queries and Jess rules at the same time over the same RDF streams. Example 1

demonstrated how C-SPARQL queries can be used to filter RDF streams in time windows.

The outputted results were processed by Jess rules to classify individual pH observations into

appropriate WFD statuses. Furthermore, an investigation rule fired in case of critical status

detection and identified the potential sources of pollution. Example 2 illustrated how WFD

classification can be realized based on the average value of the observations. Except filtering

the RDF streams were aggregated and then grouped by measurement site to classify and

investigate BOD5 observations.

C-SWRL. OWL and SWRL‘s OWA and monotonic reasoning provide the main challenging

issues while building stream data applications. As a result, current state-of-the-art SR

approaches have avoided Semantic Web rule standards and relied on CWA and non-

monotonic rule-based systems. A SR system was built based on SWRL and thus proved the

main hypothesis of this thesis. SWRL rules were layered on top of a state-of-the-art stream

processing system, such as C-SPARQL, to enable time-aware, closed-world and non-

monotonic reasoning on stream data applications. It was shown that for non-monotonic

reasoning purposes, C-SWRL uses SWRL together with OWLAPI constructs to modify the

knowledge base. Moreover, NAF was implemented in the stream processing level.

Furthermore, decidability issues induced by the combination of OWL and SWRL have been

tackled by a number of works [38, 39, 84].

VII. 2 Future Works

Our main activity as per future work remains the evaluation of the developed systems i.e.

StreamJess and C-SWRL. Our initial findings show that evaluating C-SWRL proves difficult

due to the nature of our system, code availability of related systems and published evaluation

results. Regarding the stream processing level it has been discovered that C-SPARQL yields

considerably lower throughput compared to JTALIS and CQELS [45]. Thus, our main

evaluation concern remains the stream reasoning component. We agree with Barbieri et al.

[26] urgency for development of specialized reasoners for stream data applications. It is also

planned to compare C-SWRL performance against StreamJess [6]. Moreover, following the

Jess‘s ability to support both forward and backward chaining, it is also planned to evaluate

Conclusion and Future Works

76

StreamJess on both strategies and find the optimal trade-off between memory consumption

and execution time.

As per incremental reasoning, it is believed that maintaining materializations on rules

following ontology changes do not differ for stream data domains. However, a deeper

research in this direction remains per future work.

Our future work also includes enabling temporal operators (serial, sequence, etc.) on C-

SWRL. It is planned to build the application layer that will offer the user to pose queries over

historical data, offer the possibility to select which measurement sites and/or water quality to

monitor, etc.

Appendix A – Drinking water observations dataset

77

Chapter VIII Appendix A – Drinking water

observations dataset

In this appendix will be demonstrated the conversion of CSV data into RDF. The data set

consists of drinking waters quality measurements made in summer 2012, namely June, July

and August on 15 measurements sites in the region of the city of Tetova. According to [45]

during the lab analysis the following parameters were investigated: THMs, water

temperature, turbidity, residual chlorine, pH, electrical conductivity (EC), the total residue

after of evaporation (TRAE), total dissolved solids (TDS), chemical oxygen demand (COD),

total organic carbon (TOC), dissolved organic carbon (DOC), ultra-violet absorbance in 254

nm (UV254), specific ultra-violet absorbance (SUVA), nitrates and chlorides. Data were

available in CSV format for three months. A CSV to RDF converter tool named QUIDICRC

- QUIck 'n DIrty Csv to RDF Converter, a product of MIND-SWAP Project, was used to

model data appropriately for importing in SSN ontology. Figure 18 represents the measured

values in each measurement point (the first column), for each water quality parameter (the

rest columns) during August 2012.

Figure 18. Input CSV file: August2012.csv

Appendix A – Drinking water observations dataset

78

A fragment of mapping file inwd.map.August.txt is given below indicating the

chlorides values during August on each measurement site.

<rdf:Description rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugObserveChlorides{{Sample Point}}">

 <rdf:type

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Observation"/>

 <ssn:observationResult rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#AugOutputChlorides{{Sample Point}}"/>

 <ssn:observationResultTime rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#August2012"/>

 <inws:observationResultLocation rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#{{Sample Point}}"/>

 <ssn:featureOfInterest rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterFeature"/>

 <ssn:hasQualityOfObservation rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterChlorides"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugOutputChlorides{{Sample Point}}">

 <rdf:type

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#SensorOutput"/>

 <ssn:hasValue rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#AugValueChlorides{{Sample Point}}"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugValueChlorides{{Sample Point}}">

 <rdf:type

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#ObservationValue"/>

 <dul:hasDataValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">{{Chlorides}

}</dul:hasDataValue>

</rdf:Description>

All parameter values for each month are coded in the mapping file similarly to the code

above. The following QUIDICRC command was used to obtain the RDF data format:

quidicrc.pl map="inwd.map.August.txt" in="August2012.csv"

out="CSV\output_August2012.rdf"

Appendix A – Drinking water observations dataset

79

A fragment of the output RDF file output_August2012.rdf is provided below

illustrating a conversion result as from the mapping fragment-code given above for

measurement point T9 of chlorides values.

<ssn:Observation rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugObserveChloridesT9">

 <ssn:observationResult>

 <ssn:SensorOutput rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugOutputChloridesT9">

 <ssn:hasValue>

 <ssn:ObservationValue rdf:about="http://www.co-

ode.org/ontologies/ont.owl#AugValueChloridesT9"><dul:hasDataValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">8.3</dul:hasDataVal

ue>

 </ssn:ObservationValue>

 </ssn:hasValue>

 </ssn:SensorOutput>

 </ssn:observationResult>

 <ssn:observationResultTime rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#August2012"/>

 <ssn:hasQualityOfObservation rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterChlorides"/>

 <ssn:featureOfInterest rdf:resource="http://www.co-

ode.org/ontologies/ont.owl#DrinkingWaterFeature"/>

</ssn:Observation>

Generated RDF files for each month were imported into the INWS ontology. Because the

exact time of observations was not available, it was used the month of the observations

encoded as OWL time ontology Interval individuals. An observation is related through

property ssn:observationResultTime with a time interval instance, which in turn

has ssn:startTime and ssn:endTime individuals of class Instant (a time ontology

class). Individuals of class Instant are related with XML Schema date time data type

through property inXSDDateTime.

Appendix B – Rivers quality observations dataset

80

Chapter IX Appendix B – Rivers quality

observations dataset

During our experiments for the case of river‘s quality observations dataset two kinds of data

were taken:

 Offline SQL data generator

 RDF streams generator

IX. 1 Offline SQL data generator

This kind of dataset was used for validating the INWS ontology with the expert system

described in Section 3.3. As previously described in this section, simulated SQL data were

transformed into RDF format with D2RQ data converter and then loaded on application

startup. The mapping file is large, thus for brevity, will be given some examples of it here.

At the beginning, namespaces are set up like the following:

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

Then, the database connection is configured like follows:

map:database a d2rq:Database;

d2rq:jdbcDriver

"com.microsoft.sqlserver.jdbc.SQLServerDriver";

d2rq:jdbcDSN"jdbc:sqlserver://EDI-

PC:1433;instanceName=./SQLEXPRESS;user=sa;password=****;Databa

seName=WaterQuality"; .

And then follow the mapping to class instances and property relations. Namely, a class

instance mapping example is encoded as follows:

Appendix B – Rivers quality observations dataset

81

map:Observation a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern "http://inwatersense.uni-

pr.edu/ontologies/inws-

core.owl#oo@@dbo.WorkingDataStreams.Id|urlify@@";

d2rq:class ssn:Observation; .

Each tuple of the SQL table WorkingDataStreams is converted into RDF instance of the

class ssn:Observation. Namely, new instance names are formed by appending to the

string http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#oo

the ID value of the tuple.

To illustrate the building of object property relations within instances it was used the

following D2RQ commands:

map:Observation_SensorOutput a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Observation;

d2rq:property ssn:observationResult;

d2rq:refersToClassMap map:SensorOutput;

d2rq:join "dbo.WorkingDataStreams.Id =>

dbo.WorkingDataStreams.Id"; .

This code relates ssn:Observation individuals with ssn:SensorOutput ones

through ssn:observationResult object property. A data property assertion is made in

the following form:

map:ObservationEntryTimeInstance_TimeInstance a

d2rq:PropertyBridge;

d2rq:belongsToClassMap map:ObservationEntryTimeInstance;

d2rq:property time:inXSDDateTime;

d2rq:column "dbo.WorkingDataStreams.EntryDate";

d2rq:datatype xsd:dateTime; .

This code excerpt relates all time instances i.e. of class time:Instant with the DateTime

values taken from the database, which will become related through

time:inXSDDateTime data property.

Appendix B – Rivers quality observations dataset

82

IX. 2 RDF streams generator

This dataset was used for validating StreamJess and C-SWRL. The data generator simulates

sensor data in the following RDF streams general format. A single sensor observation

includes information about the water quality parameter name, the measured value and

measurement location.

(http://inwatersense.uni-pr.edu/stream#obs_60

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://inwatersense.uni-pr.edu/ontologies/inws-

core.owl#tmpObservation . (1481034750573))

(http://inwatersense.uni-pr.edu/stream#obs_60

http://purl.oclc.org/NET/ssnx/ssn#qualityOfObservation

http://inwatersense.uni-pr.edu/ontologies/inws-core.owl#pH .

(1481034750573))

(http://inwatersense.uni-pr.edu/stream#obs_60

http://purl.oclc.org/NET/ssnx/ssn#observationResult

http://inwatersense.uni-pr.edu/stream#so_60 . (1481034750573))

(http://inwatersense.uni-pr.edu/stream#so_60

http://purl.oclc.org/NET/ssnx/ssn#hasValue

http://inwatersense.uni-pr.edu/stream#ov_60 . (1481034750573))

(http://inwatersense.uni-pr.edu/stream#ov_60 http://www.loa-

cnr.it/ontologies/DUL.owl#hasDataValue

10.493^^http://www.w3.org/2001/XMLSchema#double .

(1481034750573))

Namely, a new tmpObservation individual obs_60 is created. It becomes related with

the quality of observation, in this case pH through ssn:qualityOfObservation.

Moreover, it is related with so_60 through ssn:observationResult, which in turn

is related with ov_60 through hasValue property. The latest instance is related through

dul:hasDataValue with the measured value, namely 10.493. The quality name,

measurement site and the measured value are randomly generated.

Appendix C – Mapping Jess initial facts

83

Chapter X Appendix C – Mapping Jess initial facts

The following Jess Tab commands are executed at each startup of StreamJess application:

(mapclass http://purl.oclc.org/NET/ssnx/ssn#Observation)

(mapclass http://purl.oclc.org/NET/ssnx/ssn#SensorOutput)

(mapclass http://purl.oclc.org/NET/ssnx/ssn#ObservationValue)

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

regulations.owl#WFDstatus)

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

core.owl#WaterQuality)

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

core.owl#tmpObservation)

(mapclass http://www.w3.org/2006/time#Instant)

(mapclass

http://sweet.jpl.nasa.gov/2.1/realmHydroBody.owl#BodyOfWater)

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#Pollutant)

(mapclass http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl#PollutionSources)

(mapclass

http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#WaterMeasurement)

(mapclass http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#MeasurementSite)

(reset)

; import Java classes

(import java.util.Random)

(import java.util.Date)

; A global random variable for building unique OWL resources

(bind ?*r* (random))

(printout t "All StreamJess initial components loaded..." crlf)

Appendix D – Stream reasoning systems source codes

84

Chapter XI Appendix D – Stream reasoning

systems source codes

The Stream Reasoning systems developed within this thesis, C-SWRL and StreamJess,

extend C-SPARQL with non-monotonic capabilities. Namely, C-SWRL is a unique Semantic

Web system for reasoning over stream data, while StreamJess is a Jess system capable of

expressive reasoning over stream data.

The systems are written in Java 1.8. The "ready to go packs" are NetBeans projects. They are

open source applications and are published on: http://streamreasoning.uni-pr.edu.

To install and start using C-SWRL on your machine you should download application‘s

source distribution from the Download section of http://streamreasoning.uni-pr.edu. Unzip

the zip file into your local folder. Import the project into your NetBeans. Download and

import all the jar libraries into your project including: C-SPARQL
17

 v0.9.6, OWL API
18

v4.0.2, SWRLTab
19

 v1.0, SWRL API Drools Engine
20

 v1.0 and JUnit
21

 v4.10. A Getting

Started tutorial is also available from the web page.

Similarly, to install and start using StreamJess on your machine you should download

application‘s source distribution from the Download section of http://streamreasoning.uni-

pr.edu. Unzip the zip file into your local folder. Import the project into your NetBeans.

Download a copy of the InWaterSense ontology Protege project including all ontology

modules from the Download section. Download and import all the jar libraries into your

17

 http://streamreasoning.org/resources/c-sparql
18

 http://owlapi.sourceforge.net/
19

 https://github.com/protegeproject/swrltab
20

 https://github.com/protegeproject/swrlapi-drools-engine
21

 http://junit.org/junit4/

Appendix D – Stream reasoning systems source codes

85

project including: C-SPARQL v0.9.6, Jess
22

 v7.1p2, Jess Tab
23

 v1.7 and Protégé
24

 v3.5. A

Getting Started tutorial is also available from the web page.

22

 http://www.jessrules.com/
23

 http://www.jessrules.com/jesswiki/view?JessTab
24

 http://protege.stanford.edu/

References

86

References

[1] Ahmedi, L., Jajaga, E.: Normalization of relations and ontologies, In: The 10th WSEAS

International Conference on Artificial Intelligence, Knowledge Engineering and

Databases, pp. 419-425, Cambrige, UK (2011)

[2] Ahmedi, L., Jajaga, E.: A database normalization tool using Semantic Web

technologies, In: International Journal of Systems Applications, Engineering and

Development, vol. 5 (2011)

[3] Jajaga, E., Ahmedi, L., Abazi-Bexheti, L.: Semantic Web Trends on Reasoning Over

Sensor Data. In: 8th South East European Doctoral Student Conference, Thessaloniki,

Greece (2013)

[4] Compton, M., Barnaghi, P., Bermudez, L., Garcıa-Castro, R., Corcho, O., Cox, S.,

Graybeal, J., M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D.

Kelsey, D. Le Phuoc, Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K.,

Passant, A., Sheth, A., Taylor, K.: The SSN Ontology of the W3C Semantic Sensor

Network, Incubator Group, Journal of Web Semantics (2012)

[5] Ahmedi, L., Jajaga, E., Ahmedi, F.: An Ontology Framework for Water Quality

Management. In Corcho, Ó., Henson, C. A., Barnaghi, P. M. (eds.) SSN@ISWC. pp.

35-50. Sydney (2013)

[6] E. Jajaga, L. Ahmedi and F. Ahmedi: StreamJess: a stream reasoning framework for

water quality monitoring. J. of Metadata, Semantics and Ontologies, in press.

[7] Bhatnagar, V., Kochhar, S.: Association Rule Mining, Encyclopedia of Artificial

Intelligence, pp. 172-178, IGI Global (2009)

[8] Ding, W., Eick, C. F., Yuan, X., Wang, J., Nicot, J.: A Framework for Regional

Association Rule Mining and Scoping in Spatial Datasets, Geoinformatica, vol. 15,

issue 1, pp. 1-28 (2011)

References

87

[9] Ceccaroni, L., Cortes, U., Sanchez-Marre, M.: OntoWEDSS: an ontology-underpinned

decision-support system for wastewater management (2001)

[10] Ceccaroni, L., Cortes, U., Sanchez-Marre, M.: WaWO-An ontology embedded into an

environmental decision-support system for wastewater treatment plant management, In:

Proceedings of ECAI2000 - Wo9: Applications of ontologies and problem-solving

methods, pp. 2.1-2.9, Berlin, Germany (2000)

[11] Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P., Rudolph, S., OWL 2 Web

Ontology Language Primer, http://www.w3.org/TR/owl2-primer/ (2009)

[12] Jena Semantic Web Framework, http://jena.sourceforge.net/, last accessed July, 2nd

2013

[13] Chau, K. W.: An ontology-based knowledge management system for flow and water

quality modeling, In: Advances in Engineering Software, vol. 38, no. 3, pp. 172-181

(2007)

[14] Anicic, D., Fodor, P., Rudolph, S., Stuhmer, R., Stojanovic, N., Studer, R.: A Rule-

Based Language for Complex Event Processing Reasoning, In: Proceedings of the

Fourth International Conference on Web reasoning and rule systems, pp. 42-57,

Springer-Verlag Berlin, Heidelberg (2010)

[15] Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: A Unified Language

for Event Processing and Stream Reasoning, In: WWW 2011, pp. 635-644 (2011)

[16] Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing, In: ESWC,

LNCS, pp. 285-299, Springer, Greece (2011)

[17] Amato, G., Caruso, A., Chessa, S., Massi, V., Urpi, A.: State of the Art and Future

Directions in Wireless Sensor Network‘s Data Management, In: Istituto di Scienza e

Tecnologie dell'Informazione del CNR, (2004)

[18] Lewis, M., Cameron, D., Xie, S., Arpinar, I. B.: ES3N: A Semantic Approach to Data

Management in Sensor Networks, In: A workshop of the 5th International Semantic

Web Conference ISWC (2006)

[19] Gruber, T. R.: A translation approach to portable ontologies, In: Knowledge

Acquisition, vol. 5(2), pp. 199-220, (1993)

[20] Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Huang, Y., Tresp, V., Rettinger, A.,

Wermser, H.: Deductive and Inductive Stream Reasoning for Semantic Social Media

Analytics. In: Proceedings of the Seventh Extended Semantic Web Conference

(ESWC‘10), L. Aroyo, G. Antoniou, E. Hyvonen, A. Teije, H. Stuckenschmidt, L.

Cabral, and T. Tudorache, Eds. LNCS, vol. 6088, pp. 1–15. Springer-Verlag (2010)

References

88

[21] Henson, C. A., Pschorr, J. K., Sheth, A. P., Thirunarayan, K.: SemSOS: Semantic

Sensor Observation Service, In: Proceedings of the 2009 International Symposium on

Collaborative Technologies and Systems (CTS 2009), Baltimore, MD (2009)

[22] Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It‘s a Streaming World!

Reasoning upon Rapidly Changing Information, In: IEEE Intelligent Systems, vol.

24(6), pp. 83–89 (2009)

[23] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:

SPARQL for Continuous Querying. In: Proceedings of the Eighteenth International

Conference on World Wide Web (WWW‘09), Quemada, J., Leon, G., Maarek, Y.,

Nejdl, W. (eds.), pp. 1061–1062, ACM Press (2009)

[24] Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to

process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.

(eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

[25] Rodriguez, A., McGrath, R. E., Liu, Y., Myers, J.: Semantic Management of Streaming

Data. In: Proceedings of International Workshop on Semantic Sensor Networks, SSN,

pp.80-85 (2009)

[26] Shahriar, M. S., De Souza, P., Timms, G.: Smart Query Answering for Marine Sensor

Data, Sensors 2011, vol. 11(3), pp. 2885-2897 (2011)

[27] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:

A Semantic Web Rule Language Combining OWL and RuleM, W3C Member

Submission, http://www.w3.org/Submission/SWRL/, last accessed April, 22nd 2013

(2004)

[28] Sottara, D., Bragaglia, S., Mello, P., Pulcini, D., Luccarini, L., Giunchi, D.: Ontologies,

Rules, Workflow and Predictive Models: Knowledge Assets for an EDSS, In: Seppelt,

R.,. Voinov, A. A., Lange, S., Bankamp, D. (eds.), International Environmental

Modelling and Software Society (iEMSs), 2012 International Congress on

Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth

Biennial Meeting, Leipzig, Germany (2012)

[29] Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream Reasoning:

Where We Got So Far. In: Proceedings of the 4th International Workshop on New

Forms of Reasoning for the Semantic Web: Scalable and Dynamic (NeFoRS) (2010)

[30] Kifer, M., Boley, H.: RIF Overview (Second Edition), W3C Working Group Note 5

February 2013, http://www.w3.org/TR/rif-overview/, last accessed July, 2nd 2013

References

89

[31] Schaaf, M., Grivas, S. G., Ackermann, D., Diekmann, A., Koschel, A., Astrova, I.:

Semantic Complex Event Processing, In: Proceedings of the 5th WSEAS congress on

Applied Computing conference, and Proceedings of the 1st international conference on

Biologically Inspired Computation, pp.38-43 (2012)

[32] Yang, X., Ong, K. G., Dreschel, W. R., Zeng, K., Mungle, C. S., Grimes, C. A.: Design

of a Wireless Sensor Network for Long-term, In-Situ Monitoring of an Aqueous

Environment. Sensors, 2, pp. 455-472 (2002)

[33] J. Mei, E. P. Bontas: Reasoning Paradigms for SWRL-Enabled Ontologies Protégé

With Rules, in: Workshop held at the 8th International Protégé Conference, Madrid,

Spain, 2005.

[34] Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: A

nonmonotonic stream reasoning system for the semantic web. In: Faber, W., Lembo, D.

(eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013)

[35] Wang, P., Zheng, J. G. , Fu, L. , Patton, E. W. , Lebo, T. , Ding, L., Liu, Q., Luciano, J.

S., McGuinness, D. L.: TWC-SWQP: A Semantic Portal for Next Generation

Environmental Monitoring. TWC RPI, Troy, NY, (2011)

[36] Bendadouche, R., Roussey, C., De Sousa, G., Chanet, J., Hou, K. M.: Extension of the

Semantic Sensor Network Ontology for Wireless Sensor Networks: The Stimulus-

WSNnode-Communication Pattern. In: 5th International Workshop on Semantic Sensor

Networks in conjunction with the 11th International Semantic Web Conference

(ISWC), Boston (2012)

[37] Keßler, C., Raubal, M., Wosniok, C.: Semantic Rules for Context-Aware Geographical

Information Retrieval, In: Barnaghi, P. (eds.) European Conference on Smart Sensing

and Context, (EuroSSC 2009), LNCS, vol. 5741, pp. 77–92, Springer (2009)

[38] F. M. Donini, M. Lenzerini, D. Nardi and A. Schaerf: AL-log: Integrating Datalog and

Description Logics, J. of Intelligent Information Systems, 10(3), pp. 227–252, 1998.

[39] S. Heymans, D. V. Nieuwenborgh and D. Vermeir: Nonmonotonic Ontological and

Rule-Based Reasoning with Extended Conceptual Logic Programs, in: Proc. Second

European Semantic Web Conference (ESWC 2005), vol. 3532, pp. 392–407, Springer

Verlag, 2005.

[40] E. Della Valle, D. Dell‘Aglio, A. Margara: Tutorial: Taming Velocity and Variety

Simultaneously in Big Data with Stream Reasoning, in: The 10th ACM International

Conference on Distributed and Event-Based Systems, Irvine, USA, June 20-24, 2016.

References

90

[41] Protégé mailing list archive, https://mailman.stanford.edu/pipermail/protege-user/2014-

February/000082.html

[42] Anderson, J., Athan T., and Paschke, A. (2016), ‗Rules and RDF Streams‘ - A Position

Paper, in Proceedings of the RuleML 2016 Challenge, Doctoral Consortium and

Industry Track hosted by the 10th International Web Rule Symposium (RuleML 2016),

New York, USA.

[43] Komazec, S., and Cerri, D. (2011), ‗Towards Efficient Schema-Enhanced Pattern

Matching over RDF Data Streams‘ in 10th ISWC, Springer, Bonn, Germany.

[44] Ali, M. I., Ono, N., Kaysar, M., Shamszaman, Z. U., Pham, T.-L., Gao, F., Griffin, K.,

and Mileo, A. (2016) ‗Real-time Data Analytics and Event Detection for IoT-enabled

Communication Systems‘, Journal of Web Semantics: Science, Services and Agents on

the World Wide Web.

[45] Durmishi, B. H., Vezi, D., Ismaili, M., Shabani, A., Abduli, S.: Trihalomethanes in

Tetova's Drinking Water. Journal of Chemical, Biological and Physical Sciences, vol.

3, no. 1, pp. 140-149 (2012)

[46] O‘Flynn, B., Regan, F., Lawlor, A., Wallace, J., Torres, J., O‘Mathuna, C.: Experiences

and recommendations in deploying a real time, water quality monitoring system.

Measurement Science and Technology, vol. 21, n. 12 (2010)

[47] Directive 2000/60/EC of the European Parliament and of the Council of Europe of 23

October 2000 establishing a framework for Community action in the Field of water

quality O.J. L327/1 (2000)

[48] Schmidt, K., Stuhmer, R., and Stojanovic, L. (2008), ‗Blending complex event

processing with the rete algorithm‘ in 1st International workshop on Complex Event

Processing for the Future Internet colocated with the Future Internet Symposium,

CEUR Workshop Proceedings, Vol. 412.

[49] Eiter, T., Ianni, G., Polleres, A., Schindlauer, R. and Tompits, H. (2006), ‗Reasoning

with Rules and Ontologies‘, in Reasoning Web, Second International Summer School

2006, Tutorial Lectures, LNCS, vol. 4126, Springer, pp. 93–127.

[50] Raskin, R. G., Pan, M. J.: Knowledge representation in the semantic web for Earth and

environmental terminology (SWEET). Computers & Geosciences, vol. 31, n. 9, pp.

1119-1125 (2005)

[51] Kasi, M. K., Hinze, A., Legg C., Jones S.: SEPSen: Semantic event processing at the

sensor nodes for energy efficient wireless sensor networks. In: Proceedings of the 6th

References

91

ACM International Conference on Distributed Event-Based Systems, New York, pp.

119-122 (2012)

[52] Zaniolo, C. (2012), ‗Logical foundations of continuous query languages for data

streams‘ in Proceedings of Datalog, pp. 177–189.

[53] Advancing Discovery in Science and Engineering. Computing Community Consortium.

Spring 2011.

[54] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B. C., Hendler, J.: Swoop: A ‗Web‘ Ontology

Editing Browser. Journal of Web Semantics (2005)

[55] O‘Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In: OWL:

Experiences and Directions (OWLED), Fifth International Workshop, Chantilly, VA

(2009)

[56] W3C OWL Working Group.: OWL 2 Web Ontology Language New Features and

Rationale. W3C Recommendation (2012)

[57] Wang Q., Li Y., Obreza T., Munoz-Carpena R.: Monitoring Stations for Surface Water

Quality. University of Florida, IFAS Extension, Fact Sheet SL 218 (2004)

[58] UNECE, Standard Statistical Classification of Surface Freshwater Quality for the

Maintenance of Aquatic Life. In: Readings in International Environment Statistics,

United Nations Economic Commission for Europe, United Nations, New York and

Geneva (1994)

[59] Kosovo Environmental Protection Agency (KEPA), The State of Water in Kosovo,

Prishtine, MESP (2010)

[60] Babac, P., Milanovic, M., Babac, D., Pavlovic, Z., Babac, A.: Prerada Komunalnih

Otpadnih Voda. Beograd, MZZSRS (1999)

[61] CIRCA, Monitoring under the Water Framework Directive Policy Summary to

Guidance Document 7, Produced by Working Group 2.7—Monitoring, Common

Implementation Strategy for the Water Framework Directive (2000/60/EC), Published

Guidance Documents CIRCA Library (2003)

[62] Hardy, C. E. (2013), Stream Reasoning on Resource-Limited Devices. University of

Dublin, Dublin, United Kingdom.

[63] Luckham, D. and Roy Schulte, W. (2011), Event Processing Glossary -Version 2.0.

Event Processing Technical Society, 2nd edition.

[64] MacLarty, I., Langevine, L., Bossche, M. V., Ross. P.: Using SWRL for Rule Driven

Applications. Technical report (2009)

References

92

[65] Unel, G. Roman, D.: Stream reasoning: A survey and further research directions. In

FQAS, pp. 653–662 (2009)

[66] Groza, A., Letia, I.A.: Plausible Description Logic Programs for Stream Reasoning. In:

Future Internet, vol. 4, pp. 865-881 (2001)

[67] de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL DL vs. OWL Flight: Conceptual

Modeling and Reasoning for the Semantic Web. In: Fourteenth International World

Wide Web Conference, pp. 623–632. ACM, Chiba, Japan (2005)

[68] Report Highlight for Survey Analysis: Big Data Investment Grows but Deployments

Remain Scarce in 2014, http://www.gartner.com/newsroom/id/2848718

[69] Liebig, T., Opitz, M.: Reasoning over Dynamic Data in Expressive Knowledge Bases

with Rscale. In: The 10th International Semantic Web Conference, Bonn, Germany

(2011)

[70] Forgy, C. L.: Rete: A fast algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence 19 (1), 17 – 37 (1982)

[71] Volz, R., Staab, S. and Motik, B. (2005), ‗Incrementally maintaining materializations of

ontologies stored in logic databases‘, Journal of Data Semantics II, Vol. 3360, pp. 1–34.

[72] Hill, E. F.: Jess in Action: Java Rule-Based Systems, Manning Publications Co.,

Greenwich, CT (2003)

[73] Wang E. and Kim, Y. S. (2006), ‗A teaching strategies engine using translation from

SWRL to Jess‘, in 8th International Conference on Intelligent Tutoring Systems, June

26-30 2006, LNCS Vol. 4053, pp. 51-60.

[74] Stuckenschmidt, H., Ceri, S., Della Valle, E., van Harmelen. F.: Towards expressive

stream reasoning. In: Proceedings of the Dagstuhl Seminar on Semantic Aspects of

Sensor Networks (2010)

[75] Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.: Order

matters! Harnessing a world of orderings for reasoning over massive data. Semantic

Web Journal 4(2), 219–231 (2013)

[76] Sheth, A., Henson, C., Sahoo, S.S.: Semantic Sensor Web. IEEE Internet Comput-ing

12(4), 78–83 (2008)

[77] Albeladi, R. Martinez, K., Gibbins, N.: Incremental Rule-based Reasoning over RDF

Streams: An Expression of Interest, RDF Stream Processing Workshop at the 12th

Extended Semantic Web Conference, Portoroz, Slovenia (2015)

[78] Tallevi-Diotallevi, S., Kotoulas, S., Foschini, L., Lecue F. and Corradi (2013), ‗A Real-

time urban monitoring in Dublin using semantic and stream technologies‘, in The

References

93

Semantic Web ISWC 2013, Vol. 8219 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, pp. 178–194.

[79] Sources of Pollution, Foundation for Water Research, Information Note FWR-WFD16,

(2005)

[80] Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: Reasoning over

dynamic data. Web Semantics: Science, Services and Agents on the World Wide Web,

25(0): 24 – 44 (2014)

[81] Walzer, K., Groch, M., Breddin, T.: Time to the Rescue - Supporting Temporal

Reasoning in the Rete Algorithm for Complex Event Processing. In: Proceedings of the

19th international conference on Database and Expert Systems Applications, Turin,

Italy (2008)

[82] Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: A framework for Composable

Semantic Interpretation of Sensor Data. In: Proceedings of the 3rd European

Conference on Wireless Sensor Networks, Zurich, Switzerland (2006)

[83] Statutory Instruments. (2009), European Communities Environmental Objectives

(Surface Waters) Regulations 2015 [online], S.I. No. 386 of 2015.

http://www.irishstatutebook.ie/eli/2015/si/386/made/en/pdf. (Accessed 7 June 2016)

[84] B. Motik, U. Sattler and R. Studer: Query Answering for OWL-DL with rules, Journal

of Web Semantics, 3(1), pp. 41–60, 2005.

[85] Calero, J.M.A., Ortega, A.M., Perez, G.M., Blaya, J.A.B., Skarmeta, A.F.G.: A non-

monotonic expressiveness extension on the semantic web rule language. J. Web Eng.

11(2), 93–118 (2012)

[86] OWL time ontology. [online] http://www.w3.org/TR/owl-time/ (Accessed 7 June 2016)

[87] Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth. M.: A native and adaptive

approach for unified processing of linked streams and linked data. In: The Semantic

Web–ISWC 2011, pp. 370–388 (2011)

[88] Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub. T.: Answer

set programming for stream reasoning. In: CoRR (2013)

[89] O'Connor, M. J., Knublauch, H., Tu, S. W., Grossof, B., Dean, M., Grosso, W. E. and

Musen, M. A. (2005) ‗Supporting rule system interoperability on the Semantic Web

with SWRL‘, in 4th International Semantic Web Conference, Galway, Ireland, Springer

Verlag, LNCS Vol. 3729, pp. 974-986.

References

94

[90] Ahmedi, L., Sejdiu, B., Bytyçi, E. and Ahmedi, F. (2015), ‗An Integrated Web Portal

for Water Quality Monitoring through Wireless Sensor Networks‘, International

Journal of Web Portals (IJWP), Vol. 7 No. 1, pp. 28-46.

[91] McBride, B. (2004), ‗Jena: implementing the RDF model and syntax specification‘, in

Proceedings at Semantic Web Workshop (WWW).

[92] Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T. and Fink, M. (2012),

‗Linked stream data processing engines: facts and figures‘, in The Semantic Web–

ISWC 2012, Springer, pp. 300–312.

[93] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E. and Grossniklaus, M. (2010), ‗C-

SPARQL: a continuous query language for RDF data streams‘, International Journal of

Semantic Computing, Vol. 04 No. 01, pp. 3–25.

[94] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E. and Grossniklaus, M. (2010)

‗Incremental reasoning on streams and rich background knowledge‘, in Proceedings of

the Extended Semantic Web Conf. (ESWC 2010), Heraklion, Crete, Greece, pp.1-15.

[95] Basic Geo (WGS84 lat/long) Vocabulary. [online] http://www.w3.org/2003/01/geo/.

(Accessed 7 June 2016).

[96] Boley, H., Kifer, M., Pătrânjan, P.-L. and Polleres, A. (2007), ‗Rule interchange on the

web‘, in Reasoning Web, LNCS, Springer, Heidelberg, Vol. 4636, pp. 269–309.

[97] Lanzanasto, N., Komazec, S. and Toma, I. (2009), Deliverable D4.8: Reasoning over

real time data streams, ENVISION Consortium.

[98] Jess Wiki: Jess Tab. [online] http://www.jessrules.com/jesswiki/view?JessTab

(Accessed 7 June 2016).

[99] Della Valle, E., Ceri, S., Barbieri, D. F., Braga, D. and Campi, A. (2008), ‗A first step

towards stream reasoning‘ in Proceedings of Future Internet Symposium (FIS 08),

Springer, pp. 72–81.

[100] Jajaga, E., Ahmedi, L. and Ahmedi, F. (2015), ‗An Expert System for Water Quality

Monitoring Based on Ontology‘, in MTSR 2015: Proceedings of the 9th Metadata and

Semantics Research Conference, Manchester, UK, Vol. 544 pp. 89-100.

[101] Environment Agency. (2011), Method statement for the classification of surface water

bodies, v2.0 (external re-lease) [online], Monitoring Strategy v2.0, July 2011. (Ac-

cessed 7 June 2016).

[102] Ermert, L. (2009), Comparing Jess and Esper for Event Stream Processing. Bachelor

Thesis, Faculty IV - depart-ment computer science, Fachhochschule Hannover, Germa-

ny.

References

95

[103] INWS core ontology. [online] http://inwatersense.uni-pr.edu/ontologies/inws-core.owl

(Accessed 7 June 2016).

[104] INWS pollutants ontology. [online] http://inwatersense.uni-pr.edu/ontologies/inws-

pollutants.owl (Accessed 7 June 2016).

[105] INWS regulations ontology. [online] http://inwatersense.uni-pr.edu/ontologies/inws-

regulations.owl (Accessed 7 June 2016).

[106] InWaterSense project. [online] http://inwatersense.uni-pr.edu/ (Accessed 7 June 2016).

[107] Grosof, B. N., Gandhe, M. D. and Finin, T. W. (2002), ‗SweetJess: Translating

DamlRuleML to Jess‘, in: Proceed-ings of International Workshop on Rule Markup

Languages for Business Rules on the Semantic Web, held at 1st International Semantic

Web Conference.

[108] Horridge M. and Bechhofer, S. (2009), ‗The OWL API: A Java API for working with

OWL 2 ontologies‘, in 6th OWL Experienced and Directions Workshop, Chantilly,

Virginia.

[109] Wei, W., Barnaghi, P.: Semantic Annotation and Reasoning for Sensor Data, In: Smart

Sensing and Context, pp.66-76 (2009)

[110] Antoniou, G., and van Harmelen, F. The Semantic Web Primer, MIT Press Cambridge,

MA, USA, 2004.

[111] Anicic, D. Event Processing and Stream Reasoning with ETALIS, PhD thesis, 2011.

