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Abstract (EN) 

Because of its importance for the development of many areas, such as environmental 

monitoring (observing of air quality, tracking of weather alerts, monitoring of water quality, 

and so forth), cities, healthcare, homes, energy systems, traffic control, and industry, the 

Internet of Things (IoT) is a dynamic area of study. Sensors are one of the fundamental 

elements that enable IoT, as they generate an ongoing sensor stream and send it to a central 

server, and their processing necessitates a unique method due to their huge volume. 

Additionally, extracting the context-specific data required for situational awareness from 

sensor stream data is exceptionally hard, even more so when real-time computation and 

interpretation are required. Furthermore, the discovery, access, and control of all different 

sensors and sensor stream observations through the internet are enabled by Sensor Web (SW), 

which incorporates the technologies of Semantic Web to form the Semantic Sensor Web 

(SSW). The interpretation and comprehension of sensor stream data and metadata are 

facilitated by annotating sensor stream data with semantic containing domain-specific concept 

definitions (e.g., ontologies). The term "non-real-time semantic annotation" refers to the 

process of storing sensor data in a repository (data store) as static data and then integrating it 

with semantics, whereas “real-time semantic annotation” refers to the process of integrating 

sensor stream data (as dynamic data) with semantics, which is the goal of this study. Recently, 

industry standards such as Sensor Web Enablement (SWE) were proposed by institutions 

including the World Wide Web Consortium (W3C) as well as the Open Geospatial Consortium 

(OGC). 

This dissertation begins by conducting an in-depth examination of the incorporation of 

semantic information into the heterogeneous sensor data for application domains of IoT . The 

performed review analyzes the primary options for trying to add semantic comments to sensor 

data streams, the norms that facilitate all kinds of sensor information to be viewed on the 

internet, existing models of sensor data stream annotations, and IoT pattern domains that 

employ semantic annotations.  

Then, the advanced annotation techniques for integration and interpretation of the 

semantic annotations in real-time into heterogeneous sensor observation data and metadata 

with context in the IoT has been introduced. Spark Streaming, Apache Kafka, and the Apache 
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Cassandra, as well as norms as SWE Sensor Observations Service (SOS), are used in this context. 

Next, an integrated system called IoTSAS (IoT Semantic Annotations System) is developed to 

evaluate the proposed techniques. It examines observed sensor data by integrating and 

interpreting semantic annotations in real-time. Finally, by extending the SWE standards, 

correspondingly the SOS standards, IoTSAS system testing is done in the IoT domains of air 

quality, weather warnings, and water quality monitoring. This dissertation also includes the 

findings of the system's performance when processing 1,000,000 observed sensor stream in 

real-time at a time. 
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Abstrakt (SQ)  

Interneti i Gjërave (ang. Internet of Things - IoT) është një fushë aktive e kërkimeve 

shkencore për shkak të rëndësisë së saj në zhvillimet e shumë fushave, duke përfshi 

monitorimin e mjedisit (monitorimin e kualitetit të ajrit, monitorimi i sinjalizimit të motit, 

monitorimi cilësisë së ujit, etj.), shëndetësinë, qytetet, sistemet e energjisë, kontrollin e 

trafikut, industrinë, etj. Rrjetet e sensorëve pa tela (ang. Wireless Sensor Networks - WSNs) 

janë një nga teknologjitë kryesore që mundësojnë IoT-në, të cilat prodhojnë vazhdimisht të 

dhëna rreke të sensorëve dhe i transmetojnë këto të dhëna në një server të centralizuar,  dhe 

si rezultat i vëllimit të madh të të dhënave, procesimi i tyre kërkonë një trajtim të veçantë. 

Gjithashtu, nxjerrja e informacionit kontekstual thelbësor për njohuritë e situatës nga të 

dhënat rreke të sensorit është shumë e vështirë, veçanërisht kur procesimi dhe interpretimi i 

këtyre të dhënave kërkohet që të bëhet në kohë reale. Për më tepër, të dhënat rreke të 

sensorit mundësohen në ueb përmes Sensor Ueb-it (ang. Sensor Web - SW), i cili duke 

inkorporuar teknologjitë e Uebit Semantik (ang. Semantic Web) krijon Uebin e Sensorëve 

Semantikë (ang. Semantic Sensor Web – SSW). Prandaj, duke shtuar anotime semantike në të 

dhënat rreke të sensorit me definimet e koncepteve nga domeni i njohurive (p.sh. ontologjitë), 

mundësohet interpretimi dhe kuptimi i të dhënave të sensorit dhe meta të dhënat e tij. Të 

dhënat rreke të sensorit që paraprakisht janë ruajtur në një depo të të dhënave, si të dhëna 

statike, dhe pastaj integrohen me semantik është definuar si anotim semantik në kohë jo reale 

(ang. non-real-time semantic annotation), ndërsa integrimi me semantikë në kohë reale i të 

dhënave rreke të sensorit, si të dhanë dinamike, është definuar si anotim semantik në kohë 

reale (ang. real-time semantic annotation) e që është edhe fokusi i këtij studimi. Së fundit 

organizatat si World Wide Web Consortium (W3C) dhe Open Geospatial Consortium (OGC) 

dhe kanë propozuar standarde të industrisë të tilla si Sensor Web Enablement (SWE), që ka 

për qëllim sigurimin e standardeve të unifikuara. 

Në këtë disertacion, fillimisht është paraqitur një përmbledhje sistematike e literaturës 

rreth integrimit të semantikës në të dhënat rreke të sensorit për IoT. Rishikimi i literaturë është 

përqendruar në analizimin e zgjidhjeve kryesore që janë bërë në shtimin e anotimeve 

semantike në të dhënat rreke të sensoreve, standardet që mundësojnë të gjitha llojet e të 

dhënave të sensorëve të qasen nga uebi, modelet ekzistuese të anotimeve në të dhënat rreke 

të sensorëve dhe trendët e domeneve të IoT-së që përdorin semantiken. 
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Pastaj, janë paraqitur teknikat e avancuara për integrim dhe interpretim të anotimeve 

semantike në kohë reale në të dhënat e observuara heterogjene të sensorëve dhe meta të 

dhënat e tyre me kontekst në IoT. Në këtë kontekst janë utilizuar teknologjitë e tilla si Apache 

Kafka, Spark Streaming dhe Apache Cassandra (si bazë e të dhënave), si dhe standardet SWE 

Shërbimet e Observimeve të Sensorit (ang. Sensor Observations Service - SOS). Për t’i validuar 

teknikat e propozuara, është zhvilluar një sistem i integruar i quajtur IoTSAS (IoT Semantic 

Annotations System), i cili proceson në kohë reale të dhënat rreke të sensorëve duke i 

integruar me anotimet semantike dhe duke i interpretuar ato. Në fund është bërë testimi i 

sistemit IoTSAS ne domene të IoT-së, si në monitorimin e kualitetit të ajrit, monitorimin e 

sinjalizimeve të motit dhe monitorimin e cilësisë së ujit, duke i zgjeruar standardet SWE, 

respektivisht standardet Sensor Observations Service (SOS). Gjithashtu, rezultatet e 

performancës së sistemit duke procesuar 1,000,000 të dhëna rreke të sensorëve në të njëjtë 

kohë, janë paraqitur në këtë disertacion. 
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Aпстpaкт 

Интepнeтот нa нeштaтa (ИOT) e aктивнa облaст нa нayчно истpaжyвaњe поpaди 

нeговaтa вaжност зa paзвоjот нa многy облaсти, вклyчитeлно и монитоpинг нa животнaтa 

сpeдинa (монитоpинг нa квaлитeтот нa воздyxот, слeдeњe нa вpeмeнскитe сигнaли, 

слeдeњe нa квaлитeтот нa водaтa, итн.), Здpaвствeнa зaштитa, гpaдови, домови , 

eнepгeтски систeми, контpолa нa сообpaќajот, индyстpиja итн. Бeзжичнитe сeнзоpски 

мpeжи (WSN) сe eднa од глaвнитe тexнологии што овозможyвaaт IoT, кои пpоизвeдyвaaт 

континyиpaни подaтоци зa пpоток нa сeнзоpи и ги пpeнeсyвaaт овиe подaтоци до 

цeнтpaлизиpaн сepвep, и кaко peзyлтaт нa нивниот голeм волyмeн , обpaботкaтa бapa 

посeбeн пpистaп. Исто тaкa, извлeкyвaњeто нa контeкстyaлнитe инфоpмaции од 

сyштинско знaчeњe зa ситyaционото знaeњe од подaтоцитe од сeнзоpот e многy тeшко, 

особeно когa обpaботкaтa и толкyвaњeто нa овиe подaтоци e потpeбно во peaлно вpeмe. 

Понaтaмy, подaтоцитe од сeнзоpот сe овозможyвaaт нa вeб пpeкy сeнзоpскaтa мpeжa 

(SW), коja со вгpaдyвaњe нa тexнологии нa сeмaнтичкa мpeжa создaвa сeмaнтичкa 

сeнзоpскa мpeжa (SSW). Зaтоa, со додaвaњe нa сeмaнтички пpибeлeшки нa подaтоцитe 

од сeнзоpот со концeптни дeфиниции од знaeњe нa домeнот (нa пpимep, онтологии), сe 

овозможyвa толкyвaњe и paзбиpaњe нa подaтоцитe и мeтa пpотокот нa сeнзоpот. 

Подaтоцитe зa сeнзоpски стpyи кои сe склaдиpaaт во склaдиштeто (склaдиштe нa 

подaтоци) кaко стaтични подaтоци, a потоa сe интeгpиpaaт со сeмaнтикa сe дeфиниpaaт 

кaко сeмaнтички пpибeлeшки во peaлно вpeмe, додeкa интeгpaциjaтa во peaлно вpeмe 

нa сeнзоpскитe подaтоци кaко динaмични подaтоци со сeмaнтикa e дeфиниpaнa кaко 

peaлнa -вpeмeнскa сeмaнтичкa пpибeлeшкa коja e цeлтa нa овaa стyдиja. Heодaмнa 

оpгaнизaции кaко World Wide Web Consortium (W3C) и Конзоpциyм зa отвоpeн 

гeопpостоp (OGC) пpeдложиja индyстpиски стaндapди кaко што e Sensor Web Enablement 

(SWE), кои сe нaсочeни кон обeзбeдyвaњe yнифициpaни стaндapди. 

Bо овaa дисepтaциja, пpвично e обeзбeдeн систeмaтски пpeглeд нa интeгpaциjaтa нa 

сeмaнтикaтa во подaтоцитe зa сeнзоpот зa IoT. Спpовeдeниот пpeглeд e фокyсиpaн нa 

aнaлизиpaњe нa глaвнитe peшeниja зa додaвaњe нa сeмaнтички пpибeлeшки нa 

подaтоцитe од сeнзоpот, стaндapди што овозможyвaaт пpeглeдyвaњe нa вeб од ситe 

типови нa сeнзоpски подaтоци, излeгyвaњe од модeли нa пpибeлeшки зa подaтоци од 

сeнзоpи, и домeни нa тpeнд нa ИOT кои коpистaт сeмaнтикa. 
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Потоa, вовeдeни сe нaпpeднитe тexники нa пpибeлeшкa зa интeгpaциja и толкyвaњe 

нa сeмaнтичкитe пpибeлeшки во peaлно вpeмe во xeтepогeни подaтоци зa 

нaбervationyдyвaњe нa сeнзоpи и мeтaподaтоци со контeкст во ИOT. Bо овоj контeкст, сe 

коpистaт тexнологии кaко што сe Apache Kafka, Spark Streaming и Apache Cassandra бaзa 

нa подaтоци, кaко и стaндapди кaко SWE Sensor Observations Service (SOS). Слeдно, зa дa 

сe потвpдaт пpeдложeнитe тexники, сe paзвивa интeгpиpaн систeм нapeчeн IoTSAS (IoT 

Semantic Annotations System), коj ги обpaботyвa подaтоцитe од сeнзоpот во peaлно вpeмe 

со интeгpиpaњe нa сeмaнтички пpибeлeшки и ги толкyвa. Конeчно, тeстиpaњeто нa 

систeмот IoTSAS сe вpши во монитоpинг нa квaлитeтот нa воздyxот, монитоpинг нa 

вpeмeнски сигнaли и монитоpинг нa квaлитeтот нa водaтa во домeнитe нa ИоT, со 

пpошиpyвaњe нa стaндapдитe SWE, соодвeтно нa стaндapдитe зa Сeнзоp зa нaбyдyвaњe 

нa сeнзоpи (СOС). Исто тaкa, peзyлтaтитe од пepфоpмaнситe нa систeмот со обpaботкa нa 

подaтоци од 1.000.000 сeнзоpи во peaлно вpeмe во исто вpeмe, сe пpeтстaвeни во овaa 

дисepтaциja. 
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List of Terms and Definitions  

The next section contains a glossary of significant terminology used for this thesis. These terms are 

defined as they are used in this context. 

Internet of Things The IoT is a network of items or "things" which  are 

integrated in electronics, software, and sensors that allow 

them to sense their surroundings and collect/exchange data 

through network infrastructure. 

Sensor The sensor is a monitoring device that converts physical 

phenomena such as heat, light, motion, vibration, sound, 

pressure, and other similar phenomena into an electrical 

signal that can be read by an instrument or an observer, 

and then sends the data collected. 

Sensor stream data or 

sensor observation 

data 

Sensor stream data or sensor observation data is generated 

by all sensor types and transmitted to a remote server in a 

continuous time-stamped format. 

Sensor metadata Sensor metadata is the data that describes the sensors, 

their devices, and the site allocation data that goes with 

them. 

Static sensor The static sensor is stationed in a fixed position to conduct 

monitoring operations in the target area. 

Mobile sensor The mobile sensor is used to monitor various ad-hoc sites of 

interest. 

Homogeneous 

sensors 

Homogeneous sensors can monitor for a certain type of 

event, such as carbon monoxide. 

Heterogeneous 

sensors 

Heterogeneous sensors collect data from multiple types of 

phenomena, such as humidity, ozone, carbon monoxide, 

and so on. 
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Sensor Web The Sensor Web enables the discovery, access, and control 

of all different sensors and sensor stream information 

through the internet. 

Semantic Sensor Web The SSW is made by combining SW and Semantic Web 

technologies to provide better meaning for sensor stream 

data and enabling situation awareness. 

OGC standard The OGC defines the SW as a set of standards that enable 

the use of WSNs connected to a communication network. 

Fixed sliding window The fixed sliding window shows only the most recent data 

or only the most recent data based on a timeframe or a 

fixed window length. 

Outlier sensor stream 

data 

Outlier sensor stream information is a kind of anomalous 

sensor stream information that does not follow the 

expected pattern, which can be noise or data with mistakes. 

Phenomenon or 

parameter 

Temperature, carbon monoxide, humidity, ozone, pressure, 

nitrogen dioxide, sulfur dioxide, and other physical 

properties are examples of phenomena or parameters that 

can be sensed using sensors. 

Sensing node A sensing node, sometimes known as a mote, is a low-

powered device with sensors connected. The sensing node 

transmits the data obtained from sensors to the gateway 

node. 

Gateway node A gateway node is a critical component of a wireless 

network system that collects data from sensing nodes and 

sends it to a central monitoring node, such as a remote 

server. 
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Central monitoring 

node  

The gateway node sends all of the sensors' observed data to 

the central monitoring node, which processes it. 

Deployment site The deployment location is the area where the sensor 

nodes are distributed. 
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1 
Chapter 

 

1. Introduction 

1.1. Context  

Smart Infrastructure systems in cities, healthcare, homes, water networks, grids, and 

intelligent transportation are today increasingly diverse and rich than we ever anticipated. 

The IoT has been typically associated with a more traditional view of such systems (Atzori, 

2010). The IoT is a network of devices or "things" that are equipped with integrated 

technology (electronics, intelligent sensors, and software) and are capable of collecting data. 

The Internet of Things (IoT) enables remote sensing and control of physical objects via a 

network infrastructure, enabling a more direct integration of the physical world and 

computers. To put it another way, the IoT has resulted in automation in all industries (Santhi, 

2016), (Begum, 2016), (Bera, 2016). 

Due to the fact that the notion of the IoT was developed concurrently with the creation of 

Wireless Sensor Network (WSN), WSNs are the fundamental elements that enable IoT. A WSN 

is a collection of self-contained, geographically distributed devices that employ sensors to 

observe environmental or physical factors' (Yinbiao, 2014), (Lazarescu, 2017). 

A wide range of environmental conditions, including humidity, pressure, temperature, 

vehicle movement, lightning condition, soil composition and noise levels, are monitored by 

WSNs in the army for earth observation, emergency management, fire alarm sensors, sensors 

planted underground for precision farming and intrusion detection (Akyildiz, 2010), 

(Bakaraniya, 2012). 
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While WSNs are commonly implemented with fixed sensor nodes to perform surveillance 

operations in a defined area, they can also be placed with mobile nodes to do surveillance in 

multiple places. In nature, WSNs are heterogeneous or homogeneous. While heterogeneous 

sensors transmit a variety of data types (e.g. carbon monoxide and nitrogen dioxyde), 

homogeneous WSNs broadcast only a single observation data (for example, the water 

humidity). Every one of these WSNs transmits observed information to the server via a sensor 

data stream. Sensor metadata is information on the WSN, its instruments, and the associated 

location data. 

The SW makes sensor data available to the internet. SSW is produced by incorporating 

semantic web technology. As a result, “a sensor data stream can be annotated with semantics 

(for example, domain knowledge) by providing machine-interpretable descriptions of what the 

data represents, where it comes from, how it can be related to its surroundings, who is 

providing it, and what quality, technical, and non-technical attributes it has” (Barnaghi, 2012). 

“Non-real-time semantic annotation” is defined as the storage of sensor data as static data in 

a repository (data store) and then integration with semantics, whereas “Real-time semantic 

annotation” is described as the real-time integration of semantics into sensor stream data as 

dynamic data. Sensor data standards have been proposed by groups such as the W3C1 and the 

OGC2, which are covered in the following sections. 

 

1.2. Problem description 

Sensors are a critical component of the Internet of Things. Numerous sensors 

continuously generate a variety of perceived data kinds in the sensor stream data. Given the 

absence of norms, extracting helpful info from the large volumes of information accessible is 

difficult. The OGC suggested SWE and related standards to characterize the SW (Bröring, 

2012). Since the publication of these standards are entirely syntactic, they fall short of 

enabling knowledge-based reasoning and discovery, as they do not adequately represent data 

essence relationships (Ji, 2014). 

                                                           
1 https://www.w3.org 
2 http://www.opengeospatial.org 
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The researchers propose the Semantic Sensor Web (SSW) to gain additional information 

and knowledge by integrating meaningful annotation with idea definition from domain 

knowledge (eg. ontologies), that enables the understanding and comprehension of sensor 

technologies data and metadata (Sheth, 2008). 

The W3C provided numerous mechanisms for tagging observation data, notably: 

 Xlink -“XML Linking Language” 

 SAWSDL -“Semantic Annotations for WSDL and XML Schema” 

 RDFa  -“Resource Description Framework in Attributes” 

However, the subject of how to develop strategies for real-time incorporation and 

understanding of semantic annotations remains open (W3C, 2010), (Henson, 2009a), (Sheth, 

2008), (Pu, 2016), (Ji, 2014). The primary objective of this research is to investigate semantic 

annotation strategies in this setting. 

 

1.3. Hypothesis 

The hypothesis for this proposal are: 

NULL. “Annotation techniques can be advanced for integration and interpretation of the 

semantic annotations in real-time into heterogeneous sensor observation data and metadata 

with context in the Internet of Things.” 

I. “The model of real-time data stream processing can be extended for supporting 

techniques of real-time integration and interpretation of semantics into heterogeneous 

sensor observation data and sensor metadata with context in the Internet of Things.” 

II. The real-time semantic annotation can improve usability and performance of the 

Internet of Things applications. 

 

1.4. Research objectives  

The following are the key objectives of this research:   

Objective 1.  “Devise annotation techniques for real-time integration of semantics into 

 heterogeneous sensor observation data and sensor metadata with context in 

 the Internet of Things.” 
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Objective 2.   “Devise techniques to enable interpreting semantically annotated of the 

 context, mentioned above.” 

Objective 3. ”Develop a prototype application that demonstrates the utility of proposed 

 research idea, which will be tested in a certain(s) of the following IoT domains 

 such as: Air Quality Monitoring and Smart Water Monitoring.” 

 

1.5. The importance of this study 

According to experts, by 2030, there will be 500 billion connected devices/things. (Cisco, 

2016). That means that compatibility between "Things" over the Internet of Things is a 

prerequisite for tracking, object addressing, finding, as well as the representation, storage, 

and interchange of information (Barnaghi, 2012). One of the primary difficulties that should 

be addressed in the future is achieving absolute uniformity and generalization. Different 

applications have their own set of knowledge that is incompatible with that of others. The 

granularity of the descriptions would differ even if the seen item was the same. Industry 

standards such as SWE have been proposed by organizations such as OGC and W3C, with the 

goal of creating unified standards (Shi, 2018). (Sheth, 2008) and the W3C offered a number 

of strategies for annotating observed data, including XLink, RDFa, and SAWSDL . 

It is feasible to improve interoperability and give contextual information necessary for 

situational understanding by combining recognized standards with semantic expression 

forms. As a result, the sensors will reveal more information than they detect. 

In this study, it was discovered that the majority of offered solutions used the RDFa 

annotation technique to semantically annotate in stream data (Sheth, 2008), (Henson, 

2009a), (Compton, 2009), (Babitski, 2009), (W3C, 2010), (Vera, 2014), (Pradilla, 2016), (Bytyçi, 

2017). Since the data from the sensors recorded as static data in a data storage and is later 

merged with semantics, the offered solutions required “non-real-time semantic annotation”. 

However, given the rapid growth of the IoT and its incorporation with advanced analytics, it 

is necessary to enhance techniques for real-time semantic annotation incorporation and 

understanding (Ji, 2014),  (Sheth, 2008), (Henson, 2009a), (W3C,  2010), (Pu, 2016). As a result, 

this research is crucial for creating ways for real time integrating semantics into 

heterogeneous observed sensor stream in the IoT. 
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1.6. Research methodology 

The procedure defined in (Petersen, 2008), is used to conduct the systematic literature review 

(SLR) presented in this paper. The research objectives are created first, followed by a 

technique for finding relevant publications in significant digital libraries in computer science, 

and finally, the criteria for admission and disqualification. 

 

1.6.1. Research Questions 

Initially as an important step in this research is the translation of the review's goal into survey 

questions. Table 1 encapsulates the questions and their reasons, together with the semantic 

sensor that was used. Web technologies and major solutions for annotating sensor data with 

semantics, sensor web standards, stream processing models with semantic integration, and 

semantic Internet of Things trend domains. 

Table 1. Research questions and incentives 

 
 
1.6.2. Search process 

The search procedure is divided into four steps, as indicated in Figure 1, to find relevant and 

helpful material. 

The following sections detail each phase. 
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Phase 1 

The research topic's search phrases are defined first, including the primary keywords from 

the survey questions and their equivalents. The following table contains sample search 

phrases for the keywords SW standards, SSW, sensor stream data semantic models, and 

Internet of Things semantic trend developments. In order to generate a more expressive 

query, the OR operator is used to connect alternate phrases and the AND operator is used to 

join the major components, as illustrated in Table 2. 

 
Figure 1. The process of articles’ selection 

 

Table 2. Sample search strings 
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In December 2021, an article search was conducted. To provide a thorough review of this 

academic subject, journals, conferences, books, and technical reports from various important 

digital computer science libraries have been involved in the review's search approach. 

o IEEE Digital Library3,  

o ACM Digital Library4,  

o Science Direct5,  

o Springer Link6, 

o DBLP computer science bibliography7. 

o Semantic Scholar8,  

o Google Scholar9 

Using the sample search phrases in Table 2, an advanced search of the aforementioned digital 

libraries returned 2,879 articles. At first, a scan of the Springer Link digital library uncovered 

4,288 publications. Only 486 of these publications were chosen for additional investigation 

based on their titles. 

It's worth noting that no filter was applied to the published year of publications during this 

phase. Because these include the publications of other digital libraries mentioned above, the 

publications discovered in the IEEE, ACM, Science Direct, and Springer Link digital libraries 

have been excluded from the search results of DBLP, Semantic Scholar, and Google Scholar 

(IEEE, ACM, Science Direct, and Springer Link). 

The ability of digital libraries to export search results in files such as csv (IEEE, ACM, and 

Springer Link), bib (Science Direct), and xml (DBLP) has been used to finish this phase. 

The Publish or Perish software is used to export Google Scholar results. As illustrated in Figure 

2, all files downloaded from computer science libraries are migrated into a MS SQL Server  

database using a developed custom-built program. The outcomes of categorizing, grouping, 

filtering, sorting, and other operations can be simply modified with this tool. 

                                                           
3 https://ieeexplore.ieee.org/Xplore/home.jsp 
4 https://dl.acm.org 
5 https://www.sciencedirect.com 
6 https://link.springer.com 
7 http://dblp.uni-trier.de 
8 https://www.semanticscholar.org 
9 https://scholar.google.com/ 
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In the following phases, the publication list for final analysis is selected using inclusion and 

exclusion criteria. 

Phase 2 

389 papers were chosen on the basis on the titles and phrases associated with the topic of 

study. 

Phase 3 

There were 82 duplicate publications found in multiple digital libraries, which were removed, 

leaving 307 papers for the next step. 

 

Figure 2. The tool that assists in the selection of articles 

Phase 4 

Finally, the relevant papers were chosen based on the abstracts. Furthermore, the intro, 

section headings, and conclusion analysis of the publications were required for proper 
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selection. There are a total of 215 publications considered in this analysis. The whole list of 

selected papers is available for download at the following link10. 

1.6.3. Inclusion and exclusion criteria 

Publications that are irrelevant to the review's research topics are excluded using inclusion 

and exclusion criteria. The papers selected using the process outlined above were evaluated 

and categorized as per the research subjects specified in this research for further 

investigation. The list consists of the inclusion criteria: 

 Research on the Semantic Sensor Web, suggested in particular IoT systems that 

combined semantics with observed sensor data. 

 Research into the use of standards as a mechanism for allowing applications to access 

IoT data. 

 Research into models that enables real-time observed sensor data processing with 

semantics. 
 

Exclusion criteria consists of: Exclusion criteria consists of: 

 2597 papers which aren’t immediately apparent to the study's subject. 

 11 publishing of brief essays (fewer than three pages). 

 6 articles were replicated (papers presented at conferences that were subsequently 

published in the journal). 

 43 articles in the form of tutorials or demonstrations. 

 7 articles written in languages other than English. 

 

1.7. Challenges 

On the internet, real-time dynamic data collected via numerous sensors is now accessible. 

The primary impediments to real-time semantic annotation include intricacy, versatility, 

standardisation, and generalisation, as well as the large amount of unorganized sensor data 

streams. Additionally, as a result of diverse, scattered, inadequate information representation 

                                                           
10 http://luleahmedi.uni-pr.edu/students/bsejdiu/selectedreviewpapers.xlsx 
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and non-standard infrastructure, numerous sensor data streams have already been locked 

within private applications, rendering them unavailable to the broader public.  

The Sensor Web's application of semantics raises five difficulties (Corcho, 2010). One of 

the very first concerns is the abstraction required to gather, analyze, and manage sensor data 

in general. The next is the demand for data quality management that is appropriate. The third 

issue is the incorporation and integration of information from diverse and independently 

dispersed sensor networks. The fourth issue is identifying and localizing critical sensor-based 

data sources. Finally, rapid software based on a variety of sources of data is a challenge. 

Semantic integration of diverse sensor data should result in improved comprehension and 

more relevant representations, enabling IoT potential uses to become significantly more 

intelligent (Shi, 2018).With advancements in technology, researchers are paying more 

attention to obstacles and issues in order to close gaps and handle them effectively in the 

future. 
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1.8. Organisation of this Dissertation 

Following the introductory chapter, the structure of the dissertation is organized as follows: 

Chapter 2 - explains the fundamentals of IoT, IoT data transmission models, IoT 

applications, Wireless Sensor Networks (WSNs), sensor stream data, and semantic 

annotations.  

Chapter 3 - provides a literature review of the research questions. The study focuses on 

semantic annotation methodologies, the primary solutions for annotating sensor data with 

semantics, the web standards that support all types of sensors, the current stream models, 

and the semantic Internet of Things trend areas. 

Chapter 4 - presents the selected technologies and standards of the real-time integrating 

and interpreting of semantic annotations into the observed WSN data, system architecture, 

main components and data modeling. 

Chapter 5 - presents the proposed system's implementation modules, which include the 

real-time integrating and interpreting of semantic annotations into the observed WSN data 

module, data modelling module, the module for managing meta data, monitoring module for 

air quality, monitoring module for weather warnings, water quality monitoring module, and 

the module for external systems - RESTful APIs. Additionally, this chapter discusses the 

system's network architecture and the simulator for sensor stream data. 

Chapter 6 - presents the IoT Semantic Annotations System (IoTSAS) system's testing results. 

Chapter 7 - concludes the thesis by assessing and addressing the findings of the preceding 

chapters and identifying some areas for future research. 
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2 
Chapter 

 

2. Fundamentals  

2.1. Internet of Things (IoT) 

The  Internet of Things (IoT) refers to a wide range of devices or "things" which have never 

before been linked with the Internet, but that have now been given an identity and connected 

to the Internet via the IoT. Utility meters, Thermostats,  Bluetooth headphones, pumps for 

irrigation, and sensors or electric vehicle motor control circuits are among the items included. 

Advances in sensor network capabilities, mobile devices, wireless communications, 

networking and cloud technologies have sparked a new revolution in the capabilities of 

Internet-connected endpoints. 

According to Cisco predictions, by 2030 will be connected 500 billion objects and devices 

to the Internet (Cisco, 2016). As a result, companies are encouraged by the prospect of 

investing in the Internet of Things industry for their products. Products can consist of 

hardware or software as components of the Internet of Things (Bahga, 2014). 

There is a lot more to the Internet of Things (IoT) than simply connecting things 

(appliances, machines, devices) to the Internet; there is a possibility that IoT devices will 

exchange data (control and information that may contain personal data about users) and 

perform useful tasks in pursuit of a common goal shared by users or machines. Before it can 

be turned into valuable information, raw data must be contextualized and processed. As part 

of the Internet of Things (IoT), software applications filter, analyse, categorize, condense, and 

contextualize data in order to produce and generate new information. After obtaining the 

necessary data, the information is organized and formatted to gain insight into the system 

and its users, as well as the environment in which the system operates, and the progress made 
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toward the intended objectives. For instance, consider a stream of raw sensor values ((16.6, 

42); (17.2, 49)) produced by a weather monitoring station that have no meaning or context 

on their own. Each tuple contains a piece of data that represents the temperature and 

humidity of the environment at a certain time interval. The measured data tuples have 

significance (or information) thanks to this added context. Classifying, compressing, or 

otherwise manipulating this data might provide further insights. Temperature and humidity 

values are averaged to provide an average of the past five minutes' worth of data tuples. 

Organizing and understanding the links between bits of information is the next stage in the 

process of gaining actionable knowledge. For instance, if the last five minutes' average 

temperature was greater than 48 degrees Celisus, an alert is raised and this notification can 

also be  based on the user’s geographical location as well (Bahga, 2014). 

According to the (Suoa, 2012), “the IoT has recently gained a lot of traction thanks to a 

few notable applications (e. g., meter reading, smart electric  greenhouse monitoring, 

telemedicine monitoring, and intelligent transportation). Sensors, heterogeneous access, 

information processing, applications and services, as well as additional components such as 

security and privacy, make up the four major components of the Internet of Things (IoT). ”  

 

2.2. IoT Data Transmission Models 

With the Internet of Things, various gadgets and sensors will be linked together. IoT 

devices and sensors are connected and transmit data in different architecture models.  In 

2015, was created a guide by the Internet Architecture Board group about IoT networking and 

data transmission from IoT devices. This guide presents four types of the IoT device connected 

and data transmission models (Rose, 2015), (Ali, 2016), (Kaushik, 2016): 

Device: 

1. to Device,  

2. to Cloud,  

3. to Gateway, and  

4. Back-End Communication. 
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2.2.1. Device-to-Device data transmission model 

Device-to-device data transmission model provides connection and direct communication 

between two or more IoT devices without the interference of any server application. The 

communication can be done using different types of protocols such as ZigBee, Bluetooth, and 

Z-Wave, as shown in Figure 3. This type of model is commonly used in systems that require a 

small data packets, such as smart homes and IoT wearable devices that monitor human health 

related to smartwatch, where is not necessary to share information with other people. This 

type of data transmission model illustrates many of the interoperability challenges (Ali, 2016), 

(Kaushik, 2016). 

In terms of security, each model of communication and data transmission has its own 

characteristics, but with the device-to-device data transmission model, security is specifically 

simplified because of the short-range technology (ZigBee, Bluetooth, Z-Wave) that they use. 

Communication between sensors and node devices is usually done through the ZigBee 

protocol. 

 

2.2.2. Device to Cloud data transmission model 

At device to cloud data transmission type, the Internet of Things devices are connected 

directly to the Internet through traditional communications such as Wi-Fi or wired Ethernet 

to communicate with cloud services or application service providers. This is shown in Figure 

4. 

This model is used by mobile sensors which directly send data to could services and  

application service providers. Sensors to send data to the server use protocols such as HTTP, 

IP, TCP, UDP, TLS, etc. 

 

  
Figure 3. Device to Device data transmission type 
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Figure 4. Device to Cloud data transmission type 

 

2.2.3. Device to Gateway data transmission  

In the device to gateway data transmission type, the Internet of Things sensors send data 

to the Gateway which is used in the capacity of a go-between sensors & the cloud services or 

application service providers, as shown in Figure 5. Communication and data transmission 

between IoT sensors and Gateway is enabled via Wi-Fi, ZigBee, Z-Wave, Bluetooth, HTTP, IP, 

TCP, UDP, TLS, etc. protocols, while the communication between Gateway and cloud services 

or application service providers is enabled through IP protocol. This model is found in many 

consumer devices. Smartphone app software serves as a middleware gateway for devices like 

personal fitness trackers, which can't communicate directly with cloud services, thus they 

often link via smartphone app software. 

The device-to-gateway data transmission model, also is applied in smart home, by 

enabling the IoT devices to connect with the cloud services, allowing the users to control 

home devices using smartphone application. 

 

2.2.4. Backend Data Sharing  model 

Smart object data from a could service can be exported and combined with data from 

different inputs using the backend data sharing paradigm. With this architecture, users are 

able to access sensor stream data that has been uploaded and stored in the cloud, as 

illustrated in Figure 6. 
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Figure 5. Device to Gateway data transmission type 

 
Figure 6. Backend data sharing type 

To connect and transmit data from IoT sensors to gateway, the Wi-Fi, Bluetooth, ZigBee, 

Z-Wave, HTTP, IP TCP, etc. protocols are used, while the communication between gateway 

and application service providers is enables by IP protocol, respectively HTTPs protocol.   
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2.3. IoT Applications 

As computer technology has progressed, little sensors and processors have been able to 

be integrated into common things. The desire of a smart environment is becoming a reality 

today thanks to advancements in fields such as WSNs, mobile appliances, Internet Protocol 

version 6, omnipresent computing, decision-making based on machine learning, mobile 

communications,  agent technologies and human computer interactions. Connected sensor-

enabled gadgets work together to make people's lives more pleasant in a smart environment. 

This means that in order to have a smart environment, it must be capable to learn and adapt 

responding to shifting needs of its inhabitants. 

 In Figure 7, are presented some IoT-based smart environments and described each of the 

domains. 

 

Figure 7. IoT Applications 
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Examples of IoT applications in several fields are included in the following list, 

demonstrating why the IoT is a key technology trend for the foreseeable future. (Vermesan, 

2014): 

 Smart Food / Water Monitoring 

o Distribution Network Control, On-Site Monitoring, Quality Of water, Water 

Leaks, River Foods, Water Management, and more. 

 Health Care 

o Temprature Monitoring, Electrocardiogram (ECG) Monitoring, Asthma 

Monitoring, Fall Detection, Oxygen saturation Monitoring, Sleep Control,  

Glucose Level Monitoring, Physical Activity Monitoring, Blood Pressure (BP) 

Monitoring, and more. 

 Smart Living 

o Apps for Smart Shopping, Gas Monitoring, Remote Control Devices, Water, 

Energy, Consumption and Energy and Water Use,  and more. 

 Smart Environment Monitoring 

o Air Pollution Monitoring, Deforestation prevention, Water Quality Monitoring, 

Flood Monitoring, Smart Agricultural Monitoring, Earthquake Monitoring, 

Forest Fire Detection, and more. 

 Smart Manufacturing 

o o Intelligent Product Management, Tracking of Animals, Composting, Offspring 

Care, Toxic Gas Levels, Production Line, Telework, and more. 

 Smart Energy 

o Flow Of water, Intelligent Grid, Solar and Wind Turbine Installations,  Radiation 

Levels, and Power Supply Controllers, and more. 

 Transport and Mobility 

o Intilligent Transport, Smart Lighting, Fleet Tracking, Smart Parking, Smart NFC 

Payment, Smart Traffic Lights, Electric Vehicle Charging Stations, Electric 

Mobility, Road Pricing, Green mobility, Vehicle Auto-diagnosis, Driving Safety, 

Sharing and Urban Mobility, and more. 

 Smart Industry 
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o Smart Factory, Smart Construction, Aquaculture Industry Monitoring, M2M 

Applications, Smart Railway, Automotive Industry, Ozone Presence, Oil, Gas 

and Mining, and more. 

 Smart City 

o Smart Parking, City Lighting, Smart Tourism, City Transit, Smart Buildings, 

Controlling Air Pollution, Intelligent Transportation Systems, Smart Meters & 

Billing, Safe City, and more. 

 

2.4. Wireless Sensor Networks (WSNs) 

These days, sensors may be found everywhere. Our cars, cellphones, factories, and even 

vineyard soil are all equipped with sensors to keep tabs on CO2 emission levels which we 

sometimes ordinarily assume. According to (Yinbiao, 2014), “academic on WSNs started in 

1980s, and only since 2001 have WSNs garnered increasing interest from both research and 

industrial perspectives. This is because inexpensive, low-power tiny components such as 

computers, radios, and sensors are frequently constructed on a single chip (system on a chip 

(SoC)).” 

The concept of the IoT has evolved in parallel with WSNs. Originally conceived by Kevin 

Ashton in 1999, the phrase "Internet of Things" refers to items that may be uniquely identified 

and their virtual representations in a framework that resembles the Internet. From big 

structures, industrial facilities, aircraft, and automobiles to small pieces of a larger system, 

these items may be anything. They can be anything from human beings, animals, and plants 

to individual bodily parts. WSN, in particular, will flourish in a wide range of applications and 

sectors regardless of the fact that the Internet of Things does not automatically imply a 

specific communication technology. IoT can be brought to even the tiniest things deployed in 

any setting, at a reasonable cost, thanks to WSN sensors that are compact, affordable, and 

low-power. These are combined in entities into the Internet of Things will be a significant 

evolution. an important step forward for WSN. 

WSNs are networks of nodes that work together to perceive and manage the 

environment, allowing humans or computers to interact with their surroundings. In reality, a 

cross-layer design approach is usually required to incorporate distributed data processing, 
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security control, and protocols of communication together when detecting has a finite 

quantity of energy. 

By synthesizing current WSN applications into an infrastructure network, new apps may 

be found and built to match future market trends and technologies. There are a number of 

WSN technology applications that create a lot of data that may be used for various reasons, 

such as smart grid, smart water, intelligent transportation systems, and smart homes, for 

example. Many legal issues must be addressed as the IoT enters an age of WSNs in the 

contemporary world, and they will become clearer over time. The ownership and use of data 

gathered, collated, linked, and mined for extra value is one of the most important challenges. 

The cost of WSN equipment has decreased dramatically due to the development of 

associated technologies, as well as various useage are increasingly spreading from army to 

commercial sectors. WSN equipment and standards for Wireless Sensor Networks technology 

are fully established such as Wireless Hart, ZigBee, Wireless Networking for Industrial 

Automation - Process Automation (WIAPA), etc. In addition, with the emergence of new WSN 

application modes in industrial automation and home applications, the overall size of the 

WSN applications market will continue to grow rapidly (Yinbiao, 2014). 

Sensor, Sensor Node, and Sensor Network are the three key components of the WSN (Sohraby, 

2007): 

 Sensor - Is a transducer that transforms physical phenomena such as heat, light, 

motion, vibration, sound, and pressure into electrical signals. Sensors are frequently 

linked to a sensor node. 

 

 Sensor Node - In a sensor network, a Sensor Node has embedded sensors, a processor, 

memory, a transceiver, and a power supply. Sensor nodes are occasionally connected 

to other sensor nodes, but most of the time they are connected via a wireless link to 

a gateway node. This type of network is known as a sensor network. 

 

 Sensor Network - A sensor network is made up of several different sensor nodes. 

Nodes are placed inside or extremely close to the phenomenon being observed. The 

gateway sends the collected data via the internet to a distant server, guaranteeing 

that maintenance, database storage, and data processing (e.g. analytics) are all 
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possible. This makes it easier for users to operate with a wonderful interface and 

ubiquitous connectivity (Arockiam, 2016). 
 

Wireless Sensor Networks (WSNs) are made up of the gateway node, sensor nodes, and 

sensors, as depicted in Figure 8.  

 

 

Figure 8. Wireless Sensor Networks (WSNs) 
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2.5. Sensor Stream Data 

Sensors take a physical measurement and turn it into a signal that may be represented as 

a single value throughout time. Depending on the application and system requirements, the 

sensor sampling rate can range from milliseconds to hours. 

A sensor data stream is a set of values having a timestamp associated with them. A 

timestamp in IoT refers to the time when a measurement was taken (Kenda, 2019). 

In order to distinguish between sensor data streams and traditional data streams, it’s 

significant to understand the distinctions between the two types of data streams (Gama, 

2007), (Elnahrawy, 2003), and (Aquino, 2006): 

 Sensor observed streams represent just a subset of the overall population, whereas 

typical streaming such as network streams, online log data, stock market data, and 

so on reflect the entire data population. 

 In the context of typical streaming data, sensor observed streams are characterized 

as noisy. In the classical meaning, traditional data streams is accurate and error-free. 

Ever, the environment's influence on WSNs installed might have a detrimental effect 

on the data they collect. When compared to sensor network data, web clickstreams 

and web logs are regarded reliable. 

 Large amounts of data from traditional streams are stored and processed in 

traditional streams, but sensor data streams are much smaller. 

 

As previously stated, we will present a novel sensor data stream management paradigm, 

because sensor data transmission rates are low, and sensor data streams are typically smaller 

(e.g., sensors for water quality monitoring, air quality monitoring, etc.) than standard 

streaming data. 

 

2.6. Semantic annotations 

Heterogeneous sensors enable IoT applications data from sensors is sent to an offsite server, 

where it is processed and stored. Unless appropriately annotated, raw sensor stream data is 

meaningless. As a result, the researchers developed the SSW, which is a hybrid of SW and 

technologies of Semantic Web. According to our study “Integration of semantics into sensor 
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data for the IoT - A Systematic Literature Review” a large number of studies accept suggest 

industry standards such as Sensor Web Enablement, as well as sensor data annotation 

approaches proposed by organizations like as OGC, such as RDFa, Xlink and SAWSDL. 

(Compton, 2012). But the difficulty remains: how can real-time semantic annotations be 

better integrated into strategies? 
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3 
Chapter 

 

3. Related Work  

Following the extraction of pertinent publications, the selected primary sources are 

examined and assessed in accordance with our research questions. The following are the 

findings from the systematic review of the literature. 

3.1. Which Semantic Senor Web technologies are most frequently used, as well as the 
most common methods for adding semantic annotations to sensor data? (RQ1) 

The SW enables wireless sensor networks, hence giving solutions for web-enabled WSNs 

(Udayakumar, 2012), (Rouached, 2012). The SW idea exemplifies this form of sharing 

architecture, locating, in addition incorporating sensors and related information into a 

spectrum of uses (Bröring, 2011). It shields solutions that are developed on top of the 

heterogeneous sensor hardware and connection protocols. As a result, the SW acts as a 

middleware layer amongst detectors & applications (Auger, 2017). 

To facilitate interchange and provide contextual information important for situational 

awareness, sensor readings might be tagged with semantic information in the form of  

ontologies – this is referred as the SSW. Additionally, they serve as a bridge between the SWE 

and the Semantic Web's RDF/OWL - grounded metadata standards, providing more 

meaningful descriptions of sensor data and better access to it (Sheth, 2008), (Calbimonte, 

2013). Interoperability and analysis of heterogeneous multimodal sensor data rely heavily on 

ontologies and semantic annotation in SSW (Simonis, 2016), (Henson, 2014), (Le-Phuoc,2011), 

(Gray, 2011), (Corcho, 2012).  
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XLink, RDFa, and SAWSDL are examples of semantic annotation approaches (W3C, 2010). 

XML Linking Language is a World Wide Web Consortium recommendation for producing and 

associating metadata with hyperlinks in XML documents (Lefort, 2009). References to the 

others knowledge base controlled with URNs are regularly included in OGC standards 

(Uniform Resource Name). RDFa is a World Wide Web Consortium recommendation for 

embedding rich metadata in Web publications by adding a group of attribute-level additions 

to Extensible HyperText Markup Language. To give semantic annotations for sensor data, 

Resource Description Framework in Attributes can be placed to OGC O&M files. SAWSDL is a 

group of WSDL and XML Schema extension characteristics which enable for the 

characterization of added semantics of the WSDL files. 

It's required to design and employ rules – known as reasoning – to infer new knowledge 

from sensor observed semantic annotations  (Sheth, 2008). 

The following is a list of the most important RQ1-related papers. Because they utilised OGC 

standards, several of them are also related to RQ2. 

 According to (Sheth, 2008), Semantic Sensor Web is defined as a combination of observed 

sensor information and semantics. In order to give meaning to sensor data, the “Semantic 

Web Activity” of the OGC and the W3C created SSW. Under the SWE architecture, OGC has 

established and maintains a number of essential services, including SML, SOS, O&M, SPS, 

and SOS. 

 According to the SWE standards, it is possible to construct Semantic Sensor Monitoring 

(SemSOS) (Henson, 2009a). Ontology modeling of the sensors and observed WSN data, and 

ontology-based reasoning over observed WSN data are some of the ways in which an 

ontology-based SWE implementation can be improved, they created a semantic 

knowledge base Open-source SOS is improved by them over 52North's version. 

 

 Semantically annotating streams with IoT-Streams is described in (Elsaleh, 2020). Ontology 

IoT-Stream, as well as an expansion of the well-known SSN ontology, which provides a 

minimal semantic framework for stream annotations. As a result, IoT applications that deal 

with streaming sensory input are made easier to design. 
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 Semantic Web technologies are illustrated in (Patni, 2011) as a framework for integrating 

and analyzing heterogeneous sensor feeds. The goal of this framework was on creating 

meaningful abstractions or features in real-time from sensor stream data, and publishes 

these streams as linked data. The raw sensor stream data was transformed to an 

Observation and Measurements (O&M) format, and then it was converted to RDF stream. 

 

 A methodology a confluence of data of series of heterogeneous sensor data streams is 

given in (Kenda, 2019), which supplements IoT sensor stream data with contextual and 

historical information important to understanding underpinning actions. 

 

 As part of the SWE criteria, sensor data semantic annotation is incorporated in (W3C, 

2010). The basic semantic annotation approaches are investigated and then it is suggested 

that RDFa with Sensor Observation Service, SAWSDL, and XLink be used. 

 

 A semantic tagging and integrating framework for sensor services that are OGC-compliant 

is provided in (Babitski, 2009). The method is built on the SWE program, and it uses 

annotations to enable semantic discovery of sensor services. 

 

 A system architecture is presented in (Liefde, 2016), which employs the semantic web 

technologies to enhance the sensor observation data fusion and aggregation from many 

sources. Two web processes are presented in this conceptual system architecture: (1) 

“gathering and harmonizing SOS data connected in a semantic knowledge base”, and (2) 

“processing observation data by translating logical queries into SOS requests. Both 

processes use a semantic knowledge base linked to linked sensor metadata for harvesting 

and harmonizing SOS data”. 

 

 An ontology SmartOntoSensor is presented in (Ali, 2017), which is constructed utilizing 

NeOn methodology and the CPs pattern. Protégé was used to create SmartOntoSensor, 

which was then tested utilizing SPARQL, OntoQA, and an experimental investigation. In 

addition, the ontology is put to the test by incorporating it into the ModeChanger app, 

which uses SmartOntoSensor to change smartphone modes automatically based on 

context. 
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 This article explains how to build a semantic information model that combines information 

from many sources into a single framework (Calcaterra, 2016). At the sensor level (which 

is responsible for detecting potentially hazardous phenomena), ontologies have been 

developed to characterize risks in terms of their potential to cause damage or harm to 

people and property. 

 

 In a previous paper (Bytyçi, 2017), we developed SEMDPA, a novel lightweight IoT 

architecture that facilitates connecting sensors and other technologies, and also persons, 

through a web using the DPA crossing ontology. A Java prototype system uses the OGC's 

Sensor Observation Service to encode data collected by observed devices. Users sends a 

query to a website to see the results of the observations, perhaps choosing different filters 

in the process. The request is encoded and sent to the SOS server as an SOS request. The 

request is then converted into an SPAQL request that is run against the ontology. The XML 

output of the SPARQL query is encoded into the OGC's O&M type, which is then shown to 

the user in HTML table format on the web portal. 

 

 Using a (REST)ful service as a front for Sensor Observation Service is described in (Pschorr, 

2013). SOS requests, data collection, and RDF results are all handled by the Semantic 

Enablement Layer (SEL) when a specific URI is accessed. On-the-fly, the sensor observed 

stream is transformed to Resource Description Framework. Thus, the data may be 

interpreted by humans and robots alike. 

 

 A general “Stimulus-Sensor-Observation” ontology design model is proposed in (Janowicz, 

2010) for the build of the SSW and the linking of sensor observed stream. Class and 

connection examples are used to demonstrate each of the primary concepts in the course. 

 

 A SW framework called INWS is developed in the INWATERSENSE project (Ahmedi, 2013). 

It is based on the SSN model for water monitoring, which models sensor observed data for 

water quality monitoring in order to simplify classification of water quality based on 

various regulatory bodies such as the Water Framework Directive. 

 

 It has been proposed that the INWS ontology be used to monitor water quality. INWS 

sensor data can be analyzed using either a Jess production rule system (Jajaga, 2017a) or 

C-SWRL (Jajaga, 2017b). 
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 Consumers who don't adhere to SWE requirements can access data through the use of 

Linked Sensor Data (Keßle, 2010). Despite the fact that it complicates search,, it 

nevertheless makes what meta-data describes obvious by allowing annotations with 

timestamps and locations. 

 

 A model of Semantic Sensor Network for IoT is proposed in (Rezvan, 2015), which can be 

applied in the processing of data of any kind of sensors. The model uses semantic web and 

machine learning technologies to transform observed sensor stream to higher-order 

abstractions that can be recognized by humans and machines. 

 

 Sensor data is modelled using the SSN and SWEET ontologies, which enable a federated 

request program to be implemented in (Calbimonte, 2011a). 

 

 This is a more comprehensive ontology New notions including communication, data flow, 

and state are introduced by WSSN to the already existing SSN (Bendadouche, 2012). 

 

 

3.2 What are the standards that enable the discovery, access, and use of all different 

sensors and sensor data sources over the Internet? (RQ2) 

Sensor observed stream archives are now available or useable through the Web thanks to 

efforts like SSN-XG11 and SWE12. However, with this newfound flexibility comes a slew of 

additional obstacles, including the following (W3C, 2010): 

 

 What is the best way to find, search, and access observed sensor stream on the 

Internet? 

 How do you combine observed sensor stream from several sites? 

 How can naive users and Web apps make sense of raw sensor stream? 

 

The OGC defines SWE as a specification for the Sensor Web. It is possible to link sensing 

devices and groups of them to a network of communication using SWE's specifications and 

infrastructure. Based on the concept of a " Sensor Web", SWE was created with the goal of 

                                                           
11 https://w3.org/2005/Incubator/ssn/XGR-20110628/ 
12 http://opengeospatial.org/ogc/swe 
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making them available through app interfaces and protocols (Pradilla, 2016), (Echterhoff, 

2011), (Botts, 2007). Sensor Web Enablement is separated in two sections: 

 

a. SWE Information model  

This model is composed of compression algorithms for theoretical data languages that 

allow observed WSN data to be visible on the Internet. The following specifications are 

included in the SWE information model: 

 Transducer Model Language (TML)  

- Describes transducers and facilitates actual data streaming between sensor 

systems and transducers. 

 Sensor Model Language (SensorML)  

  - Specifies sensors and the associated operations. 

 Observations & Measurements (O&M)  

- XML Schemas and standard models provides both archival and real-time 

storage of sensor observations and measurements. 

 

b. SWE Service model  

Through the use of this collection of Web Services, the customer can look for and 

receive the data they need. Specifications for SWE Service model are as follows: 

 Sensor Planning Service (SPS) 

- A web service interface for user-defined acquisitions and observed WSN data. 

SPS gives information about a sensor's capabilities as well as how to task it. 

 Sensor Observations Service (SOS)  

- A web service platform for seeking, sorting, and retrieving observations and 

data from sensor systems. This is the near-real-time connection between an 

user and an observation archive or a sensor channel. 

 Sensor Alert Service (SAS) 

- Is an interface for web services in sending & receiving sensor alerts. SAS 

outlines how alarm or alert circumstances are specified, detected, and 

communicated to users. 

 Web Notification Services (WNS)  
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- A interface to web services for delivering messages asynchronously. WNS 

supports two types of communication: 

a) one-way communication - send a message to a client without waiting 

for a response. 

b) asynchronous two-way communication - deliver the message to the 

client and wait for a response. 

Web-accessible sensors, instruments, and imaging equipment, as depicted in Figure 9, are 

the primary goal of SWE, as shown in the figure. Web-based sensor networks that are "plug-

and-play" are the goal of this effort. When it comes to geospatial standards, the position of a 

sensor on the Web is often an important consideration (Botts, 2007), (Simonis, 2016). 

When sensor data management requires interoperability, the Sensor Observations Service 

(SOS) standard is ideal (Bröring, 2012). In order to manage sensors that have been deployed 

and to have access to sensor data, specifically "observation" data, SOS provides an API for 

that purpose. Today's geospatial systems rely heavily on sensor measurements from both 

static (such as radar) and in-situ (such as satellite imagery) sensors (Na, 2007). There are 

several types of deployed sensors (Sn) that can be arranged into constellations (Cn) in Figure 

10, and these constellations can be accessed via services, e.g. Sensor Observations Service 

(Ahn, 2014). 
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Figure 9. Sensor Web Enablement Concept (Botts, 2007) 

 

 

Figure 10. General Case for In-Situ Sensors (Na, 2007) 

 

According to Na (2007), SOS must do three "core" operations: 

 GetObservation – “data from sensors can be retrieved using a spatial-temporal query 

that can be filtered by a variety of factors, including phenomena”. 
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 DescribeSensor – “allows an SOS server to query metadata about sensors and sensor 

systems”. 

 GetCapabilities – “gives you access to metadata and extensive information about an 

SOS”. 

Figure 11 illustrates a GetObservation document request encoded as a Sensor Observation 

Service query, which contains locating all observations sensed on the sites “Mitrovica” or 

“Plemetin” for occurrences such as “Electrical conductivity” and “Temperature” using sensors 

“Sensor1 Temp”, “Sensor2 Cond”, “Sensor3 Temp”, or “Sensor4 Cond” between “2016-01-19 

14:00“ and “2016-01-19 14:05“ (Bytyçi, 2017).   

In (Cox, 2011) and (Bröring, 2012), are specfied the following attributes of the supplied 

GetObservation request (or its SOS query): 

 temporalFilter – “specifies a time property filter for the requested data”. 

 featureOfInterest – “identifier for a feature of interest for which observations are 

sought”. 

 
Figure 11. Example GetObservation Request as SOS query (Bytyçi, 2017) 
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Figure 12. Example GetObservation response (Bytyçi, 2017) 

 observedProperty – a reference to something observed The property for which 

observations are sough. 

 procedure – observations are solicited using this technique. For each observation, it 

describes a filter to apply on the procedure property. 

 responseFormat – desired responseFormat identifier for the demanded observational 

data, use this format. 

Figure 12 illustrates an example of an O&M Observation from the GetObservation response. 

Different solutions are available that use these standards to enable all kinds of sensing devices 

and their observed data archives accessible, discoverable, and usable via the SW, such as 

(Pradilla, 2016), (Henson, 2009a), (Ikechukwu, 2018), (Pschorr, 2013), (Bytyçi, 2017), 

(Regueiro, 2017), (Gonzalez, 2017), (Pu, 2016), (Chinnachodteeranun, 2016), (Janowicz, 

2010),  (Stasch, 2018). Since they have incorprated semantics into OGC SWE standards, 

several of these methods are covered in section 3.1. As a result, the additional options are 

listed below:  

 

 In (Pradilla, 2016), An Sensor Observation Service application is proposed, which is suitable 

for tiny sensor network contexts and does not necessitate particularly robust aplicatoins 

to work, resulting in a standard and agile program. This application of the Sensor 

Observation Service enables autonomy from manufacturers and different WSNs by 

conveying observed sensing data in a standard format and across well-defined apps 

interfaces.  
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 In (Haller, 2018), sensors and actuators are described, as well as observations, the 

processes employed, the subjects and attributes of samples and the sampling process, 

being seen or acted upon, and so on. SOSA is a stand-alone core which is augmented by 

SNS and several components to enhance articulacy and diversity. Large-scale scientific 

monitoring, community science, satellite imagery, social media, industrial and home 

infrastructures, and the IoT are all possible applications and use cases for the SOSA/SSN 

ontologies.  

 

 Improved sensor data access through the SWE framework is discussed here (Lee, 2015). 

This web appliaction provides a visualization of data archived in the SOS by combining free 

technologies like the API of WEKA. 

 

 OGC SOS interfaces provide a platform for mediating environmental observation data 

semantically (Regueiro, 2017). Incorporation of sematics in an Sensor Observation Service 

application is one of the primary features of the suggested method. 

 

 To illustrate OGC SWE's potential to support observation and forecasting, the “Sensor 

Management for Applied Research Technologies - SMART” project was created (Conover, 

2008). Algorithms for anomaly detection rely heavily on the Phenomena Extraction 

Technique (PEA). 

 

 In (Gonzalez, 2017), an open OGC-compliant AAL approach to provide the AHA is 

described. SOS is utilized as a major component for collecting and managing sensor data 

from heterogeneous sensor networks. 

 

 Using a mix of OGC WPS and SOS, a water level monitoring at dam system named TaMIS is 

introduced in (Stasch, 2018). 

 

 A common web service, SOS API, wraps and exposes a source of climatological data on a 

grid, AmGSD (Chinnachodteeranun, 2016). 

 

 In (Pu, 2016), a concentrated framework to incorporate different types of sensors into 

Sensor Observation Service is presented, which allow to exchange and access different 

environment surveillance sensors. 
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The Semantic Sensor Network ontology, implemented by the W3C SSN-XG, shows sensors 

and sensor network resources (Compton, 2012). Observation and measurement data as well 

as sensor attributes essential to processing are all described in the ontology (Barnaghi, 2012). 

3.3. Which models are capable of analyzing data streams in real time and integrating 
semantics? (RQ3) 

There is a series of tuples in the data stream. It's like a record in a database, tuples have 

attributes. Because greater data rates are more difficult to manage and interpret, the rate at 

which stream data is received is crucial for processing (Rajaraman, 2014), (Golab, 2003). 

Sensors of agricultural and water quality monitoring have slow data transfer norms. Since they 

are able to be saved or archived, their data management and processing differs from those 

with high data transmission rates. 

 

Data Stream Models - Stream data transmission and saving can be modeled in numerous 

ways based on characteristics: 

 Real-time data stream 

 Stream items 

 Window models 
 

Each of them is detailed further below. 

Real-time Data Stream - is a collection of data which has been arranged in a particular manner 

that arrive in order and/or in preprocessed ways, resulting in a possible list of models (Golab, 

2003): 

 Unordered cash register: data from multiple sources that do not come in a 

predetermined order or with pre-processing. 

 Ordered cash register: Pre-processing is not done on any of the individual data from 

various domains, but they attain a well-known order in some way. 

 Unordered aggregate: pre-processed data from the same domain that only one data 

from the domain comes without being arranged in any way. 

 Ordered aggregate: pre-processed individual data from the same domain, with only 

one data arriving in a well-known order. 
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Stream Items - Data can be represented as a sequence of elements in a list since it is received 

in a stream, which can be relational rows or object instances (Motwani, 2003). Data are 

represented as rows in relational based models and saved in virtual relations, however in 

object based models, types of sources and data are portrayed as hierarchical data types with 

nearby procedures. 

Window Models - In many circumstances, just a part of the sensor streams is of importance 

at any one time, which encourages the use of window models, which may be characterized 

using three criteria: 

 Fixed sliding window: includes only the most recent data or displays only the most 

recent data based on the timeframe. 

 Landmark window: a time reference point is established, and data are derived from 

that period. Because of the increased data quantity within the frame, this criterion is 

less frequently utilized. 

 Adaptive window: the window changes dynamically based on the input data and 

user-specified values. 
 

Streaming data is a continuous and real-time data sequence. Inquiries on stream data are 

conducted constantly throughout time and gradually yield results as new data comes; thus, 

these queries are referred to as continuous queries (Chen, 2000). 

Many stream processing engines are built to deal with stream data. They are primarily 

concerned with memory stream processing and run continuous queries on streams, such as: 

 

 Aurora (Abadi, 2003) is a process system that makes it possible to create query plans 

through the arrangement of boxes (operators) and arrows (data flow among agents). 

Aurora is centered on effective planning, high-quality service, and the improvement  

framework. In the unified processing engine, the system enables continuous 

inquiries, ad-hoc requests, and sliding windows. Aurora is developed as a distributed 

streaming paradigm which may be automatically reconfigured as network conditions 

change. 

 

 STREAM (Motwani, 2003) is a general-purpose relational database system that 

focuses on memory management and approximate query responding. STREAM is a 
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solution that allows you to run continuous queries across numerous continuous data 

streams.  

 

 TelegraphCQ (Chandrasekaran, 2003) is a query execution system that prioritizes 

shared query evaluation and adaptive query processing. The fundamental concept 

would be to analyze accurate inquiry replies for item sets that can be dealt with inside 

the confines of a given time-frame, in conclusion, features whichever surplus, item 

sets that the query engine does not have the processing power for capacity. An 

important part of summarization is the use of processing techniques to reduce the 

number of inputs to a manageable size. 

 

 Data stream systems like COUGAR (Demers, 2003) use object-relational or object-

oriented data models in which sensor nodes are represented by abstract data types 

(ADTs). For queries that take a long time to complete, COUGAR provides well-defined 

meanings. A database system's dispersed context was changed to allow for set-

oriented execution techniques. 

 

 NiagaraCQ (Chen, 2000) is a continuous query system that enables for the execution 

of continuous XML-QL queries over dynamic Web material. 

 

Other engines rely on a stream processing engine and relational database management 

systems to work together in harmony (DBMS), for example:  

 

 Harmonica (Kitagawa, 2007) is a data stream management system that utilizes an 

architecture that combines a stream processing engine called StreamSpinner with 

relational DBMSs. Harmonica satisfies the needs for continuous persistence of 

streaming data as well as searches over data streams, selecting, joining, projecting, 

and custom functions. 

 

 Nile is a data stream query processing engine. Nile enhances the PREDATOR object-

relational database management system's query processor engine to handle 

continuous queries over data streams. Nile includes improved SQL operators that 

support sliding-window execution as a way to limit the size of stored information in 

operators such as join (Hammad, 2004). 
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Distributed batch processing technologies such as MapReduce (Dean, 2008) and Hadoop 

(White, 2015) continue to be critical for processing static and historical data collections. There 

is an increasing demand for stream processing systems, as real-time applications like as 

intrusion detection and web analytics become more common. Massive streams of dynamic 

data should be processed on-the-fly by streaming processing systems, and conclusions should 

be delivered to prospective (potential) customers with the least amount of latency possible 

(Hanif, 2017). 

There are a number of stream processing systems that offer “real-time” and “near-real-

time” analytics on data stream, such as (Akidau, 2015), (Zaharia, 2013), (Feng, 2015), 

(Carbone, 2016), (Toshniwal, 2014):  

 Spark Streaming 

 Flink 

 Storm 

 Google Data Flow 

 Samza 

Modern big data applications rely on distributed data processing platforms to manage both 

batch and real-time analytics. 

These systems are discussed in detail in the following paragraphs: 

 

 A system known as MapReduce (Dean, 2008) involves two main steps: Map and Reduce. 

Batch processing is used to sort and shuffle data. 

 

 The Hadoop architecture allows for parallel computing of enormous data volumes over 

multiple machines using basic algorithms (White, 2015). 

 

 Since its inception, Twitter has been working on a distributed stream data processing 

system called Storm (Toshniwal, 2014). 

 

 It was developed at LinkedIn to address the problem of continuous data processing and is 

known as Samza (Feng, 2015). 
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 For real-time stream data transformation and enrichment, Google Data Flow is a 

completely - service management (Akidau 2015), (Akidau 2015). 

 

 As a result, Flink is a system which can execute both stream and batch analytics (Carbone, 

2016). 

 

 For high-performance, fault-tolerant stream processing, Spark Streaming is an elongation 

of the basic Spark API (Ivanov, 2018). 

 Spark Streaming13 has been used to compute in real-time the sensor stream in a number 

of recent research publications, including (Parveen, 2017), (Ge, 2016), (Chen, 2015), (Zaharia, 

2013), (Nair, 2018), and (Zhou, 2018). Using powerful methods such as reduce, window, join,  

and map, stream may be consumed from a variety of origin, counting Kinesis, TCP 

connections, Flume, and Kafka. When all is said and done, a variety of protocols are available 

for delivering processed data to filesystems, databases, and even real-time dashboards. 

Machine learning and graph processing techniques from Spark may be used to analyze data 

streams as well. Inside, it's a little more complicated. Receives real-time data streams, divides 

them into batches, and processes them using the ApacheSpark mechanism to produce a final 

batch of results in batches.  

 Spark DStream (Discretized Stream), is a powerful abstraction that represents a data 

stream of Resilient Distributed Datasets (RDDs) given by the SparkStreaming API (Nabi, 2016), 

(Spark Apache, 2018). Both Kafka, Flume, and Kinesis-based data streams and high-level 

operations can be used to build new DStreams  (Karau, 2017). 

3.4. What are the semantics-based IoT trend domains? (RQ4) 

Because of the advancement of the IoT, an increasing number of sensors, motors, as well as 

mobile devices are being integrated into our everyday life. Consequently, massive amounts 

of data are generated, and it is imperative that the knowledge concealed inside these massive 

amounts of data be unearthed. However, sensor and device data from several modes has a 

wide range of structures, fields, and classes, making it difficult for machines to understand 

and evaluate the data they produce. As a result, the incorporation of semantics into the 

Internet of Things has become an overwhelming trend (Shi, 2018). Semantic alerts can be 

                                                           
13www.spark.apache.org/docs/latest/streaming-programming-guide.html 
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used to undertake advanced knowledge discovery and data interpretation, especially in the 

areas of acknowledging activities, detecting trends, as well as making decisions (Barnaghi, 

2012). 

Semantic annotation can be found in the following IoT trend domains, according to this 

study's findings: (but not limited to): 

 Smart Water Monitoring (Arrieta, 2021), (Jajaga, 2015), (Ahmedi, 2015), (Bytyçi, 2017) 

 Smart Cities (Ghazal, 2021), (Petrolo, 2017), (Gyrard, 2015), (Djenouri, 2021), 

(Soldatos, 2015), (Puiu, 2016) 

 Smart Energy Management (Ploennigs, 2014), (Fensel, 2013) 

 Smart Homes (Fensel, 2013) , (Vlachostergiou, 2016),  (Chen, 2009), (Huang, 2016)  

 Smart Health (Vannieuwenborg, 2014) (Krummenacher, 2007), (Lee-H, 2015) 

 

The following is a list of other options: 

 

 It is claimed in (Rubi, 2020) that an IoT-based platform for exchanging environmental data 

in smart cities, focused on semantic web standards and a source of an OWL for 

environmental indicators, provides interoperability from data collection through 

knowledge extraction and visualization (Rubi, 2020). 

 

 In (Muppavarapu, 2021), an ontology for the smart home and smart building IoT domains 

is developed discovering and extracting the most common concepts from sixteen 

prominent ontologies automatically based on semantic similarities, which reduces the 

effort required to generate a domain ontology (Muppavarapu, 2021). Experts in the field 

examine the findings and conclude that they are enough for describing smart homes and 

intelligent buildings. 

 

 The use of semantics and machine learning to integrate sensor stream data into healthcare 

platforms is described in (Balakrishna, 2020). A detailed description of the proposed 

framework's procedures and algorithms is provided, including the collection of raw data, 

annotation of concepts, extraction of resources data, semantic reasoning, and clustering. 

 

 An application for measurement of water quality in real-time is given by (Sowmya, 2017) 

based on WSNs. The observed data are continuously transmitted to the coordinator by the 
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wireless sensor nodes. The data is collected at the data center and sent to the database 

server (Oracle database) where the data is logged in the sensor data table. As a outcome 

of the data center's connection to the internet, users can access and monitor the data. 

 

 As part of the ongoing work to construct the Museum Energy-Saving Ontology (MESO), we 

provide in (Zachila, 2021) an ontology connected to energy-efficient cultural settings. 

 

 

3.5. Systematic review – a summary 

Table 3 highlights the findings from the investigated papers and groups them into 

categories based on their relevance to our research. The table attributes are described below: 

o Reference –in the APA style, signifies the reference cited (author’s surname(s) or 

organization and the year of the source was published),  

o Type of publication – Indicates if the work is a conference publication, a journal publication, 

a report, or something else. 

o Study Type – determines if the study is practical, theoretical, or evaluative. 

o Domain – reflects the domain of contribution, such as smart city, water monitoring, and so 

forth. 

o Research questions (RQ1, RQ2, RQ3, RQ4) - classifies the article according to its relevance 

to the study's designated research questions. 

o Main Contributions – a succinct summary of the article's key contribution. 

 

Table 3. Key studies 

 



45 
 

 

 



46 
 

 



47 
 

 

 



48 
 

 



49 
 

 



50 
 

 

Figure 13 shows the number of papers picked by digital libraries and publication category. 

 

 

a) digital libraries 
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b) publication type 

Figure 13. Papers chosen based on the following criteria 
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4 
Chapter 

 

4. IoT Sensor Data Semantics Integration and 

Interpretation in Real-Time 

Billions of IoT devices are now transmitting continuous streams of sensed data to a central 

server. The exponential expansion of streaming data has increased the importance and 

complexity of real-time processing and integration of semantic and sensor data streams. 

When it comes to IoT, it is critical to identify the optimal strategy for incorporating contextual 

information into WSNs streaming data and metadata. 

 

4.1. Selected technologies and standards  

Spark Streaming14, Apache Kafka15, Cassandra database16, as well as SWE standards are 

all used in the presented system which enables to real-time incorporate semantic annotation 

into the WSNs streaming data, that will be explored further in the next sections. 

 

 

4.1.1. Apache Spark Streaming 

Numerous technologies for handling sensor observations have arisen to offer real-time 

analysis of observations sets, such as Google Data Flow, Apache Spark Streaming, Apache 

Storm, and Apache Flink (Karimov, 2018). The majority of research find that when the input 

volume is large, Apache Spark Streaming performed better with high throughput (Gorasiya, 

                                                           
14 spark.apache.org/streaming 
15 kafka.apache.org/intro  
16 cassandra.apache.org/_/cassandra-basics.html  
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2019). As a result, we picked Apache Spark Streaming to build our system for real-time 

integrating semantics into the observed data of different WSN types.  

An Apache Spark addon, Spark Streaming, may be used for creating scalable, fault-tolerant 

IoT systems that analyze sensor stream data. Flume, Kinesis, HDFS, and Twitter are just a few 

of the many data sources that it can access and handle. A last option is to distribute the 

streamed data in real time through IoT applications or to databases or file systems. Figure 14 

depicts the Spark Streaming methodology. 

 

 

Figure 14. Spark Streaming workflow 

4.1.2. Kafka 

Kafka is a framework for the distributed stream-handling  similar to a message queue or 

commercial messaging system that can subscribe as well as publish to streams of data, make 

it possible to store and process data streams in a fault-tolerant and permanent manner. Data 

pipelines based on Kafka's real-time streaming capabilities are the most prevalent use cases. 

In our system, it serves as a bridge in the middle WSNs stream and Apache Spark Streaming. 

4.1.3. Cassandra database 

As an open-source and free distributed repository platform when data is in a standardized 

format, Apache Cassandra is ideal for storing mission-critical data that has to be scaled up 

quickly. Designed to manage a lot of data across many number of servers, while maintaining  

high scalable and avoiding single points of down. Spark Streaming with this Apache database 

are a good match. As a result, our system's Cassandra database will house the WSNs 

observations and integrated semantics handled by Apache SparkStreaming. 

4.1.4. OGC standards 

With the OGC SOS standard, which is defined in Section 3.2, all sensors, in-situ as well as 

fixed and mobile, may share their observations in a uniform way that is consistent across all 

types of sensors. Search results from SOS are returned in Observation and Measurement 
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(O&M) standard format. These SOS O&M standards will be utilized to encode semantic 

annotations and WSNs observation. 

4.2. An overview of system architecture 

Figure 15 illustrates the architecture of an IoT system for real-time 

integrating/interpreting of semantic annotations into the observed WSN data of different 

sensor types with context. SparkStreaming, Kafka, Cassandra, as well as O&M standards are 

used in the developed real-time semantic annotation techniques. 

As "producer" for the Kafka server, the IoT-based sensor device wirelessly transmits its 

heterogeneous sensor stream data. Sending data streams to the Kafka “topics”, which are 

distributed amongst one or more of the clustered servers (named nodes) referred to as 

"brokers”,  is done via the "producer" client. The data streams from Kafka are subsequently 

treated in parallel and in real-time using Apache Spark Streaming. 

Many types of sensor data streams are received by the Kafka server (e.g., text, binary, 

JSON, XML, and so on)and turn them into a format that Spark Streaming can process. The 

real-time detection of outliers will be relayed by the altered sensor data stream, that's 

alsoperformed inside Spark Streaming. If a data stream object does not behave as predicted, 

it is classified as an outlier, which could be due to noise or abnormality (Tran, 2016). Outliers 

can occur for a variety of causes, including mechanical failures, system modifications, 

fraudulent conduct, technical fault, or human mistake (Koupaie, 2013). 

 

 

Figure 15. System architecture 
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WSNs observed data that no marked as outliers and require additional semantic 

annotation analysis are forwarded to the Spark Streaming component “Real-Time Semantic 

Annotation (RTSA)”. The semantic annotations are subsequently interpreted by another 

component in Spark Streaming named ”Real-Time Interpreting Semantically Annotated 

(RTISA)”. This section will discuss these two components in further detail: 

 Real-Time Semantic Annotation – is defined as follows: “RTSA enables a real-time 

integration of semantics into heterogeneous sensor stream data with context in the 

Internet of Things. RTSA use sensor metadata, archival data streams, and mining data 

streams for adding se-mantic annotations with concept definitions from ontologies or 

other semantic sources, which allows the understanding of senor data and metadata 

elements. The semantic annotations are implemented into SOS O&M by using stakes, 

such as External XML Linking Language (XLink) or Embedded to add annotations in XML 

files. External annotations can point to extra sources of information (e.g. a file), or to 

Uniform Resource Name (URN), while Embedded annotations are only a single value-

scalar of semantic annotation”. 

 Real-Time Interpreting Semantically Annotated – is defined as follows: “RTISA enables 

real-time interpretation of semantics from heterogeneous sensor observation data 

and sensor metadata with context in the Internet of Things. In other words, it executes 

and interprets stake an-notated expressions, such as External (XLink) or Embedded”. 
 

The results of the semantic annotations on the enriched WSNs observed data are saved 

in a database (Cassandra database or relational database) and shown in the real-time IoT 

applications. It should be noted that Apache SparkStreaming will convert semantic 

annotations and observed data received by WSNS in the format of SWE standards like SOS 

(Bröring, 2012). Our system also allows ad-hoc queries, as seen in Figure 15. An ad-hoc query 

is an inquiry regarding the present condition of a stream or streams that is asked only once. 

 

4.3. Main components and Data modelling 

Wireless sensor networks (WSNs) are a critical part of the IoT. They generate a constant 

observation data in the streaming form, which they send to a central server. The management 

and use of streaming data has grown increasingly critical as the volume of data has increased 

dramatically. The inclusion of semantic annotations into the observed data of WSNs is also 



57 
 

expected to improve comprehension and describe IoT application areas in a more relevant 

manner, allowing them to become significantly more intelligent. As a result, figuring out how 

to include semantic annotations into the observed data of the WSNs and make them machine-

interpretable is crucial. 

OGC SOS standards can be extended to real-time integrate semantic annotations into the 

observed data of the different WSN types with context in the Internet of Things. 
 

 

Figure 16. The architecture of the data modeling 

Different real-time IoT monitoring applications, like air quality, weather quality, health 

care monitoring, weather alerts monitoring, etc., can benefit from a model architecture 

depicted in Figure 16. In a variety of areas, WSNs can be found. A steady stream of data is 

generated by them, which they send to Kafka in several formats (for example, XML, JSON, 

text, and others). A special format supported by Spark Streaming's real-time and parallel 

capabilities is created using Kafka. It is possible to incorporate semantics into observed WSN 

data using Spark Streaming by incorporating archival sensor observed data, sensor metadata, 

and IoT domain rules with notion definitions from ontologies or other sources of semantic 

information, leading to better knowledge and more purposeful descriptions of IoT application 

fields. As illustrated in Figure 16, the developed model of managing stream data enables “the 

real-time integrating/interpreting semantic annotations into the observed WSN data, 

continuous queries on streaming data, outlier validation of streaming data, ad hoc queries, 

and archive stream data with semantic annotations for applications that require responses 
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from the archival store (persistent data stored)”. The primary components of the proposed 

model are as follows:  “ 

A. Input Data Stream,  

B. Stream Processor,  

C. Data Modelling,  

D. OGC standards, and  

E. Ontology. “ 

The following is a detailed description of each model component: 

A. Input Data Stream – it is an Kafka implementation that receives in real-time observed data 

from sensors in streaming form. As with an un-ordered cash register, unordered streams 

arrive without any form of preparation. This means that each stream can supply items on its 

own timetable, and they don't have to be of the same kind or have the same data rates. 

B. Stream Processor – Spark Streaming Stream Processor features include “Outlier Stream 

Validator and Classificator, Query Process, Ad-hoc Queries, and Semantic Annotations”: 

 Outlier Stream Validator and Classificator (OSVC) – is an element of the Spark 

Streaming Stream Processor 's architecture that validates sensor streaming data in 

real time and assigns one of two statuses to it: ‘valid’ or ‘outlier’. Validated data is 

processed further, whilst in the Invalid Data Streams (IDS), incorrect data is saved. An 

outlier, also known as a noise or anomaly, is a data stream object that deviates from 

expected behavior. Because the pH phenomena has a value range of 0 to 14, data 

showing a pH sensor reading of '-3' or 'NULL' will be considered an oddity. Outliers can 

occur for a variety of causes, including mechanical failures, system modifications, 

fraudulent behavior, instrument error, human mistake, or natural variance (Yu, 2020). 

As a result, quality of the data is provided by the Outlier Stream Validator & 

Classificator for real-time IoT monitoring applications. 

 Query Processor - searches streaming data in real-time and is refreshed when 

additional streams enter. The continuous query's result is generated over time, 

continuously reflecting the observed sensor data viewed thus far. Semantically 

annotated data can be included in the answers returned by our Query Processor. 
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 Ad-hoc Queries — users' ad hoc requests for information. Prior to this, someone 

inquired for the present status of a sensor stream data  or sensor streams data. 

Streaming and persistent data can be combined in ad hoc queries on Archival Data 

Streams, WSNs Metadata, or Working Data Streams can also be specified by users. 

Additionally, the response of the Ad-hoc Queries can contains semantically tagged 

data. 

 Semantic Annotation Stream Processor – provides for the real-time incorporation of 

semantics into the observed data of different WSN types using the Spark Streaming 

processor. This component can add semantic annotations to observed WSN data using 

sensor metadata, archive data streams, IoT domain rules (based on ontologies), or 

other semantic sources. Working Data Stream Annotations save the semantic 

annotations of observed WSN data. 

 

C. Data Modelling – Annotations for Processor Data, Working Data, Archival Data, Invalid 

Data, and WSNs Metadata are all included in the Apache Cassandra database's model of data 

flow and data storage. 

• Processor Data Streams (PDS) – overview of streaming data that can be used to answer 

inquiries for the Stream Processor. Only one row is saved for each deployed sensor, and it 

contains the following information: 

o WSN Id - a unique id that distinguishes a WSN from others. 

o WSN parameter - title of a factor that the WSN measures or observes (for example 

pressure, wind speed, PM2.5, etc.) 

o WSN Current Value - the sensor's current reading. 

o WSN Total Rows - the sensor's total number of observations once it has been put 

into use. 

o WSN Max Value - highest value recorded by the WSN since its installation. 

o WSN Min Value - sensor's lowest reading since it was deployed. 

o WSN Sum Value - total of the WSN measurements since its installation. 

o WSN Avg Value - since the WSN's installation, its average value, calculated by 

dividing the sum of values observed by the WSN by the total number of observed 

by the WSN (WSN Sum Value / WSN Total Rows). 
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o WSN Window Max - the sliding window's maximum value. The last n data sent by 

the sensor are displayed in the sliding window, where n is a customizable integer 

(for example 16 last observed values). 

o WSN Window Min - sliding window's minimum value. 

o WSN Window Avg - the sliding window's average value. 

o WSN Current Timestamp - the sensor's current measured timestamp. 

o Current Latitude & Longitude of WSN - WSN's current position in terms of 

longitude & latitude (location from where the WSN sent observed data stream) 

• Working Data Streams (WDS) – stream Processor operation comprises streaming data, 

which can be configured by amount and used to answer queries. Consequently, the Fixed 

Sliding Window displays the most recent WSN observed data (for example 16 last observed 

values - its customizable number).The following information is recorded for each measured 

value:  

o Id – a globally unique identifier (guid) that uniquely identifies a WDS observation. 

o WDS Id - identification number that distinguishes one sensor from the others.  

o WDS parameter - the term used to describe the phenomenon or characteristic 

being measured by the sensor. 

o Sensed Value - the WSN transmits a measured value. 

o Timestamp - the point in time at which the WSN generated the detected value. 

o Latitude & Longitude - geolocation, or the position of the sensor that transmitted 

observed data stream. It is particularly useful when a Wireless Sensor Networks is 

attached to a moving object, like a bus, a car or a plane, or when a mobile WSN 

monitors a variety of ad-hoc selected locations of interest, whereas when a static 

sensor monitors a region, the geo place can be “NULL” because the place of these 

sensor types can be stored as metadata of WSN in WSNs Metadata component. 

o WSN Observation Id - a globally unique identification (guid) for the measurement 

of a single sensor node. For instance, if a sensor node simultaneously observes 

three parameters (as a single measurement), all three observations will share the 

same observation id; else, the observation id would be NULL. 

o Entry Timestamp - the date and time at which the Stream Processor received the 

streaming data. 
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• Working Data Stream Annotations (WDSA) – this component stores  the sensor streaming 

data semantic annotations. In order to tag in real-time sensor data streams with semantic 

annotations, the Semantic Annotation Stream Processor component is used. Working Data 

Streams can extract numerous sematic annotations from a single measurement, including 

information about the measurement: 

o WSN Annotation Id - a globally unique identifier (guid) sematic annotations are 

identified only by this code. 

o WSN Observation Id - an identifier for the WDS observation. 

o WSN Annotated Date - the timestamp when sematic annotations were applied to 

sensor streaming data. 

o WSN Annotated Type - specifies the annotation type, either “External” (an external 

resource linked to our ontology'ont-core.owl' via a 'XLink') or “Embedded” (a 

single value-scalar). 

o WSN Annotated Value - the semantic annotated value is stored here. An example 

of 'Embedded' annotation type values for air quality AQI Index: 

<annotation embedded:AQI_Index ="85"/> 

 
An example of a “External” annotation type value is: 
<annotation xlink:href="http://myserver/ontologies/ont-

core.owl#Health_Implications_Moderate "/>  

 (for more details see Figure 21). 
  

• Archival Data Streams (ADS) – are data streams that are archived for the purpose of creating 

reports and statistics. The data modeling structure of ADS is identical to that of WDS. 

Information is kept for each measured value as indicated: 

o Id - a globally unique identifier (guid) which uniquely identify the observation in 

the Working Data Streams. 

o WSN Id - identification number that distinguishes one sensor from the others. 

o WSN Parameter - the term used to describe the phenomenon or characteristic 

being measured by the sensor. 

o Sensed Value - the WSN transmits a measured value. 

o Timestamp - the point in time at which the WSN generated the detected value. 
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o Latitude & Longitude - geolocation, or the position of the sensor that transmitted 

observed data stream. It is particularly useful when a Wireless Sensor Networks is 

attached to a moving object, like a bus, a car or a plane, or when a mobile WSN 

monitors a variety of ad-hoc selected locations of interest, whereas when a static 

sensor monitors a region, the geo place can be “NULL” because the place of these 

sensor types can be stored as metadata of WSN in WSNs Metadata component. 

o WSN Observation Id - a globally unique identification (guid) for the measurement 

of a single sensor node. For instance, if a sensor node simultaneously observes 

three parameters (as a single measurement), all three observations will share the 

same observation id, else the observation id would be NULL. 

o Entry Timestamp - the date and time at which the Stream Processor received the 

streaming data. 

• Archival Data Stream Annotations (ADSA) – stores semantic annotations of sensor stream 

data for the purpose of producing reports and statistics. The ADSA data modeling structure is 

identical to the WDSA data modeling structure. Several sematic annotations can be obtained 

from a single measurement in Archival Data Streams, including information on the 

measurement: 

o WSN Annotation Id - a globally unique identifier (guid) sematic annotations are 

identified only by this code.  

o WSN Observation Id - references to  ADS WSN Observation Id 

o WSN Annotated Date - the timestamp when sematic annotations were applied to 

sensor streaming data. 

o WSN Annotated Type - specifies the annotation type, either “External” (an external 

resource linked to our ontology'ont-core.owl' via a 'XLink') or “Embedded” (a 

single value-scalar). 

o WSN Annotated Value - the semantically annotated value is stored here. 'High',  

'Bad', 'Poor', 'Moderate', or 'Good' are examples of values for water quality status. 

An example of ‘Embedded' annotation type values for water quality status: 

<annotation embedded:WaterStatus="Bad"/> 
 

Example value of ‘External’ annotation type can be:  
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<annotation xlink:href="http://myserver/ontologies/ont-

core.owl#WaterStatus_ClassV"/> 

 (for more details see Figure 26). 
 

• WSNs Metadata (WMD) - data that describes WSNs, their equipment, and the site allocation 

data that goes with them. This information is referred to as static data because it represents 

the configuration of a WSN, which may include several types of sensor nodes such as sensing 

nodes, gateway nodes, centralized monitoring nodes, and information on the sensors 

themselves (including serial numbers, producer, and kind), and also information about the 

implementation sites, such as sensor location, and so on. 

• Invalid Data Streams (IDS) – OSVC classifies invalid sensor stream data as an outlier and 

stores it in Invalid Data Streams (IDS). The data kept in IDS is optional and is determined by 

the system's needs. The following data is included in IDS: 

o Id - a globally unique identifier (guid) that identifies each observation in the Invalid 

Data Streams. 

o WSN Id - identification number that distinguishes one sensor from the others 

(assuming it is a valid value).  

o Sensor Parameter - name of the parameter or phenomenon (e.g. temperature) 

observed by the sensor (given valid value). 

o WSN parameter - title of a factor that the WSN measures or observes (for example 

pressure, wind speed, PM2.5, etc.). 

o Sensed Value - the WSN transmits a measured value (if is valid value). 

o Timestamp - the point in time at which the WSN generated the detected value (if 

is valid value). 

o Latitude & Longitude - geolocation, or the position of the sensor that transmitted 

observed data stream (if valid values). It is particularly useful when a Wireless 

Sensor Networks is attached to a moving object, like a bus, a car or a plane, or 

when a mobile WSN monitors a variety of ad-hoc selected locations of interest, 

whereas when a static sensor monitors a region, the geo place can be “NULL” 

because the place of these sensor types can be stored as metadata of WSN in 

WSNs Metadata component. 



64 
 

o Entry Timestamp - the date and time at which the Stream Processor received the 

streaming data. 

o WSN Observation Id - A globally unique identifier (guid) that distinguishes a single 

sensor node measurement (assuming it has a valid value). If a sensor node 

measures three parameters as a single measurement, the observation id for all 

three measurements will be the same, unless the observation id is NULL. 

D. OGC Standards - IoT real-time applications will receive semantically annotated sensor 

stream data in OGC standards format, namely ver. 2 of the Sensor Observation Service 

Observation & Measurement standard, as previously indicated. 

E. Ontology - the “ont-core.owl” ontology has been constructed. For example, for the “Air 

Quality and Weather Alerts Monitoring” domains, semantic annotations like “#AQI Index, #Air 

Pollution Level, #Health Implications, #Blizzard, #Flurry, #Rain Shower, and #Rain Storm” are 

created (see Figure 31, and Figure 32), while for the Water Quality Monitoring domain, 

semantic annotations such as #UNCEF and #WFD are created (see Figure 40). 

The following are the details of this model's working cycle: Input Data Streams (Apache 

Kafka) are streams of data sent by wireless sensor networks. As seen below, the observed 

WSN  is an array of different kinds that contains the sensor id (sid), parameter name, sensor 

measured value, geographical location (latitude and longitude), and timestamp: 

 

The stream data elements are then validated using the Outlier Stream Validator, which 

assigns a validity status to each sensor stream data element (true - if the data is legitimate, 

false - if the data is outlier). When data is validated as 'true', it is delivered to the “Semantic 

Annotated Stream Processor” for additional processing, that allows for real-time integrating 

semantics into the observed WSN data. Then, the enriched observed WSN data will be 

translated into SOS Observation & Measurement standard for display in the real-time IoT 

‘SId: 3ae2b42t;  

Parameter: Temperature;  

Value: 17.15;  

Lat: 42.706703186;  

Long: 21.038431;  

Timestamp: 20200312165213’ 
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applications, and the results of the semantic annotations is going to be preserved in WDSA & 

WDS. 

When the sensor detects a new value, it sends it to Working Data Streams (where their 

semantic annotations are recorded in Working Data Stream Annotations), and the oldest 

value is deleted from Working Data Streams and sent to Archival Data Streams (or Archival 

Data Stream Annotations) for archiving. As a result, data in Archival Data Streams and Archival 

Data Stream Annotations has been archived and can be utilized to construct reports and 

statistics over longer periods of time. 
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5 
Chapter 

 

5. Development and Implementation of the System 

To test the introduced techniques and model for real-time integration and interpretation 

of semantic annotations into the different types of observed WSN data and WSN metadata 

with context in the Internet of Things, a prototype system called “IoT Semantic Annotations 

System (IoTSAS)” has been developed, as shown in Figure 17. The system is divided into 

modules, which are as follows: 

1. The real-time integrating and interpreting of semantic annotations into the observed 

WSN data module,  

2. Data modelling module (see section 4.3),  

3. The module for managing metadata,  

4. Monitoring module for air quality, 

5. Monitoring module for weather warnings,  

6. Water quality monitoring module,  

7. The module for external systems - RESTful APIs.  

The IoTSAS system's real-time processing capabilities include continuous input of 

observed data from different WSNs types, processing of the monitoring systems with low 

processing latency requirements can benefit from semantically annotated and interpreted 

data, as well as data produced in the SOS O&M format. 

The real-time integrating and interpreting of semantic annotations into the observed WSN 

data is the primary module build in Apache Spark Streaming. There are three languages that 

can be used for Spark Streaming applications: Java (the default), Python, and Scala. The 
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module is built using Eclipse's Java programming. Figure 18.a shown the Java packages for this 

module: 

 

Figure 17. Modules for the IoTSAS System 

 

 

Figure 18. Workspaces for IoTSAS solutions: a) Core module of IoTSAS Java packages, b) .Net 
C# projects for IoTSAS other modules 
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 iot.core 

o Real Time Outlier Detection, IoT Data Stream Decoder, Input IoT Data Stream, 

Query Processor, and IoT Domain. 

 iot.data.repository  

o Processor IoT Data Stream Repository, Cassandra Utils, Archival IoT Data 

Stream Annotation Repository, Cassandra Connector, Working IoT Data 

Stream Repository, Working IoT Data Stream Annotation Repository, and 

Archival IoT Data Stream Repository. 

 iot.data.annotations.plugins 

o Water Quality Annotations, Air Quality Annotations, and Weather Alert 

Annotations. 

 iot.sos 

o OGC SOS Standards (Transform to O&M Observation), and Get Observation 

Response. 

 iot.datamodeling 

o Create Working IoT Data Streams Model, Create Keyspace, Data Modeling, 

Create Processor IoT Data Streams Model, Create Archival IoT Data Streams 

Model, Create Invalid IoT Data Stream, Create Archival IoT Data Stream 

Annotations Model, and Create Working IoT Data Stream Annotations Model. 

 iot.spark.processor 

o RTISAE Engine, RTSAE Engine, and IoT Spark Processor. 

 iot.spark.entity 

o IoT Sensor, Working IoT Data Stream, Processor IoT Data Stream, Parameters,  

IoT Annotation, Ontology Source, IoT Sensing Node Device, Archival IoT Data 

Stream, IoT Data Stream, Sensing Node Device, Archival IoT Data Stream 

Annotation, Invalid IoT Data Stream, Sensing Node, Working IoT Data Stream 

Annotation, and Ontology Classes.  

 

Other modules are developed in .Net Core C#, depending on performance (Dhalla, 2020) and 

our extensive knowledge with .Net C# technology. As seen in Figure 18.b, the.NET C# has the 

following solutions: 

 IoTSAS – Core 
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 IoTSAS – Metadata Managment 

 IoTSAS – API 

 IoTSAS – Sensor Simulator 

 IoTSAS – Air Quality And Weather Alerts Monitoring 

 IoTSAS – Water Quality Monitoring 

 IoTSAS – API External Systems 
 

Each of the modules is detailed in detail in the following paragraphs. 
 

5.1. The real-time integrating and interpreting of semantic annotations into the observed 

WSN data module 

The real-time processing module delivers the system's functionality by integrating and 

interpreting semantics into the observed WSN data. The Spark Streaming, Kafka, Casandra 

DB, and OGC Observations & Measurements standards, all of which are mentioned in Section 

4.2 of the system design, are all utilized. 

The figure 19 depicts a high-level look of the IoTSAS's process architecture. The data 

collected by the heterogeneous WSNs is transmitted to Kafka in a various formats. A Kafka 

Producer is applied in Kafa that reads various formats of sensor data, converts it to an 

appropriate type, and publishes it to Kafka topics. The name of a Kafka topic is a global 

attribute of the Kafka cluster namespace. Kafka topics are a set of messages published by one 

or more Kafka producers and consumed by one or more Kafka consumers in a queue or logical 

order. Kafka transforms all messages into byte arrays. TCP is utilized  in Kafka to communicate 

between producers, consumers, and clusters. A Kafka broker is composed of one or more 

topics, each of which is further subdivided into a single or several partitions. 

The changed observed WSN data is routed over Kafka cluster to the Spark Streaming for 

additional processing. Apache Spark Streaming separates the observed WSN data into 50 

millisecond intervals known as Discretized Streams (DStreams), consisting of RDDs, one for 

each batch interval, that serve as a foundation for the entire system. The observed WSN data 

collected throughout the batch interval is stored in each RDD. The observed WSN data 

included in RDD is partitioned, and operations on the data cached in memory are done in 

parallel, enabling great performance at scale while minimizing disk input/output (read/write). 

The filter function is used to remove outliers from the RDD observed WSN data. The RDD 

observed WSN data are then converted to “WorkingIoTDataStream” using the transform 

function by appending an unique ID (Universally Unique Identifier – UUID) that uniquely 
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identifies the observed WSN data, and an entry timestamp that indicates when the observed 

WSN data arrived at the Spark Stream Processor. This is followed by the mapping of RDDs to 

IoT domains (for example, monitoring air quality, weather warnings, or water quality), and 

then utilizing built plugins via the RTSA component, the RDD observed WSN stream is 

enhanced with semantic annotations from an OWL source and then executed and interpreted 

stake annotated expressions using the RTISA component. Finally, semantically annotated 

RDDs are translated to OGC Observation and Measurement standards via the transform 

function, and used by IoT applications for real-time monitoring and then are saved to 

Cassandra DB. Figure 19 presents the overall process. 

As illustrated and detailed in Table 4, a new form of observation called “SemObservation” 

with the result type “gml:SemMeasureType” has been developed. The OGC Observation and 

Measurement format without semantic annotations is displayed in Figure 20, while the OGC 

Observation and Measurement format with semantic annotations, including the developed 

type “SemMeasureType”, is shown in Figure 21. 

 

 
 

Figure 19. Real-time integrating and interpreting of semantic annotations into the observed 

WSN data 
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Table 4. SemObservation – the observation type that have been developed 

 

Observations in OGC Observation and Measurement can have a single instance of the 

observation or several instances of the observationData element. The following 

characteristics are frequently observed (the prefix “om” denotes that it is specified in OGC 

10-025r1, whereas the prefix “gml” denotes that this element is specified in OGC 07-033) 

(Jirka, 2014):  

 “gml:identifier” (required): this is used to identify or refer to a particular observed WSN 

data. In our example, the observation is identified by a produced UUID (e.g. 79c22ab1-

g390-b734-7b44-8b8b6df9818). 

 “om:phenomenonTime” (required): indicates the timestamp when the observed WSN 

data was taken. 

 “om:resultTime” (required): shows the date and time that the result was produced 

(frequently this is the same as the “om:phenomenonTime”). 

 “om:procedure” (required): is the identification of the WSN for the observation. 

 “om:observedProperty” (required): the parameters observed in the Internet of Things 

domain. 
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 “om:featureOfInterest” (required):‘ the feature of interest identification (e.g., the 

station of WSN) to which the observed WSN data is related. 

 “om:result” (required): the WSN observation value (result); the result type must be one 

of the following: gml:MeasureType, gml:ReferenceType, xs:boolean, xs:string, xs:integer, 

swe:DataArray, or swe:DataRecordPropertyType are all acceptable values.  

Additionally, a complex type OGC Observation & Measurement is implemented in our 

solution. Figure 22 illustrates the basic complex type OGC Observation & Measurement 

standard format, that we developed by incorporating two additional features (elements): 

 “swe:sem-annotations” –‘ includes 1 or more empty annotation elements that can be 

“Xlink” or “Embedded”. The RTSA component produces the annotation elements. 

 “swe:sem-interpretations” – sensor's observed data is interpreted in this element. The 

component RTISA produces the interpreted data.  
 

 

Figure 20. OGC Observation & Measurement standard document without semantic 

annotations. 
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Figure 21. OGC Observation & Measurement standard document with semantic 

annotations. 
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Figure 22. Complex OGC Observation & Measurement standard document with semantic 
annotations & interpretation 

 

5.2. Data modelling module  

The components of the data modeling are built in the Casandra DB, which include: “Processor 

Data Streams (stores a summary data of each sensor for Stream Processor operations), 

Working Data Streams (a fixed sliding window that stores 15 last measured values for each 

sensor), Working Data Stream Annotations (stores semantic annotations of Working Data 

Streams observations data), Archival Data Streams (archives sensor stream data for 



76 
 

generating reports and different statistics), Archival Data Stream Annotations (archives 

semantic annotations of sensor stream data), Invalid Data Streams (stores invalid sensor 

stream data that are classified as outlier), and WSNs Metadata (known as static data that 

store data and metadata about sensors, sensors types, sensing nodes, gateway nodes, central 

monitoring nodes, etc.)”. The data processing cycle is detailed in Section 4.3. 

Figure 23 illustrates the data modeling diagram for the proposed data stream 

management architecture. Each class is defined by its own set of properties, methods, and 

events. 

To illustrate how data is saved in the Cassandra DB, the following graphics are included: 

Figure 24 depicts Processor Data Streams; Figure 25 depicts Archival Data Streams; and Figure 

26 depicts Archival Data Stream Annotations. 

 

5.3. The module for managing IoT metadata 

The module for managing IoT metadata allows for the administration of data known as 

static data, which comprises the following: 

A. Devices meta data, 

B. Nodes meta data, and  

C. Phenomenon (parameters) meta data. 

 

A. Device meta data – includes information for the various sorts of devices, such as 

sensors, microcontrollers, servers, clusters, and cables, as well as information about 

individual devices, such as device name, a description of the device, the SN of the device, the 

sensor code (if the equipment is a WSN), the status of the device (passive/active), the 

producer, and the phenomenon measured by the WSN, for example PM2.5 (µg/m³), O3 (ppb), 

PM10 (µg/m³), Humidity (percent), CO (ppm), SO2 (ppb), Pressure (mb), NO2 (ppb), etc. 

 

 

  



77 
 

 

Figure 23. Data Modeling Diagram 
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Figure 24. Data of the ProcessorDataStreams 

 

Figure 25. Data of the ArchivalDataStreams 
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Figure 26. Data of the ArchivalDataStreamAnnotations 

Figure 27. Module for managing IoT metadata – Register a new sensor. 

 



80 
 

B. Nodes meta data — consists of information about sensor nodes, which include 

components: 

 SensingNodeTypes – such as WSN nodes that are stationary, which are used to 

monitor tasks in a given zone, or mobility WSN nodes, which are used to monitor 

missions in several places. 

 CentralMonitoringNodes – provide information for example node's name, 

description, status, and geographic location. 

 GatewayNodes – provide the name, city, deployment site, status, details info, and 

geographic location of the gateway node, as well as the central monitoring node 

to which the gateway node transmits data. 

 DeploymentLocations – provide the name of the area, a description, and the 

municipality where the sensors were installed. 

 SensingNodes – offer the following information about sensing nodes: name, 

details info, type of node, Radio-Frequency Identification (RIFD), location of 

deployment, city, data rate in min., geographical location, state of node, and the 

gateway node with which they interact. 

 

C. Phenomenon meta data - includes information regarding parameters such as: 

 Parameters –‘includes data such as those shown in Figure 29: parameter name 

(e.g. Humidity, Ozone (O3), Carbon Monoxide (CO), Wind, NO2, SO2, pm10, pm25, 

Temperature, Water Gauge, and so on), unit of phenomenon (e.g. µg/m³, ppm%, 

mb, ppb°C, mm, m/s, etc.), and rage of values.’ 

 Subparameter types –‘information on subparameter types such as river continuity, 

hydrological regime, thermal conditions, morphological conditions, 

phytoplankton, air pollution, nutrient conditions, macrophysics,  salinity, 

phytobenthic, and so on.’ 

 Parameter types –‘information regarding parameter types such as 

physicochemical, hydromorphological, particular synthetic, biological, air quality, 

specific non synthetic, and so on.’ 
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Figure 28. Module for managing IoT metadata – Register a new Sensing node. 

 

Figure 29. Module for managing IoT metadata – Register a new Parameter. 
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5.4. Monitoring module for air quality and weather warnings 

To view observed WSN data and the semantic annotations that go along with it, a real-

time monitoring IoT web application is built. Access to sensor data from the 

Hydrometeorological Institute of Kosovo (HMIK), the United States Consulate in Pristina, Peje, 

and Rilindja-Pristina is made possible via the “World Air Quality Index API (AQI API)”. 

Programmatic integration of the AQI API includes access to data over 10000 stations and 1000 

paces, as well as title and locations of each monitoring station, a geolocation request based 

on lat. and long., individual AQI for each pollutant, as well as the most recent weather 

conditions (Aqicn, 2020). 

 

A. Received observed WSN data format 

The IoTSAS gets raw observed WSN data via the World Air Quality Index API in JSON 

format, as depicted in Figure 30. The system is able to continuously monitor the phenomenon 

such as: “Temperature (t), Ozone (o3), Sulphur Dioxide (so2),  PM10 (pm10), PM25 (pm25), 

Nitrogen Dioxyde (no2), Carbon Monoxide (co), Humidity (h), Pressure (p), Water Gauge (wg), 

and Wind (w)”. There are several different types of information that can be found in JSON 

data, such as: data (idx - the monitoring station's unique identifier, aqi - air quality data in real 

time, timing - the observation timing data, s - local observation time, and tz - the time zone 

of the station); city (name - details about the station's location, geo - including its lat. and 

long., as well as a link to the source - url); attributions (the station's EPA attribution); and iaqi 

(pm25 – AQI object  for PM2.5, v - actual AQI value for PM2.5).  Observation acquired by WSNs 

each 60 min. interval via the World Air Quality Index API are expressed numerically, for 

example, as 33.3 (co) for the Carbon Monoxide phenomena. 
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Figure 30. Observed WSN data - JSON format 

B. Integrating and interpreting of semantic annotations into the observed WSN data 

As part of the developed IoTSAS, various semantic annotations for observed WSN data 

are created, including as: 
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 #AQIIndexAnnotation 

 #HealthImplicationsAnnotation 

 #AirPollutionLevelAnnotation 

 #FlurryAnnotation 

 #BlizzardAnnotation 

 #RainShowerAnnotation 

 #RainStormAnnotation  
 

The #AQIIndexAnnotation – is a daily air quality index that indicates how good or filthy the air 

is. The AQI for five key air pollutants controlled by the Clean Air Act is calculated by the United 

States Environmental Protection Agency (EPA): “ground-level ozone, particle pollution (also 

known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide”. The 

AQI scale is a numeric value between 0 and 500. The EPA states that the greater the AQI value, 

the more air pollution there is and the higher the center, as illustrated in Equation 1:  

 

(1) 

Equation 1. Calculation of #AQI_Index (Air quality index) annotation 

#AirPollutionLevelAnnotation – it is categorized into six “Air Quality Index Levels of Health 

Concern” categories based on the World Air Quality Index value: 

 

#HealthImplicationsAnnotation – all of the six above-mentioned categories correlates to a 

different level of health concert. #HealthImplicationsAnnotation indicates what they imply, 

e.g. "Unhealthy for Sensitive Groups" category suggests the following: “Although the general 

public is not likely to be affected at this AQI range, people with lung disease, older adults, and 

children are at a greater risk from exposure to ozone, whereas persons with heart and lung 

AQI = max(AQIPM2.5, AQIPM10, AQIO3, ...) 

① Good (AQI is 0 to 50) 

② Moderate (AQI is 51 to 100)  

③ Unhealthy for Sensitive Groups (101 to 150) 

④ Unhealthy (AQI is 151 to 200) 

⑤ Very Unhealthy (AQI is 201 to 300) 

⑥ Hazardous (AQI is 301 to 500) 
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disease, older adults, and children are at great.”, or “Air quality is acceptable; however, for 

some pollutants there may be a moderate health concern for a very small number of people 

who are unusually sensitive to air pollution” states the "Moderate" category. 

#BlizzardAnnotation – to identify a Blizzard, WindSpeed must exceed 15.6 m/s (high), snow 

precipitation must last at least 4 hours, and Visibility must be less than 400 meter (low) 

(Canada, 2020), as shown in Equation 2:  

 

(2) 

Equation 2. Calculation of #Blizzard annotation 

#FlurryAnnotation – there must be lower than 15.6 meters per second of wind, at least 4 

hours of snow precipitation, and 400 meters of visibility in order to detect a Flurry, according 

to Equation 3:  

 

(3) 

Equation 3. Calculation of #Flurry annotation 

#RainStormAnnotation – to detect this annotation, the WindSpeed must be greater than 15.6 

m/s (high), rain precipitation, and the temperature must be greater than 0°C, as shown in 

Equation 4: 
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(4) 

Equation 4. Calculation of #RainStorm annotation 

#RainShowerAnnotation – to detect this annotation, the WindSpeed must be lower than 15.6 

m/s (low), rain precipitation, the temperature must be more than 0°C, as shown in Equation 

5: 

 

(5) 

Equation 5. Calculation of #RainShower annotation 

The above-mentioned annotations are being developed into an ontology called “ont-

core.owl”. Figure 31 shows the annotations for air quality monitoring, while Figure 32 shows 

the annotations for weather warnings monitoring. 

When semantics are added in real time to observed data of different WSNs types in the 

IoT, the RTISA component is used to interpret the observed WSN data in real time to provide 

better understanding and to derive new knowledge from the observed WSN data. The 

following interpretation pattern is produced in this investigation applying integrated semantic 

annotation stakes: 

 

 

RAIN STORM =   

            WindSpeed(a) ≥ 15.6 m/s (High) ꓥ   

            Precipitation(b) = Rain ꓥ   

            Temperature (c) > 0°C 

RAIN SHOWER =   

              WindSpeed(a) < 15.6 m/s (Low) ꓥ 

              Precipitation (b) = Rain ꓥ  

              Temperature (c) > 0°C 

Now (@[#timestamp]) in location [#location(lat, long)] is detected 

[#AQI_index] AQ index with primary pollutant [#MaxParam] [#MaxParamUnit], 

and [#Air_Pollution_Level] air pollution level which health implications 
[#Health_Implications]. Also happening a [#HigherLevelFeature] higher 
level feature which manifests [#HigherLevelFeature_Indicates]. 
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Figure 31. 'ont-core.owl' ontology for Air Quality Monitoring 
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Figure 32. 'ont-core.owl' ontology for Weather Alerts Monitoring 

Following a description of the various kinds of semantic annotations for observed WSN 

data, the technique of semantic annotations is provided in the following section. 

The observed WSN data can come in many varied formats to the Kafka server (in our 

example, JSON format), that will translate them into an appropriate type which will be 

handled by Apache Spark Streaming. Following that, using Spark Streaming, the observed 

WSN data will be tagged with semantics and transformed to OGC Observation and 

Measurement standard depending on measurement values. Figure 33 depicts a piece of a 

sample of integrated/interpreted semantic annotations to the observation OGC Observation 
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& Measurement standard document utilizing stacks such as Embedded and XLink, while 

Figure 34 depicts a portion of a complex observation OGC Observation & Measurement 

standard document format. 

 

Figure 33. OGC O&M Observation – Integrated/interpreted semantic annotations to the IoT 
air quality monitoring sensor stream data 
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Figure 34. OGC O&M Complex Observation – Integrated/interpreted semantic annotations to 
the IoT air quality monitoring sensor stream data 

Figure 35 shows the process of semantic integration to sensor observation data for a 

better understanding. Table 4 depicts each of the process steps. 
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Figure 35. Integrating semantics into observed WSN data 

Table 5. Description steps of integration process of semantics into observed WSN data 
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C. Outputs of the System 

A real-time Internet of Things application was built using ASP.NET Core MVC, a powerful 

framework for creating web applications that follow Model-View-Controller design pattern, 

to show the observed data of different WSNs types and its semantic annotations. The 

“DataStax C# for Apache Cassandra” package is utilized to get data from the Cassandra DB. 

It's a C# client library with a lot of features and a lot of configuration options. The data is 

displayed on the map using Leaflet, a JS framework for interactive maps. Leaflet is a little 

program that focuses on simplicity, efficiency, and usability.  

As illustrated in Figures 36, 37, and 38, users can monitor the air quality and weather 

warnings at specific location designated as measurement (sensing) nodes on a map. Each 

marker (sensing node) provid the AQI Index associated with it to show the level of air pollution 

and weather warnings. When a marker is clicked, the most recent measurement values for 

that point are displayed, including PM2.5, PM10, SO2, O3, pressure, CO, NO2, humidity, wind 

speed, temperature, and water gauge, as well as semantic annotations like  

#AQIIndexAnnotation, #AirPollutionLevelAnnotation, #HealthImplicationsAnnotation, and 

weather warnings like #BlizzardAnnotation, #FlurryAnnotation, #RainStormAnnotation, or 

#RainShowerAnnotation, if any of them have been detected. 
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Figure 36. Outputs of the System: Real-time interpretation of the observed WSN data. 
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Figure 37. Outputs of the System: air quality monitoring. 

 

Figure 38. Outputs of the System: sensing nodes in map view. 



96 
 

5.5. Water quality monitoring  

The module for water quality monitoring uses cutting-edge technological trends, like 

WSNs, that allow continuously monitoring and are comprised of nodes known as motes that 

are sensitive to their location of deployment, to monitor water quality in real time. 

A. Received sensor stream data format 

The water quality monitoring module allows for the measurement of water phenomenon 

like dissolved oxygen, temperature, conductivity, and hydrogen potential. Table 6 details the 

kind, rank, and unit of these phenomenon. The WSN outputs data in the form of a numerical 

value, for example, 85% for the dissolved oxygen. The WSNs are arranged so that each node 

transmits data once every ten minutes. The sensor stream data is obtained from 

InWaterSense, a European Union-funded initiative supervised by the European Union Office 

in Kosovo and implemented by the University of Prishtina's Faculty of Civil Engineering and 

Architecture and Faculty of Electrical and Computer Engineering (Ahmedi, 2018). 

Table 6. Specification of water parameters. 

 

Figure 39 shows how nodes communicate. All of these components are located in Plemetin 

(42.70670318, 21.03843116), include a gateway node, a monitoring node, and a static 

wireless sensor node (Figure 40). Static wireless sensing nodes are stationary and 

communicate data to the central monitoring node through the gateway, while mobile WSNs 

(Figure 41) may move from site to location to assess water phenomenon.  

The ZigBee protocol is utilized to transport sensor stream data from static sensing nodes to  
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Figure 39. Communication between nodes 

 

Figure 40. System implementation in Plemetin - static sensor nodes 
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Figure 41. System implementation in Plemetin - mobile sensor nodes 

 

gateway nodes, while the 3G/GPRS protocol is used to communicate between gateway 

nodes and the central monitoring node via SOAP web services. 

B. Integrating and interpreting of semantic annotations into the observed WSN data 

Varius water status semantic annotations for international regulating of water quality are 

produced in the 'ont-core.owl' ontology (see Figure 42), such as: 

 #UNECE – for “United Nations Economic Commission for Europe” (UNECE17): 

o Class I,  

o Class II,  

o Class III,  

o Class IV, and  

o Class V. 
 

                                                           
17 https://www.unece.org/ 
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 #WFD – for “Water Framework Directive” (WFD18):  

o Good,  

o Moderate,  

o Poor,  

o Bad, and  

o High. 

An example of annotation for the Conductivity parameter (µS / cm) is given in Figure 43. If the 

value observed by the Conductivity sensor is in the range 0.00 – 500.00 µS / cm, the water 

status is categorized as high and the semantic annotation result is #High. If the value observed 

by the sensor is between 500.00 - 700.00 µS / cm, then the system creates the annotation 

#Good. Both of these types of stators are accepted in terms of water quality by WDF. For 

other annotations like: #Bad (2000.00 - 5000.00 µS / cm), #Poor (1000.00 - 2000.00 µS / cm), 

#Moderate (700.00 - 1000.00 µS / cm), and failing to achieve good (unacceptable - does not 

meet WDF goals). 

The following are the calculation of annotations for the parameter Dissolved Oxygen (%) 

(Markogianni, 2018): 

 #Bad:  0% - 2%  

 #Poor: 2% - 4%  

 #Moderate: 4% - 6.4%  

 #Good: 6.4% - 9%  

 #High: 9% - 300% 

The calculation of water status for temperature parameter is: 

 #Bad: 29.00 °C - 50.00 % 

 #Good: 0.00 °C - 29.00 % 

 

                                                           
18 ec.europa.eu 
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Figure 42.  'ont-core.owl' ontology for Water Quality Monitoring 
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Figure 43. Water status  annotation 

The results of the enriched observed WSN data with semantic annotations are saved in 

the Cassandra DB, and they will be shown in real-time monitoring IoT applications in the style 

of the OGC Observation & Measurement standard using technologies like XLink. Figure 44 

illustrates a portion of an output example. Following the real-time integration of semantics 

into observed water WSN data, the RTISA component performs real-time interpretation of 

the observed WSN data to enable a better understanding and infer new information from the 

data. For the IoT domain of water quality, the following interpretation pattern has been 

developed:  
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Figure 44. OGC O&M Observation – Integrated/interpreted semantic annotations to the IoT 

water quality monitoring sensor stream data 

 

C. System Outputs 

A real-time IoT web app is created to show the enriched observed WSN data with semantic 

annotations. Figure 45 depicts the application interface, which provides monitoring of water 

quality in real-time using mobile and static WSNs. 

The water quality monitoring module of the IoTSAS system, runs continuous queries on the 

suggested model to present data. The data presented in the textboxes for each phenomenon 

is collected from ProcessorDataStreams component via continual queries. 

WorkingDataStreams provide the data displayed in the charts, while 

WorkingDataStreamAnnotations provide the semantic annotated data that indicate the 

water state. 
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Figure 45. Outputs of water quality monitoring module. 

WorkingDataStreams, as previously stated, constitute a pre-configured sliding window with 

a predetermined size, such as 15, that may be set up in the module. This implies that the 

charts show the last 15 readings from each sensor on each graph. The trigger for continually 

executing queries is activated as soon as observed data from the WSNs enters the IoTSAS 

system. 

Annotation interpretation includes information such as timestamp, location (including 

latitude and longitude) of sensing node, phenomena with measured value, and meaning of 

current water status, as depicted in Figure 46. 
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Figure 46. Interpretation of semantic annotations - water quality monitoring module. 

“Now (@2020-04-03 16:40) in  location 'Pelemetin (42.70670318, 

21.03843116)' is detected '47.20%' dissolved oxygen, which indicates 

a ‘High’ water status with no or very low human pressure and the water 

is not polluted at all.” 

Using Wireless Sensor Networks, a water quality monitoring sample output is provided in 

Table 7. They are constantly tracked and shown in real time. 

Table 7. The proposed model's outcomes 

Water 
parameter 

Sensor 
Type 

Current 
Value 

Timestamp Min Max Avg. 
Total 
rows 

Window 
Average 

Window 
Max 

Window 
Min 

Window 
Size 

Location 
(Latitude, 
Longitude) 

Semantic 
Annotations 

(Water Status) 

WFD UNECE 

Temperature 

(°C) 

Static 17.00 2020-04-03 
16:52:33 

10.31 23.17 13.22 19620 16.86 17.35 16.52 15 42.7067031... 
21.0384311... 

Good No Status 

Mobile 16.66 2020-04-03 
16:52:33 

13.04 19.11 11.24 456 15.55 16.95 14.57 15 42.7059555... 
21.0382175... 

Good No Status 

pH 

Static 5.68 2020-04-03 
16:52:33 

3.42 9.65 7.03 19620 6.30 7.56 5.22 15 42.7067031... 
21.0384311... 

Bad Class IV 

Mobile 5.16 2020-04-03 
16:52:33 

3.92 9.34 7.58 456 6.91 9.18 4.89 15 42.7059555… 
21.0382175… 

Bad Class V 

Static 47.20 2020-04-03 
16:52:33 

24.10 150.40 75.87 19620 61.19 81.70 47.20 15 42.7067031... 
21.0384311... 

High Class IV 
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Dissolved 

Oxygen (%) 
Mobile 48.00 2020-04-03 

16:52:33 
32.10 97.30 68.14 456 50.84 53.40 48.40 15 42.7059555… 

21.0382175… 
High Class IV 

... 

 

5.6. IoTSAS system network architecture 

Figure 47 depicts the overall system network architecture, which includes the following 

components: Apache Kafka Server, Spark Streaming Cluster Server, Apache Cassandra 

database Server, IoT Real-Time Web Application Server, and Web Services Server. The function 

of each of the servers is described in Table 8. 

Table 8. System network architecture - the function of each of the servers 
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Figure 47. IoTSAS – system network architecture 

5.7. IoTSAS system security 

As part of the IoTSAS system's security features, each sensor is given a passcode in addition 

to the WSN meta data that is recorded in the module for managing IoT meta data. The WSN 

also communicates a passcode with the observation data, so that it can be identified. 

To protect data sent across network modules, the Secure Sockets Layer (SSL) protocol is 

utilized. The module for managing metadata, monitoring module for air quality and weather 

warnings, and water quality monitoring module, are accessible to users via username and 

password. The .NET System.Security.Cryptography is used to encrypt the password. In other 

words, the HMACSHA512 hash function, which is part of the Secure Hashing Algorithm (SHA) 

512 hash library. The hashing procedure includes the addition of salt in order to ensure that 

the passwords are unique and to improve the complexity of the password. In order to prevent 

SQL injection attacks, .Net 5.0 LINQ to Entities is utilized because LINQ is not vulnerable to 

SQL injection. 
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5.8. WSNs stream data simulator 

It was necessary to simulate a large volume of observed WSN data in order to test the 

operation of the IoTSAS system. As a result, a WSNs stream data emulator, as shown in Figure 

48, was created to accomplish this. The simulator generates pseudo-random observed WSN 

data using the Random C# class19, within the ranges given in the metadata module for each 

parameter (phenomenon). According to, the simulator can generate temperature values 

ranging from -25 to 45 degrees Celsius (NASA, 2021). The simulator, as illustrated in Figure 

48, can be set to generate data at millisecond, second, or minute intervals. Additionally, can 

choose a specific sensor node to generate observed WSN data, can choose a higher level 

feature, such as Blizzard, Flurry, Rain Shower, or Rain Storm, to generate data from sensors 

that induce this phenomena. The simulator may create observed WSN data in batches and 

transfer it to the IoTSAS system for processing. 

 

Figure 48. Sensor stream data simulator 

 

 

 

                                                           
19 https://docs.microsoft.com/en-us/dotnet/api/system.random?view=net-5.0 
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6. Testing of the System 

On five testing stages, seven modules are tested: (1) real-time integrating and interpreting 

of semantic annotations into the observed WSN data module, (2) module for managing 

metadata, (3) monitoring module for air quality and (4) weather warnings, (5) water quality 

monitoring module, (6) data modelling module, (7) module for external systems - RESTful 

APIs. 

Unit test - the unit test is based on the system specification and covers the results of errors 

that were made during the coding process. 

Integration test - a scenario-based test is used to determine whether or not all seven 

components work together flawlessly. During this stage, Data Flow testing is also carried out, 

which includes testing each step-in turn. 

System test - in this step, all modules are tested to make sure they work together without 

any problems, just like in the previous phase. Here the system is also checked for compliance 

with all the application requirements and security issues such as security level (XSS — Cross 

Site Scripting, SQL injections, and encryption of modules' communications), confidentiality of 

information, restrictions on accessibility, and immunity. 

Acceptance test (alpha and beta) -  in this phase, the IoTSAS is tested with real data from 

sensors of the HMIK, the United States Consulate in Pristina, Peje, and Rilindja-Pristina (for 

air quality and weather alerts monitoring domains) as well as data from the InWaterSense 

project (for water quality), as specified in Sections 5.4 and 5.5. 



109 
 

Performance testing - tests of the IoTSAS system's performance were performed using the 

simulator (detailed in section 5.8). Figure 47 depicts the network architecture being tested. 

Table 9 shows the technical details of the hardware environment in which the test is run. 

Table 9. Technical details of the hardware environment 

 

Table 10 presents the performance test results for the IoTSAS system. The tests are 

executed for various generated observed WSN data and are repeated three times to obtain 

more accurate averages considering the current load of the processor, memory in use by 

active processes, network, etc. 
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Table 10. System performance test results from the IoTSAS system 

Number of 
observations 

Test 1 
(seconds) 

Test 2 
(seconds) 

Test 3 
(seconds) 

AVG 
(seconds) 

100 0.122 0.118 0.128 0.123 

500 0.184 0.154 0.207 0.182 

1,000 0.287 0.281 0.269 0.279 

5,000 0.901 0.909 0.897 0.902 

10,000 1.417 1.372 1.329 1.373 

20,000 2.587 2.558 2.807 2.65 

50,000 6.634 6.698 6.511 6.61 

100,000 14.257 14.443 14.257 14.32 

150,000 21.376 21.317 21.749 21.48 

250,000 35.245 36.131 34.508 35.29 

500,000 67.934 66.927 68.029 67.63 

1,000,000 141.07 139.33 134.18 138.20 

 

Figure 49 shows the IoTSAS system's performance of observed WSN stream data 

generated by 100 to 10,000 WSNs. Semantic annotating and interpreting 100 observed WSN 

stream data in real-time takes 0.123 seconds, but processing 10,000 observed WSN stream 

data takes 1.37 seconds on average. 

Figure 50 shows the volume testing, which evaluates the IoTSAS system's efficiency when 

dealing with a huge number of generated observed WSN stream data. For 500,000 observed 

WSN stream data, the average processing time for semantic annotations and interpretation 

is 67.63 seconds, whereas for 1,000,000, the average processing time is 138 seconds. 
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Figure 49. Test performance of 100-10,000 observed WSN data 

 

Figure 50. Test performance of 20,000-1,000,000 observed WSN data 
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Analyzed data from monitoring stations around Europe has been compiled from the 

World Air Quality Index database. According to data in Table 11, there are 2,510 air quality 

monitoring stations in Europe transmitting hourly observations to the World Air Quality Index 

database. The largest amount of parameters (observed phenomena) for a monitoring station 

is 13, which implies that for a single monitoring station, we have a maximum of 13 sensors 

observations. The 2,510 monitoring stations in Europe allow for a maximum of 32,630 sensors 

to collect data. The IoTSAS system can process, annotate, and interpret in real time in less 

than 50 seconds if all of the sensors' observations are submitted to the server at the same 

time. 

Calculations based on test results show that the IoTSAS system can process, annotate, and 

interpret 1,000,000 observed WSN data from 76,923 monitoring stations (1,000,000 observed 

WSN data / 13 parameters per station) in 138 seconds, indicating good system performance. 

Table 11. Statistics of monitoring stations in different European countries by area. 

# Country 
No. of 
monitoring 
stations 

1  Albania (link) 2 

2  Andorra (link) 1 

3  Armenia (link) 1 

4  Austria (link) 82 

5  Azerbaijan (link) 3 

6  Belarus (link) 16 

7  Belgium (link) 63 

8  Bosnia and Herzegovina (link) 19 

9  Bulgaria (link) 24 

10  Croatia (link) 23 

11  Cyprus (link) 9 

12  Czechia (link) 131 

https://en.wikipedia.org/wiki/Albania
https://aqicn.org/map/albania/
https://en.wikipedia.org/wiki/Andorra
https://aqicn.org/map/andorra/
https://en.wikipedia.org/wiki/Armenia
https://aqicn.org/map/armenia/
https://en.wikipedia.org/wiki/Austria
https://aqicn.org/map/austria/
https://en.wikipedia.org/wiki/Azerbaijan
https://aqicn.org/map/azerbaijan/
https://en.wikipedia.org/wiki/Belarus
https://aqicn.org/map/belarus/
https://en.wikipedia.org/wiki/Belgium
https://aqicn.org/map/belgium/
https://en.wikipedia.org/wiki/Bosnia_and_Herzegovina
https://aqicn.org/map/bosnia-herzegovina/
https://en.wikipedia.org/wiki/Bulgaria
https://aqicn.org/map/bulgaria/
https://en.wikipedia.org/wiki/Croatia
https://aqicn.org/map/croatia/
https://en.wikipedia.org/wiki/Cyprus
https://aqicn.org/map/cyprus/
https://en.wikipedia.org/wiki/Czech_Republic
https://aqicn.org/map/czechrepublic/
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13  Denmark (link) 8 

14  Estonia (link) 12 

15  Finland (link) 55 

16  France (link) 158 

17  Georgia (link) 6 

18  Germany (link) 162 

19  Greece (link) 28 

20  Hungary (link) 46 

21  Iceland (link) 9 

22  Ireland (link) 87 

23  Italy (link) 130 

24  Kazakhstan (link) 47 

25  Latvia (link) 23 

26  Lithuania (link) 7 

27  Luxembourg (link) 4 

28  Malta (link) 4 

29  Moldova (link) 7 

30  Montenegro (link) 6 

31  Netherlands (link) 98 

32  North Macedonia (link) 19 

33  Norway (link) 56 

34  Poland (link) 78 

35  Portugal (link) 17 

36  Republic of Kosovo (link) 8 

37  Romania (link) 165 

https://en.wikipedia.org/wiki/Denmark
https://aqicn.org/map/denmark/
https://en.wikipedia.org/wiki/Estonia
https://aqicn.org/map/estonia/
https://en.wikipedia.org/wiki/Finland
https://aqicn.org/map/finland/
https://en.wikipedia.org/wiki/France
https://aqicn.org/map/france/
https://en.wikipedia.org/wiki/Georgia_(country)
https://aqicn.org/map/georgia/
https://en.wikipedia.org/wiki/Germany
https://aqicn.org/map/germany/
https://en.wikipedia.org/wiki/Greece
https://aqicn.org/map/greece/
https://en.wikipedia.org/wiki/Hungary
https://aqicn.org/map/hungary/
https://en.wikipedia.org/wiki/Iceland
https://aqicn.org/map/iceland/
https://en.wikipedia.org/wiki/Republic_of_Ireland
https://aqicn.org/map/ireland/
https://en.wikipedia.org/wiki/Italy
https://aqicn.org/map/italy/
https://en.wikipedia.org/wiki/Kazakhstan
https://aqicn.org/map/kazakhstan/
https://en.wikipedia.org/wiki/Latvia
https://aqicn.org/map/latvia/
https://en.wikipedia.org/wiki/Lithuania
https://aqicn.org/map/lithuania/
https://en.wikipedia.org/wiki/Luxembourg
https://aqicn.org/map/luxembourg/
https://en.wikipedia.org/wiki/Malta
https://aqicn.org/map/malta/
https://en.wikipedia.org/wiki/Moldova
https://aqicn.org/map/moldova/
https://en.wikipedia.org/wiki/Montenegro
https://aqicn.org/map/montenegro/
https://en.wikipedia.org/wiki/Netherlands
https://aqicn.org/map/netherlands/
https://en.wikipedia.org/wiki/North_Macedonia
https://aqicn.org/map/macedonia/
https://en.wikipedia.org/wiki/Norway
https://aqicn.org/map/norway/
https://en.wikipedia.org/wiki/Poland
https://aqicn.org/map/poland/
https://en.wikipedia.org/wiki/Portugal
https://aqicn.org/map/portugal/
https://en.wikipedia.org/wiki/Kosovo
https://aqicn.org/map/kosovo/
https://en.wikipedia.org/wiki/Romania
https://aqicn.org/map/romania/
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38  Russia (link) 41 

39  Serbia (link) 118 

40  Slovakia (link) 37 

41  Slovenia (link) 12 

42  Spain (link) 184 

43  Sweden (link) 27 

44  Switzerland (link) 29 

45  Turkey (link) 152 

46  Ukraine (link) 134 

47  United Kingdom (link) 162 

Total monitoring stations  2,510 

 

Table 12 compares the IoTSAS system's performance to that of the existing system (Patni, 

2011). In paper (Patni, 2011), we remind that is implemented a framework based on Semantic 

Web technologies, which provides annotations (such as blizzards, flurry, rain storms, and rain 

showers) using observed WSN data in real-time. Annotations are integrated into observed 

WSN data using SPARQL rule, whereas Spark Streaming has been utilized for this purpose in 

our research. We also incorporate, in addition to the annotations examined in the work (Patni, 

2011), other annotations from the IoT domain of air quality monitoring, such as AQI index, air 

pollution level, and health consequences, and their interpretation is done in real-time. Our 

environment requires only 0.9 seconds to process 5,000 observations, unlike the 200-second 

processing time necessary to process 1,104 observations on an undefined hardware (Patni, 

2011). Our new IoTSAS system performs better than the previous one, according to these 

results. 

Unlike the required time over 200 seconds to process 1,104 observed WSN data on an 

unspecified hardware (Patni, 2011), the IoTSAS system requires only 0.9 seconds to process 

5,000 number of observations in our environment. Based on these results, we may conclude 

that the developed IoTSAS system provides a better performance. 

https://en.wikipedia.org/wiki/Russia
https://aqicn.org/map/russia/
https://en.wikipedia.org/wiki/Serbia
https://aqicn.org/map/serbia/
https://en.wikipedia.org/wiki/Slovakia
https://aqicn.org/map/slovakia/
https://en.wikipedia.org/wiki/Slovenia
https://aqicn.org/map/slovenia/
https://en.wikipedia.org/wiki/Spain
https://aqicn.org/map/spain/
https://en.wikipedia.org/wiki/Sweden
https://aqicn.org/map/sweden/
https://en.wikipedia.org/wiki/Switzerland
https://aqicn.org/map/switzerland/
https://en.wikipedia.org/wiki/Turkey
https://aqicn.org/map/turkey/
https://en.wikipedia.org/wiki/Ukraine
https://aqicn.org/map/ukraine/
https://en.wikipedia.org/wiki/United_Kingdom
https://aqicn.org/map/united-kingdom/
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Table 12. IoTSAS system vs existing system (Patni, 2011) - performance comparison  

 

In addition to the system performance tests presented in this paper, statistics that show 

the time required for each type of semantic annotations are also presented. From Table 13, 

it can be seen that for the #AQI_Index annotation, the average time is 42813 nanoseconds, 

for the #MaxParam annotation, 17615 nanoseconds are needed, for the #Air_Pollution_Level 

annotation, 16448 nanoseconds are needed, for the #Health_Implications annotation, 13765 

nanoseconds are needed, for #Rain_Shower annotation 1056 nanoseconds are needed, for 

#Rain_Storm annotation 1399 nanoseconds are needed, for #Flurry annotation, 25159 

nanoseconds are needed, and for #Blizzard annotation, 25564 nanoseconds are needed. 

From Figure 51, it can be seen that the #Rain_Shower annotation requires the minimum 

processing time, while the maximum processing time requires the #AQI_Index annotation. 

Table 13. Results of semantic annotations performance test 

Annotation 
Test 1 

(nanoseconds) 
Test 2 

(nanoseconds) 
Test 3 

(nanoseconds) 
AVG 

(nanoseconds) 

#AQI_Index 45146 45146 38147 42813 

#MaxParam 17849 17849 17148 17615 

#Air_Pollution_Level 18548 14699 16099 16448 

#Health_Implications 13999 18899 8399 13765 

#Rain_Shower 986 1050 1132 1056 

#Rain_Storm 1049 1750 1399 1399 

#Flurry 24548 25148 25781 25159 

#Blizzard 25548 26597 24546 25564 
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Figure 51. Test performance of semantic annotations in nanoseconds 
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Part IV. 

Conclusion and Future Work 
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7 
Chapter 

 

7. Conclusion and Future Work 

At the moment, billions of networked Internet of Things devices produce and exchange 

trillions of gigabytes of sensor data. Due to the variety of issues associated with the 

integration of sensor data collected by heterogeneous devices, the Internet of Things has 

sparked the interest of a sizable number of researchers in this subject. 

The Internet of Things largely relies on sensors. A continuous stream of data, referred as 

observed WSN data or sensor stream data, is transmitted to a remote server for processing. 

Unless appropriately annotated, raw observed WSN data is of no use. By integrating semantic 

annotations with concept definitions from ontologies, observed WSN data may be 

interpreted and understood. 

A real-time integration and interpretation of semantic annotations into the observed WSN 

data of different WSNs types with context in the IoT, is provided in this dissertation. First, are 

described the fundamentals of IoT, such as: IoT data transmission models, IoT applications, 

Wireless Sensor Networks (WSNs), sensor stream data, and semantic annotations. Next, a SLR 

related to the semantics integrated into the observed data of different WSN types is 

presented, which can be used by other academics to compare their technique to the existing 

ones. The review is carried out in accordance with the steps defined by (Petersen, 2008). First, 

the research questions are formulated, then a search strategy is devised, and ultimately, 

inclusion and exclusion criteria are established. The translation of the review's goal into 

research questions, which includes the use of SSW technologies and the primary solutions for 

integrating semantic annotations into observed WSN data, SW standards, stream processing 
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models in real-time, and the semantic IoT trend domains, is presented as the first and most 

critical step in literature review. 

Furthermore, annotating techniques for real-time integrating and interpreting semantics 

into heterogeneous observed WSN data with context in the IoT have been introduced. Spark 

Streaming, Kafka, and Cassandra DB, as well as SOS standards, are some of the technologies 

being used in this context.  

Devise techniques consist of the main components such as, Input Data Stream, Real-Time 

Detection of Outliers, Real-Time Semantic Annotation (RTSA), Real-Time Interpreting 

Semantically Annotated (RTISA), Ad-hoc requests, IoT domains rules, with concept definitions 

from semantic sources (for example ontologies), that provide the understanding and more 

meaningful descriptions, allowing the IoT applications to become quite intelligent. To manage 

the data modelling of the processed sensor stream data with their semantic annotations is 

introduced a management model that comprises WSNs Meta data, Invalid Data Streams, 

Working Data Streams, Archival Data Streams, Working Data Stream Annotations, Processor 

Data Streams, and  Archival Data Stream Annotations. 

To implement the proposed annotating techniques for real-time integrating and 

interpreting of semantic annotations into heterogeneous observed WSN data with context in 

the IoT, an integrated system called IoTSAS (IoT Semantic Annotations System) is built. It 

consists of the following modules: (a) real-time integrating and interpreting of semantic 

annotations into the observed WSN data module, (b) module for managing metadata, (c) 

monitoring module for air quality and (d) weather warnings, (e) water quality monitoring 

module, (f) data modelling module, (g) module for external systems - RESTful APIs. 

 The WSN stream data from the World AQI API as well as WSN stream data from the 

InWaterSense project are used to demonstrate the validity of IoTSAS and the suggested 

system architecture. Finally, a WSNs stream data simulator is created to evaluate the IoTSAS's 

performance. According to the findings of the performance tests, the IoTSAS system only took 

138 seconds to analyze the 1,000,000 sensor observations data by annotating with semantics 

and interpreting the semantic annotations, demonstrating the veracity of the excellent 

system performance. 

For future work is left: 
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 To more advanced annotation techniques like XPath annotations to integrate and 

analyze semantic annotations in real time into observed WSN data and meta data 

in the IoT. 

 

 To create a module that illustrates a healthcare monitoring use case, which will 

allow clinicians to monitor their patients in real time and notify them of changes 

in their health state.  

 

 To extend the suggested system architecture for supporting the insertion of 

sensors with an XML request utilizing SWE standard as well as the SOS standard 

v2.0. 

 

 To improved  Outlier Stream Validator and Classifier components of the proposed 

model by implementing advanced outlier detection methods for real-time 

unsupervised anomaly identification. 
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