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Abstract 

Cloud computing is a widespread Internet-based computing model that enables resource usage on 

demand and as a service. Under this paradigm, services and resources are delivered in a pay-as-you-

go fashion, where cloud clients only pay for the resources they actually used and as long as they use 

these services and resources. On the other hand, the cloud provider’s goal is to provide high-

performance services and resources at optimal cost for the cloud clients, and this can be achieved 

through dynamic allocation of Virtual Machines (VMs) according to workload changes in order to 

meet Service Level Agreement (SLA) criteria. To schedule the incoming tasks from cloud consumers 

and to efficiently manage computer resources, cloud providers use scheduling algorithms. Task 

scheduling and resource allocation enable cloud providers to maximize revenue and utilize resources 

properly, so both are important issues in cloud infrastructures.  

In this dissertation, the problem of task scheduling at the time these tasks are submitted to the 

proper VMs in the cloud environment is addressed and solutions are proposed. Effective task 

scheduling approaches reduce the task completion time, increase the efficiency of resource 

utilization, and improve the quality of service and the overall performance of the system. A novel 

task scheduling algorithm for cloud environments based on the Heterogeneous Earliest Finish Time 

(HEFT) algorithm, called experiential HEFT, is proposed. It considers experiences with previous 

executions of tasks to determine the workload of resources. To realize the experiential HEFT 

algorithm, we propose a novel way of HEFT rank calculation to specify the minimum average 

execution time of previous runs of a task on all relevant resources. Experimental results show that 

the proposed experiential HEFT algorithm performs better than existing approaches considered in 

our evaluation.  

To dynamically allocate resources to VMs in an Infrastructure-as-a-Service (IaaS) cloud environment, 

a resource management solution is proposed. It combines local and global VM resource allocations. 

Local resource allocation means allocating CPU resource shares to VMs according to the current load. 

Global resource allocation means performing live migration actions when a host is overloaded or 

underloaded in order to mitigate VM performance violations and reduce the number of hosts to save 

energy. To detect if a host is overloaded or underloaded, an approach based on long-term resource 
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usage predictions is used, while for the long-term predictions a supervised machine learning 

approach based on Gaussian Processes is proposed. Experimental results show that long-term 

predictions of resource usage can increase stability and overall performance of the cloud 

infrastructure.  

Knowing that overload or underload detection based on long-term predictions carries with it the 

uncertainty of correct predictions, which can lead to erroneous decisions, we propose an approach 

in which we have considered the uncertainty of long-term predictions and the live migration 

overhead. To consider the uncertainty of long-term predictions for overload detection, a novel 

probabilistic model of the prediction error is built online using the non-parametric kernel density 

estimation method. Based on experimental results, making overload detection decisions 

proportional to the uncertainty of predictions increases the overall system performance of the live 

migration process. 

Finally, to address the problem of the VM consolidation approaches that rely on a centralized 

architecture, a distributed resource allocation solution based on multi-agent systems is proposed. 

Our approach uses a utility function based on host CPU utilization to drive live migration actions. 

Agents, attached to each physical machine, are responsible for making decisions for the live migration 

of VMs from one host to another host. The key novel feature of the proposed approach is that 

allocation decisions are based on the individual agents’ utility functions, which offers the flexibility 

of easily changing the allocation policy. Experimental results show that the utility-based distributed 

resource allocation approach achieves better overall performance compared to a centralized 

approach and a threshold-based distributed approach. 
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Abstrakt 

Cloud computing është një model i përhapur kompjuterik i bazuar në Internet që mundëson 

përdorimin e burimeve sipas kërkesës dhe i cili ofrohet si shërbim. Sipas këtij modeli, shërbimet dhe 

burimet ofrohen sipas mënyrës pay-as-you-go, ku klientët e cloud-it paguajnë vetëm për burimet që 

ata i kanë në shfrytëzim dhe për sa kohë që ata i shfrytëzojnë këto shërbime dhe burime. 

Nga ana tjetër, qëllimi i ofruesit të cloud-it është të sigurojë shërbime dhe burime me performancë 

të lartë dhe me kosto optimale për përdoruesit e cloud-it, dhe kjo mund të arrihet përmes alokimit 

dinamik të Makinave Virtuale (MV) varësisht nga ndryshimet e ngarkesës, në mënyrë që të 

përmbushë kriteret  e Service Level Agreement (SLA). 

Për të planifikuar detyrat në hyrje nga përdoruesit e cloud-it dhe për të menaxhuar në mënyrë efikase 

burimet kompjuterike, ofruesit e cloud-it përdorin algoritme për planifikim. Planifikimi i detyrave dhe 

alokimi i burimeve u mundëson ofruesve të cloud-it të maksimizojnë të ardhurat dhe të përdorin 

burimet siç duhet, kështu që të dyja këto janë çështje të rëndësishme në infrastrukturën e cloud. 

Në këtë disertacion, është adresuar problemi i planifikimit të detyrave në kohën kur këto detyra u 

dërgohen VM-ve të përshtatshme në mjediset cloud dhe janë propozuar zgjidhje. Qasjet efektive të 

planifikimit të detyrave zvogëlojnë kohën e përfundimit të detyrës, rrisin efikasitetin e përdorimit të 

burimeve dhe përmirësojnë kualitetin e shërbimit dhe performancën e përgjithshme të sistemit. 

Është propozuar një algoritëm i ri për caktimin e detyrave për mjediset cloud, bazuar në algoritmin 

Heterogeneous Earliest Finish Time (HEFT), i quajtur experiential HEFT. Algoritmi merr në konsideratë 

përvojat me ekzekutimet e mëparshme të detyrave, ashtu që të përcaktoj ngarkesën e burimeve. Për 

të realizuar algoritmin experiential HEFT, ne propozojmë një mënyrë të re të llogaritjes së rankut të 

algoritmit HEFT, për të specifikuar kohën mesatare minimale të ekzekutimeve të mëparshme të një 

detyre, në të gjitha burimet përkatëse. Rezultatet eksperimentale tregojnë se algoritmi i propozuar 

experiential HEFT përformon më mirë se sa qasjet ekzistuese të cilat janë marrë në konsideratë në 

vlerësimin tonë. 

Për të alokuar në mënyrë dinamike burimet për MV-të në një mjedis të cloud-it Infrastruktura-si-

shërbim (IaaS), është propozuar një zgjidhje e menaxhimit të burimeve. Ai kombinon alokimet locale 

dhe globale të burimeve të MV. 

 Alokimi i burimeve lokale nënkupton ndarjen e burimit të CPU-së në MV-të sipas ngarkesës aktuale. 

Alokimi I burimeve globale nënkupton kryerjen e veprimeve të migrimit kur një host është i 



v 

 

mbingarkuar ose i nënngarkuar në mënyrë që të lehtësojë shkeljet e performancës së MV-së dhe të 

zvogëlojë numrin e hostave për të kursyer energji. Për të detektuar nëse një host është i mbingarkuar 

ose i nënngarkuar, përdoret një qasje e bazuar në parashikimet afatgjata të përdorimit të burimeve, 

ndërsa për parashikimet afatgjata është propozuar një qasje supervised machine learning e bazuar 

në Proceset Gaussiane. Rezultatet eksperimentale tregojnë se parashikimet afatgjata të përdorimit 

të burimeve mund të rrisin stabilitetin dhe performancën e përgjithshme në infrastrukturës cloud. 

Duke e ditur se detektimi i mbingarkesës ose nënngarkesës bazuar në parashikimet afatgjata bartë 

me vete pasigurinë e parashikimeve të sakta, të cilat mund të çojnë në vendime të gabuara, ne 

propozojmë një qasje në të cilën kemi marrë parasysh pasigurinë e parashikimeve afatgjata dhe 

ngarkesën e live migrimit. Për të marrë parasysh pasigurinë e parashikimeve afatgjata për zbulimin e 

mbingarkesës, një model i ri probabilistik i gabimit të parashikimit është ndërtuar në internet duke 

përdorur metodën non-parametric kernel density. Bazuar në rezultatet eksperimentale, marrja e 

vendimeve për zbulimin e mbingarkesës në përpjesëtim me pasigurinë e parashikimeve rritë 

performancën e përgjithshme të sistemit në procesin e live migrimit. 

Së fundi, për të adresuar problemin e qasjeve të konsolidimit të MV-ve që mbështeten në një 

arkitekturë të centralizuar, është propozuar një zgjidhje e shpërndarë e alokimit të burimeve bazuar 

në sistemet me shumë agjentë. Qasja jonë përdorë një funksion utilitar të bazuar në përdorimin e 

CPU-së së hostit për të drejtuar veprimet e live migrimit. Agjentët, të bashkangjitur në çdo makinë 

fizike, janë përgjegjës për marrjen e vendimeve për live migrimin e MV-ve nga një host në tjetrin.  

Karakteristika kryesore e qasjes së propozuar është që vendimet për alokim bazohen në funksionet 

utilitare të agjentëve individual, e që ofron fleksibilitet të ndryshimit të lehtë të policës së alokimit. 

Rezultatet eksperimentale tregojnë se qasja e alokimit të burimeve të shpërndarë të bazuar në utilitet 

arrin performancë më të mirë të përgjithshme në krahasim me qasjet e centralizuara dhe qasjet e 

shpërndara të bazuara në prag. 
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1 
Introduction 

1.1.  Motivation 

Cloud computing has become an effective solution for providing a flexible, manageable, on-demand 

and dynamically scalable computing infrastructure for many applications. Cloud computing also 

presents an important trend in the development of computing technologies, systems and 

architectures, and receives great interest from academia and industry. 

In general, this technology has enabled businesses, governmental organizations and other 

institutions to benefit in time, quality of service, management, and operational cost. From the point 

of view of enterprises, providers and consumers, other benefits are cost effective, on-demand self-

services, high efficiency, availability, flexibility, scalability and reliability, resource utilization, 

applications as utilities over the Internet, configuring applications online, online development and 

deployment tools, etc. The cloud consumers can use resources according to the pay-as-you-go model, 

where payment is made depending on consumption and this in itself constitutes a benefit to 

consumers.  

Cloud service models are classified into three groups:  

(1) Software-as-a-Service (SaaS) where applications that are in cloud infrastructure can be accessed 

by various consumers’ devices through a thin client interface (such as a web browser).  

(2) Platform-as-a-Service (PaaS) provides developers with a platform where they can develop, test, 

deploy and host different applications.                         

(3) Infrastructure-as-a-Service (IaaS) provides consumers with computing resources such are 

processing, storage, networks and other fundamental resources. The IaaS model is viewed having 

huge interest for research by the fact that management of resources in the cloud infrastructure is a 
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complex issue, knowing the ever-increasing demand for computing resources. Seeing this model as 

important, we have focused our work on IaaS. 

Therefore, to increase the efficiency of the management of computing resources in a cloud 

infrastructure, virtualization technology has a key role in modern data centers and cluster systems. 

The use of virtualization technologies has greatly reduced operational costs, has enabled the creation 

of a suitable environment for application development, debugging and testing. In addition, this 

increase in computing efficiency results in lower space, maintenance, cooling and electricity costs [2].                                                          

Cloud computing infrastructures based on virtualization technology consist of multiple virtualized 

nodes, in which multiple applications and services are running in Virtual Machines (VMs) [1]. The 

virtualization layer uses lower-level resources to create multiple VMs known as a Virtual Machine 

Monitor (VMM). Hence, this technology has enabled consumers to benefit from the most efficient 

use of resources and as well as in the most favourable cost. However, the dynamic allocation of 

resources to a virtualized infrastructure is a complex issue, based on the large number of physical 

machines in the data center, rapid increase in demand and workload. Considering this complexity, it 

is necessary to create the powerful mechanisms through techniques and algorithms for automation 

and controlled resource management. 

 

1.2.  Research Challenges 

In a data center, the primary goal of a dynamic resource allocation process is to avoid wasting 

resources as a result of under- and over-utilization, which may result in a violation of the Service Level 

Agreements (SLA) between the customers and the cloud provider.  A key role in the dynamic resource 

allocation process is played by important mechanism known as a VM live migration. Live migration 

of VMs in a cloud infrastructure means moving the VM which is running on a physical machine (source 

node) to another physical machine (destination node), while the VM is powered up. In general, live 

migration of VMs is a process that has a cost in terms of consumption of resources. When we consider 

the architecture of cloud infrastructures consisting of thousands of physical machines, the migration 

process affects the performance of the system and applications. Task scheduling is also an important 

issue closely linked to dynamic resource allocation in cloud infrastructures. There are several 

challenges related to dynamic resource allocation in cloud infrastructure, as described below. 
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• Long-term predictions of resources challenges. Dynamic workloads in cloud infrastructures 

can be managed through live migration of virtual machines from overloaded or underloaded 

physical machines (PMs) to other PMs to save energy and to mitigate performance related to 

Service Level Agreement (SLA) violations. Therefore, VM live migration is a resource allocation 

mechanism that dynamically consolidates the low utilization VMs on few PMs. An important 

issue of the live migration mechanism is to detect when a host is overloaded or underloaded. 

The question that arises here is that: how to make long-term predictions of PMs’ workloads 

by predicting resource utilization for detecting their overload and underload states? Some 

existing approaches [19] [44] [46] are based on monitoring resource usage, and if the current 

or the predicted next value exceeds a specified threshold, then a host is declared as 

overloaded. The problem with these approaches is that basing decisions for host overload 

detection on a single resource usage value or a few future values can lead to hasty decisions, 

unnecessary live migration overhead, and stability issues. Thus, detecting whether a host is 

overloaded or underloaded is based on current or short-term predictions of resource usage 

and static usage thresholds, which can be sensitive to short spikes of load that can cause 

stability problems and unnecessary live migrations. There are other approaches [21] that 

apply heuristic algorithms for host overload and underload detection based on statistical 

analysis of historical resource usage data. In this case, an adaptive usage threshold is used 

based on statistical parameters of previous data, such as CPU usage Median Absolute 

Deviation (MAD) or interquartile range (IQR). The authors also apply local regression methods 

for predicting CPU usage values some time ahead into the future. 

• VM resource allocation challenges. In the process of dynamic resource allocation as a 

continuation of the above challenges, there are other challenges as well, especially in the 

mapping of VMs to PMs. The process of mapping VMs to PMs in principle has the role of load 

balancing and to avoid performance level violations. 

There are several questions that can be raised here, such as: When to migrate a VM? Which 

VM needs to migrate (selection of VM)? Which is the destination node (PM), and where 

should the selected VM be placed? The typical problem here is the mapping between VMs to 

PMs and dynamically changing it, when the workload changes during run time, in order to 

reduce the number of PMs and to keep application performance to SLA conditions. In general, 

this can be seen as a bin-packing problem of packing VMs of different sizes into the smallest 



5 

 

numbers of PMs (bins). Some of the existing approaches [36] [46] have treated it as a bin-

packing problem, where the sizes of items to be packed are VM resource utilizations (e.g. CPU 

utilization) and the sizes of bins are resource capacities of PMs. The bin-packing problem itself 

is an NP-hard problem so it requires heuristic methods to find approximate solutions to the 

problem. The problem with these approaches is deciding when and which VM to migrate, 

based on the use of low-level metrics, such as resource utilization. But the decision based 

solely on this metric omits other high-level performance metrics, especially when it is known 

that performance changes with the workload. Another problem with the bin-packing 

technique is that as the workload changes, the size of the VMs also changes, so the problem 

becomes multi-size bin packing with items to be packed elastically in size. The data center 

also has heterogeneous PMs of different resource capacities, so the bins are of different sizes. 

Also, the existing approaches have used policies implemented on heuristic ordering 

algorithms, such are First-Fit-Decreasing (FFD) and Best-Fit-Decreasing (BFT), to packed VMs 

to few PMs, but these policies are not suitable when a load balancing policy needs to be 

implemented in the data center and more PMs are added. Therefore, a more flexible 

approach that can change according to data center policy changes is required.  

• Centralized resource allocation architecture challenges. An important mechanism that 

provides major benefits for data centers is live migration of VMs, from one PM to another. 

Live migration of VMs enables resource allocation to running services without interruption 

during the migration process, and this is an important feature especially for services with 

particular quality of service (QoS) requirements. There are several VM resource allocation 

approaches [49] [56-57] that use a centralized architecture in order to reduce energy 

consumption and number of migrations in the data center. These approaches use the 

hierarchical architecture based on multi-agents for the dynamic VM consolidation task in a 

large-scale data center. The problem with these approaches is that they use a central 

controller (agent) and that does not scale well for large cloud infrastructures, might represent 

a communication bottleneck, and is a single point of failure in terms of reliability. Another 

issue is that the central controller (agent) should communicate with other local agents to 

make a decision about the migration of the VMs, and this can lead to delays and decrease the 

overall communication performance in large-scale systems. A central controller keeps the 

information about the capacity of available resources of all the PMs. The controller runs the 
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centralized Virtual Machine Consolidation (VMC) algorithm that selects a destination PM for 

the selected VM migration, taking into account the resource availability of all PMs. In such 

situations, there is a need for a new approach based on a distributed architecture where the 

decision to initiate the live migration process is not taken by a central controller or agent, but 

the responsibility is distributed to individual agents. 

 

1.3.  Research Contributions 

The main contributions of this dissertation are several approaches that enable the dynamic allocation 

of resources in a cloud infrastructure: 

• Long-term predictions for physical machine overload and underload detection in cloud 

infrastructures 

In cloud infrastructures, the dynamic workloads can be managed through live migration of 

VMs from overloaded or underloaded PMs to other PMs in order to reduce power 

consumption and to satisfy the SLA requirements. An important problem is how to detect 

when a PM is overloaded or underloaded in order to initiate the live migration actions in time. 

An approach that tackles long-term predictions of resource demands of VMs for PM overload 

detection is presented. This approach enables live migration decisions to be based on 

resource usage predictions several steps ahead into the future. This increases the stability 

and application performance and allows cloud providers to predict overload states before 

they happen. To dynamically allocate resources to VMs in an IaaS cloud, the approach 

combines local and global VM resource allocations. Local resource allocation enables 

allocating CPU resource shares to VMs according to the current load, while global resource 

allocation enables live migration actions when a PM is overloaded or underloaded in order to 

reduce the number of PMs and energy consumption and to mitigate VM performance 

violations.  

For overload or underload PM detection, long-term predictions of resource usage are made, 

based on Gaussian processes as a machine learning approach for time series forecasting. 

Compared to existing works, this approach considers long-term predictions of resource 



7 

 

demand and thus can increase stability and overall performance in cloud environments. The 

approach is presented more detail in Chapter 4.  

• Tackling uncertainty in long-term predictions 

Knowing that overload or underload detection based on long-term predictions carries with it 

the uncertainty of correct predictions, which can lead to erroneous decisions, we consider the 

uncertainty in the migration process during virtual machine consolidation. Unlike existing 

approaches, we propose an approach in which we have considered the uncertainty of long-

term predictions and the live migration overhead. To consider the uncertainty of long-term 

predictions for overload detection, a novel probabilistic model of the prediction error is built 

online using the non-parametric kernel density estimation method. The approach is explained 

in more detail in Chapter 4. 

• The Experiential Heterogeneous Earliest Finish Time Algorithm for task scheduling in clouds 

With the enormous growth of cloud computing as a computation model, the number of 

consumers and the demand for cloud resources also increases accordingly. Two basic 

functions in cloud resource management, task scheduling and resource allocation, are 

responsible for assigning costumer jobs to the appropriate resources to perform. In this 

context, an issue closely related to the dynamic allocation of resources in the cloud 

environment is the problem of task scheduling at the time the tasks are submitted to the 

proper VM. The execution of a task has a cost and depends on how the resources are 

allocated. Resource allocation constraints define restrictions on how to allocate resources, 

and scheduling under resource allocation constraints provide proper resource allocation to 

tasks. In cloud environments, the physical machines are located in different geographical 

locations and have different abilities in the way their resources perform, and each has its own 

cost ratio. Therefore, in these situations we should consider the cost and makespan 

associated with the task schedule and the resources allocated. Starting from these premises 

and constraints, resource allocation and task scheduling should be carefully coordinated and 

optimized jointly in order to achieve an overall cost and time effective schedule. In this 

manner, by minimizing cost and makespan, the task scheduling process can be optimized. 

An approach that addresses the problem of task scheduling in cloud environments is 

presented. The proposed algorithm, called experiential HEFT (EHEFT), is based on the existing 
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algorithm known as Heterogeneous Earliest Finish Time (HEFT). The EHEFT algorithm 

considers experiences with previous executions of tasks to determine the workload of 

resources. The algorithm also defines rank calculation to specify the minimum average 

execution time of previous runs of a task on all relevant resources. Compared to existing work, 

this approach enables effective task scheduling by reducing the task completion time, 

increase the efficiency of resource utilization, and improve the quality of service and the 

overall performance of the system. The approach is presented in more detail in Chapter 5.   

• Distributed resource allocation in cloud infrastructures using multi-agent systems 

The problem with existing approaches is that they are based on centralized VM resource 

allocation architectures, which is considered a drawback because a central controller can be 

seen as a single point of failure in the communication process. Therefore, we propose a 

distributed VM resource allocation approach for VM consolidation relying on multi-agent 

systems. This approach uses a utility function based on host CPU utilization to drive live 

migration actions. Agents, attached to each PM, are responsible for making decisions for the 

live migration of VMs from one PM to another PM. The key feature of the proposed approach 

is that allocation decisions are based on the individual agents’ utility functions, which offers 

the flexibility of easily changing the allocation policy. Compared to other approaches, the 

utility-based distributed resource allocation approach achieves a better overall performance 

avoiding a single point of failure and offers scalability in large-scale clouds. The approach is 

discussed in more detail in Chapter 6. 

 

1.4.     Publications 

The research papers that have been published during this dissertation are: 

1. Dorian Minarolli, Artan Mazrekaj, and Bernd Freisleben. Tackling Uncertainty in Long-term 

Predictions for Host Overload and Underload Detection in Cloud Computing. In Journal of 

Cloud Computing: Advances, Systems and Applications 6(4), Springer, 2017. 

2. Artan Mazrekaj, Dorian Minarolli, and Bernd Freisleben. Distributed Resource Allocation in 

Cloud Computing using Multi-Agent Systems. In Telfor Journal, pp. 110-115, 2017. 
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3. Artan Mazrekaj, Dorian Minarolli, and Bernd Freisleben. Dynamic Resource Allocation in 

Cloud Environments. In Information & Communication Technologies at Doctoral Student 

Conference (ICT@DSC), Thessaloniki, Greece, pp. 105-114, May 2018. 

4. Artan Mazrekaj, Arlinda Sheholli, Dorian Minarolli, and Bernd Freisleben. The Experiential 

Heterogeneous Earliest Finish Time Algorithm for Task Scheduling in Clouds. In 9th 

International Conference on Cloud Computing and Services Science (CLOSER 2019), Heraklion, 

Crete, Greece, pp. 371-379, May 2019. 

5. Artan Mazrekaj, Shkelzen Nuza, Mimoza Zatriqi, Vlera Alimehaj. An Overview of Virtual 

Machine Live Migration Techniques. International Journal of Electrical and Computer 

Engineering (IJECE), Vol. 9, No. 5, 2019. 

 

1.5.  Organisation of this Dissertation 

This dissertation is organized as follows: 

Chapter 2 introduces the fundamental topics of this work. This includes cloud computing, cloud 

service models, cloud computing deployment models, cloud computing actors, virtualization, and 

Service Level Agreements (SLAs). An overview of the topic of dynamic resource allocation as the main 

focus of this thesis is also given. 

Chapter 3 presents an overview of related work in the area of resource allocation in cloud 

infrastructures.  

Chapter 4 presents the proposed resource allocation approach based on long-term predictions for 

PM overload and underload in cloud infrastructures. Uncertainty of long-term predictions is also 

addressed. The approach, its implementation, and experimental results are presented.  

Chapter 5 presents the proposed task scheduling approach as an issue closely related to the dynamic 

allocation of resources in the cloud environment. The approach is based on the proposed algorithm 

called experiential HEFT (EHEFT) which addresses the problem of task scheduling at the time the tasks 

are submitted to the proper VM. The approach, its implementation, and experimental results are 

presented.  
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Chapter 6 presents the proposed distributed VM resource allocation approach for VM consolidation 

relying on multi-agent systems. This approach uses a utility function based on host CPU utilization to 

drive live migration actions. The approach, its implementation, and experimental results are 

presented.  

Finally, Chapter 7 concludes the dissertation and discusses areas of future work. 
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                   2                                                                                

                                                                                 Fundamentals 
2.1.  Introduction 

In this chapter, we present the basic concepts of cloud computing. Section 2.2 deals with 

fundamental concepts in the cloud, starting from key cloud characteristics, cloud service models, 

cloud computing deployment models, cloud computing actors. An overview of virtualization is given 

in Section 2.3 that has an important role to build a cloud infrastructure environment. Section 2.4 

deals with Service Level Agreements (SLA), which represent an agreement between cloud provider 

and cloud consumers. Resource allocation in cloud infrastructures is covered in Section 2.5. This 

section also addresses live migration of virtual machines as an important dynamic resource allocation 

mechanism. The evaluation metrics that are the key indicators to increase efficiency in VM 

consolidation and quality of services are presented in Section 2.6. In section 2.7, the CloudSim 

simulator is described, a framework for modelling and simulation of cloud computing infrastructures 

and services. Section 2.8 summarizes this chapter. 

2.2.  Cloud Computing 

Cloud computing has become a significant technology trend from which businesses and individuals 

access applications from anywhere in the world. Users can use services from the cloud when and 

where they need them, in the amount that they need, and pay for only the resources they use.                                                                                           

For the term cloud computing, there are many definitions from academy and industry practitioners. 

Buyya et al. [3] define a cloud as: ”A Cloud is a type of parallel and distributed system consisting of a 

collection of inter-connected and virtualized computers that are dynamically provisioned and 
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presented as one or more unified computing resources based on service-level agreements (SLA) 

established through negotiation between the service provider and consumers.” 

The NIST (National Institute of Standards and Technology) [4] defines cloud computing as: ”Cloud 

computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) 

that can be rapidly provisioned and released with minimal management effort or service provider 

interaction. This cloud model is composed of five essential characteristics, three service models, and 

four deployment models.” 

Armbrust et al. [5] summarizes the key characteristics of cloud computing as: ”(1) the illusion of 

infinite computing resources; (2) the elimination of an up-front commitment by cloud users; and (3) 

the ability to pay for use of computing resources on a short-term basis as needed . . .” [6]. 

 

2.2.1 Key Cloud Characteristics 

The main characteristics of cloud computing [7] [41] shown in Figure 2.1: 

 
Figure 2.1. Key cloud characteristics 

• On-demand self-service: a consumer can unilaterally provision computing capabilities.  

• Broad network access: accessibility through heterogeneous thin or thick client platforms 

(e.g., mobile phones, laptops, workstations, and PDAs). 

• Resource pooling: computing resources are pooled to serve multiple consumers, and are 

dynamically assigned and reassigned according to demand. The consumer has no control or 
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knowledge over the exact location of resources but may be able to specify location (e.g. 

country, state, or data center). Examples of resources include storage, processing, memory 

and network bandwidth.  

• Rapid elasticity: shared pooled resources are used to enable horizontal scalability. 

• Measured service: use of resources is automatically controlled and optimized through 

metering capabilities.  

• Multitenancy: a feature that enables multiple consumers to use the same resources. 

 

2.2.2 Cloud Service Models 

All services related to IT resources, including network resources, infrastructure, platforms and other 

application offered by cloud computing are called a cloud service. 

Cloud services are classified into three categories: a) Software as a Service (SaaS), b) Platform as a 

Service (PaaS), and c) Infrastructure as a Service, that are shown in the Figure 2.2. 

• Software as a Service (SaaS): In this model, applications are hosted by a cloud vendor and 

offered as a service to the users. This provides a great benefit to consumers because they do 

not need to take care to install and run applications locally, to upgrade and maintenance 

software, about software licenses, and so on. They only have to pay for services they use. 

Some of the SaaS providers are Google Apps, SalesForce, NetSuite, Oracle, IBM, Microsoft, 

etc. 

• Platform as a Service (PaaS): In this model, platforms and tools (including all the systems and 

environments) are hosted by a cloud vendor and offered to developers, allowing them to 

develop, test, deploy and to host web applications. Some  of the PaaS are Google Apps Engine, 

Microsoft Azure, Amazon’s Web services, etc. 

• Infrastructure as a Service (IaaS): In this model, resources are delivered over the Internet, 

such as servers, processing, storage, networks and other data center facilities. This model also 

provides benefits to the consumer because it does not need to manage or control the 

underlying cloud infrastructure. However, the consumer may have control over storage, 

operating systems, deployed applications and limited control of select network components. 

Some of the IaaS providers are Amazon EC2, Google Compute Engine, GoGrid, Flexiscale, 

OpenNebula, Rackspace, etc. 
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Figure 2.2. Cloud service models 

By enhancing the domain of cloud services as well as expanding various functions related to security, 

privacy, user access management, compliance requirements, etc., the need for other cloud support 

services emerged. Several of these are [7] [8]:  

o Communications as a Service (CaaS) serves as an interface of communication across multiple 

devices, such are video teleconferencing, web conferencing, instant messaging and voice over 

IP.  

o Compute as a Service (CompaaS) serves to provide compute capacity. 

o Network as a Service (NaaS) supports transport connectivity and intercloud network services, 

including routing, bandwidth, multicast protocols, VPN, security features etc. 

o Data Storage as a Service (DSaaS) stores data in multiple third-party servers known as cloud 

storage;  

o Analytics as a Service (AaaS) / Data Analytics as a Service (DaaaS) provides platforms and 

tools for analyses and mining of big data. Consumers and businesses can analyze their data in 

the cloud. 

o Desktop as a Service (DaaS) provides consumers to build, configure, manage, store and 

execute remotely. 

o Business Process as a Service (BPaaS) combines business process outsourcing with SaaS.  

o Security as a Service (SecaaS) deals with the security services include authentication, antivirus, 

anti-malware, encryption, web security, etc. 
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o Monitoring as a Service (MaaS) deals with the process of state monitoring of the services, 

such are networks, systems and other features in the cloud. 

o X as a Service (XaaS) is a recently developed model which refers as “Anything as a Service”, 

“Everything as a Service”, and “X as a Service”. So, this model focuses more on the relationship 

between customers and providers, it also has benefits to costumers over issues as total costs 

are controlled and reduced, risks are reduced and to accelerate innovation.  

 

2.2.3 Cloud Computing Deployment Models 

Depending on the functions, management, ownership and services, the cloud deployment models 

are categorized as follows. 

• Public Cloud, also known as external cloud or multi-tenant cloud, in which the infrastructure 

and computing resources are openly available to the general public such are business, 

industry, government, non-profit organizations and individuals. Cloud infrastructure and 

services provided and managed from the cloud providers.  The most popular public clouds are 

Google, Microsoft, Amazon Web Services, etc. The main characteristics of this model are 

homogenous infrastructure, shared resources, multi-tenant, common policies, leased or 

rented infrastructure, and economies of scale. Figure 2.3 shows an example of the public 

cloud model.  

 
Figure 2.3: A public cloud model 

• Private Cloud is considered an internal cloud which is provided and managed by an enterprise 

or a third party and which is not available to the general public. The main features and 

Public Cloud
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benefits of private clouds are higher security and privacy, more control, improved reliability, 

cost and energy efficiency, customized policies, dedicated resources, in-house infrastructure 

and so on. Figure 2.4 shows an example of the private cloud model. 

 

Figure 2.4: A private cloud model 

• Community Cloud shares infrastructure and computing resources across several 

organizations. The resource management is governed by organizations that have participated 

or by third-party providers. Figure 2.5 shows an example of the community cloud model. 

 

Figure 2.5: A community cloud model 
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• Hybrid Cloud combines of computing resources provided by two or more clouds (private, 

community, or public). The main benefits of hybrid cloud are in relation to cost benefits, 

improved security, scalability, risk management, more opportunity for innovation, etc. Figure 

2.6 shows an example of the hybrid cloud model. 

 

Figure 2.6: A hybrid cloud model 

• Virtual Private Cloud is a segment of a public cloud that enables the users more control over 

the resources they use. This model provides secure communication between an enterprise 

and a public cloud provider. The customer’s data is isolated from the data of other customers 

inside the cloud provider’s network.   

The NIST cloud computing reference architecture [9] defines the key actors in terms of the roles and 

responsibilities.  

• Cloud Provider is a person, organization or entity responsible for making a service available to 

interested parties. The duties of a cloud provider are to manage the computing infrastructure, 

runs applications or software and arranges to deliver the cloud services to the cloud 

consumers over the Internet. In the context of the SaaS model, the cloud provider is 

responsible to configure, maintain, deploy updates and control the operation of the software 

applications on a cloud infrastructure. In the context of the PaaS model, the cloud provider is 

responsible to manage the platforms and tools, such as databases, software stacks, 

middleware components, IDEs, SDKs, and other development and deployment tools etc. 
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• Cloud Consumer is a person or organization that maintains a business relationship with and 

uses the service from the cloud provider. The cloud consumer to pick up services from a cloud 

provider can analyze services and pricing bids and is free to choose a cloud provider. After the 

cloud provider is determined, the cloud consumer needs to sign an agreement between the 

two parties (cloud consumer and provider), which is known as Service Level Agreement (SLA). 

The SLAs specifies the technical criteria that must be fulfilled by the cloud provider for the 

quality of service, security and privacy issues, service performance, etc. Furthermore, the 

obligations and limitations that the cloud consumer has should be defined. Finally, the 

consumer may be billed for the usage of the services.  

• Cloud Auditor is a party that can perform an independent assessment of cloud services, 

systems operations, performance, security, privacy and so on. The duty of the cloud auditor 

is to control and verify the conformance of standards, and for security, auditing should include 

the verification of the compliance with standards and security policies. 

• Cloud Broker is an entity that manages the use, performance and delivery of cloud services 

and negotiates relationships between cloud providers and cloud consumers. The core services 

offered by cloud brokers are [10] [11]: a) Service Intermediation, a cloud broker enhances a 

given service by improving some specific capability and provides the value-added service to 

cloud consumers; b) Service Aggregation, a cloud broker combines and integrates multiple 

services into one or more new services. c) Service Arbitrage is similar to service aggregation 

except that the services being aggregated are not fixed.  

• Cloud Carrier acts as an intermediary that provides connectivity and transport of cloud 

services between cloud providers and cloud consumers. 

2.3.  Virtualization 

Virtualization is a technology that divides computing resources to enable many operating 

environments like hardware and software partitioning, machine simulation, emulation, time-sharing 

and so on. This technology covers a wide range of areas as server consolidation, supporting multiple 

operating systems, secure computing platforms, kernel development, system migration, etc. [12]. 

The cloud computing services are located in the data center, where each data center has thousands 
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of physical machines that need to serve many users and keep many applications, and then in such 

cases, the hardware virtualization is very useful and a perfect fit.                  

Depending on the type of application use, virtualization can be categorized as follows [13]: 

• Hardware virtualization (or server virtualization) enables consolidation of workloads of 

multiple underutilized machines to fewer machines, so that the hardware and all 

infrastructure is utilized in the most optimal way. The subcategories of the hardware 

virtualization are full virtualization, emulation virtualization, and paravirtualization. 

• Software virtualization enables the creation of multiple virtual environments inside the 

physical machine. The subcategories of the software virtualization are operating system 

virtualization, application virtualization and service virtualization. 

• Memory virtualization aggregates physical memory across different physical machines into a 

single virtualized memory pool.  The subcategories of the memory virtualization are 

application level control and operating system level control. 

• Storage virtualization allows multiple physical storage devices operating as a common group 

to appear as a single storage device. The methods of this virtualization model can be block 

virtualization or file virtualization.  

• Data virtualization organizes the data as an abstraction layer, which acts is independent from 

data structure and database systems.  

• Network virtualization enables the creation of multiple network segments on the same 

physical network. This enhances performance and security in communication and data 

exchange. This can be accomplished both in the internal and external network. 

To illustrate virtualization technology, in the Figure 2.7 we have presented a typical hardware 

virtualization scheme. Hardware virtualization allows running multiple operating systems and 

software stacks on a single physical platform [6].                                                                            

Each virtual machine (VM) used to be an instance of the physical machine so that the user gives the 

impression of accessing the physical machine directly.  

A software known as a Virtual Machine Monitor (VMM) or Hypervisor facilitates access to the virtual 

machine and the physical machine.  
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Figure 2.7: A virtualized physical machine 

Some VMM platforms that are very powerful in cloud computing environments are: 

• Xen is a hypervisor that enables to execute a multiple computer operating system on the 

same computer hardware concurrently. Xen allows the user to instantiate the operating 

system and perform operations that they want [14]. Xen has served as a base for other open 

source and commercial hypervisors. 

• KVM, the kernel-based virtual machine (KVM), is a full virtualization solution for Linux. The 

KVM supports several guests operating systems, including Linux distributions, Microsoft 

Windows, OpenBSD, OpenSolaris, FreeBSD, etc. [15].  

• VMWare ESXi is a hypervisor developed by VMWare that enables advanced virtualization 

functions and operations in relation to processor, memory and I/O [6].  

2.4. Service Level Agreements (SLAS) 

One of the main objectives of a cloud provider is to provide QoS requirements to meet customer 

expectations. Each service is typically accompanied by a service-level agreement (SLA), which defines 

the service guarantees that a cloud provider offers to its customers [59].                                                       

The components of a typical SLA are [60]: 

o Purpose describes the reason for the creating SLA. 

o Parties describes the parties involved in the SLA and their roles.  

o Validity period defines the SLA validity period by specifying the start and end time. 

o Scope defines the types of services covered by the agreement. 

Hardware

Virtual Machine Monitor

Operating System

App.1 App.2 App.3

Virtual Machine 1

Operating System

App.1 App.2 App.3

Virtual Machine n

. . .



21 

 

o Restrictions defines the essential steps to be done in order to supply the required service 

levels. 

o Service-level objectives are approved by service providers and customers. They contain a 

group of service level indicators like availability, performance and reliability. 

o Service-level indicators are the base level indicators which are used to measure these levels 

of service. 

o Penalties define the situation when the provider cannot achieve the goals in the SLA. If the 

SLA is taken by an external provider, there should be an option to terminate the contract. 

o Optional services provide for any services that are not solely requested by the customer but 

might be required as an exception. 

o Exclusions specifies what is not covered in the SLA. 

o Administration defines the procedures formed in the SLA to meet and measure its objectives. 

SLA has six main stages to be completed. These stages are shown in Figure 2.8. 

 

          Figure 2.8: SLA life cycle [60] 
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2.5.  Dynamic Resource Allocation in Cloud Computing 

In general, resource management in a cloud infrastructure is a complex issue, due to the scale of 

modern data centers, taking into account the heterogeneity of the resource types and functions, 

interdependencies among the resources and the variability and unpredictability of the workload [16]. 

Resource management means the process of allocating computing, storage, networking and power 

resources to meet the performance objectives in relation to the services that should be offered to 

consumers by the cloud providers.  

     The most interesting issues in resource management in cloud computing include allocation of 

resources, resource utilization through virtualization technology, local and global scheduling of cloud 

services, workload management, scaling and provisioning, performance and optimization, resource 

pricing, etc. As well, an important term is resource demand that is defined as the minimum amount 

of hardware resources that are required for an application to be executed to meet the requirements 

for Quality of Service (QoS). Therefore, to predict the amount of resources for an application should 

be made a resource demand estimation [17].   

     In cloud computing, various consumers demand a variety of services and their requirements and 

needs may change over time. On the other side, from the cloud provider’s perspective, the cloud 

resources must be allocated a fair and efficient manner; therefore, this is a great challenge to meet 

the needs of all cloud consumers and QoS requirements.  

     A typical resource allocation system in the data center is shown in Figure 2.9. A data center consists 

of a large number of PMs, where each PM runs a Virtual Machine Monitor (VMM), and one or more 

VMs. Each VM runs an application or an application component. Each PM communicates with the 

data center manager [118].  

In most data center management systems, the main components are controller, monitoring engine, 

predictor and migration manager. The monitoring engine continuously collects data for each PM 

through the controller on the state of CPU, memory, network and other resources. The processed 

data and statistics pass to the migration manager. The migration manager uses information and 

statistics received and through the VM consolidation techniques determines the migrations to be 

performed. Changes are then made to the data center configuration through the controller. The 

predictor as another component of the data center manager predicts the future workload, which 
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facilitates decision making of the migration manager to generate better configuration for the data 

center.    

 

     Figure 2.9: A system model for resource allocation in a data center [118] 

 

2.5.1 Virtual Machine Consolidation (VMC) 

In a cloud infrastructure, dynamic resource allocation is the process of dynamically assigning 

resources to the cloud applications according to workload demand. In the Infrastructure as a Service 

(IaaS) cloud computing service model, resources are allocated in the form of Virtual Machines (VMs) 

that can be resized and live migrated at runtime. To satisfy the demand of users, the cloud providers 

should manage resources efficiently.  

VM consolidation in a data center is a complex but important process to increase the overall 

utilization of physical resources and directly increases the quality of services. The goal is to increase 

energy efficiency by consolidating VMs into the minimum number of PMs and switching idle PMs into 

a power saving mode. During the consolidation process, the performance of applications based on 
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QoS is also taken into account, which is predefined in the SLA between the consumer and the 

provider. 

In Figure 2.10, we present an example of VM consolidation where some of the under-utilized PMs 

could be released and thus save energy in data centers [120]. 

 

Figure 2.10: An example of VM consolidation  

The objective of VMC is to place more VMs into a less number of PMs by increasing the utilization of 

resources. Two metrics are defined to measure the resource utilization ratio for PMs and in the 

overall Data Center (DC); resource utilization ratio of the PM,  (Equation 2.1), and the mean 

resource utilization ratio of DC, . (Equation 2.2) [117].    

 

                                                                   (2.1) 

 

                                                                                                               (2.2) 

N is the total number of active PMs in DC. 

To keep under control the use of resources, physical and virtual machines in a data center should be 

monitored periodically. 

One of the important mechanisms for dynamic workload management in cloud infrastructures is live 

migration of VMs from one PM to another. Live migration of VMs offers the possibility for allocation 

of resources to running services without interruption during migration process that is important for 

services with particular Quality of Service (QoS) requirements [18]. 
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• Load balancing provides high throughput and availability. 

• Manageability and maintenance, movements of virtual machines and shutdown of hosts for 

maintenance. 

• Minimum violation of SLA (Service Level Agreement), meeting the SLA requirements between 

cloud providers and cloud users. 

• Energy management, consolidation of virtual machines, switch off underutilized servers to 

reduce data center’s heat loss and power consumption. 

• Improved performance and reliability, the application performance will not be degraded. 

• Improving the utilization of resources. 

• Reducing management costs. 

Depending on the workload and environmental conditions, a single or a multiple VMs can be 

migrated. Three kinds of migration are generally categorized: 

• Single VM migration, where only one VM migrates at a time. 

• Multiple VM migration, where two or more VMs are migrated simultaneously. 

• Single and multiple VM migration, where one or more VMs are migrated simultaneously.   

Dynamic consolidation of VMs based on a proactive framework can be divided into the following 

domains [129]:  

(a) Workload Prediction consists of a clustering process, predicting the window size, evaluating 

the VM and user behaviour, and predicting the entire process chain as part of this domain. 

This includes various strategies, such as workload estimation and scheduling, dynamic 

provisioning and admission control, which estimate and determine whether resources should 

be added or removed, whether the order of the query execution should be rearranged, or 

whether a new incoming request should be allowed or rejected [130]. Predicting a resource’s 

workload for a short or long-time interval is a fundamental process in dynamic resource 

allocation and capacity planning in a data center. Proper and timely resource planning leads 

to increased service performance and is concentrated on energy saving on a data center. This 

process is made even more difficult by the fact that in a cloud environment, it is a challenge 

in itself to predict the demand for all types of resources, knowing that there are different VM 
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requests with different numbers and types such as processors, memory, storage, and network 

bandwidth. 

Figure 2.11 illustrates one of the proactive dynamic VM consolidation frameworks. 

 

Figure 2.11: Proactive dynamic VM framework [129] 

The components of the workload prediction domain are [129-130]: 

- Clustering process. During this stage, clustering techniques are used to enable efficient 

dynamic VM consolidation, where depending on the requests received, requests are 

shared in the appropriate clusters with different types of VMs. In the literature, there are 

different clustering algorithms and techniques that are used for the dynamic VM 

consolidation process. 
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- Prediction process. To predict the future demand for resources based on historical 

workload data, accurate algorithms and techniques are needed. Several prediction 

techniques and algorithms are used, depending on the perspective of the researchers, but 

the most widely used are machine learning (ML) techniques [132]. 

- Prediction window size. At this stage, the calculation of the time interval in the future is 

determined, for which the resource workload should be predicted. Based on this it can be 

decided whether a PM should switch to sleep mode, thus reducing energy consumption. 

In this case, the prediction process is highly dependent on the configuration mode at the 

data center with special emphasis on PMs’ hardware. Depending on the prediction 

window size, the prediction and clustering techniques must also be defined and observed.   

- VM and user behaviour. This component analyzes the behavior of the user and the VM in 

real time when requesting the allocation of VM resources. Also, the analyses of the 

relationships and dependencies between users and VMs improves the overall prediction 

process, where based on comparative conditions unwanted users and VMs are excluded 

from the future step of the workload estimation process [131].  

(b) Resource State. This is the state of all virtual and physical resources. This includes monitoring 

and tracking tools, techniques and algorithms that detect if a PM is overloaded or 

underloaded, and then facilitates the PM selection phase.  

More specifically, the components within the resource state domain are: 

- Monitoring tools. The monitoring process in a data center facilitates the continuous 

monitoring of physical components and the accompanying infrastructure, as well as the 

measurement of performance in case of access to applications, in order to maintain a high 

level of reliability and quality of services. Thus, in the process of dynamic VM 

consolidation, monitoring tools provide the information about the state of the PMs and 

VMs, by analyzing the data generated by monitoring, select the main parameters that 

affect the reduction of the computation load, and also select to switch on or off a suitable 

PM. 

- Overloaded and under-loaded PM detection. The number of PMs in a data center is large 

and each PM has its VMs that execute different applications. Thus, it is a challenge to 

measure their loads. 
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To detect if any of the PMs is overloaded or underloaded, a continuous monitoring 

process by analyzing historical data of applications workload and resources usage should 

be provided. Based on historical data, the PM’s workload several steps (some time 

intervals) in the future should be predicted and based on this the cloud provider should 

make a decision for the migration process. The ideal case to be achieved is that, based on 

long-term workload predictions, a decision for live migration of VMs before PM overload 

or underload happens is to be made. After that, it should be detected which of the PMs is 

overloaded or underloaded. Then, it must be decided which of its VMs must be migrated 

to other PMs. 

The dynamic VM consolidation process is illustrated in the Figure 2.12 [120]. 

 

Figure 2.12: VM consolidation stages 

(c) VM Selection. Another challenge in VM consolidation is which of the VMs from the 

overloaded or underloaded PM will migrate to other PMs. Potentially, there can be more than 

one VM that will be selected for migration. A suitable VM should be selected based on a 

monitoring process through the VMM (Virtual Machine Monitor) to convey the applications 

workload and the resource usage within the VM.  

(d) Destination PM Selection and VM Placement. After selection of suitable VMs (one or more), 

another issue is to target a suitable destination PM. Potentially, more than one PM can be a 

destination for migrated VMs. Therefore, the state of PMs should be monitored to see if they 
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are overloaded or underloaded. Also, the state of the destination PM should be predicted 

exactly after VM placement in order to ensure that is not overloaded.  

To explain all steps of VMC based on live migration, we present a flowchart in Figure 2.13 [120].  

• Overloaded and Underloaded PM Detection.  A major challenge for live migration of VMs is 

detecting when a PM is over-loaded or under-loaded. Problematic is the selection of the 

overload utilization threshold. Due to unpredictable and dynamic workload, a static overload 

utilization threshold is not suitable.         

 

Figure 2.13: VM consolidation flowchart 

In principle, a PM is considered as overloaded when during the resource usage monitoring process, 
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considered under-loaded then when actual and predicted next value exceeds a specified lower 

utilization threshold.  

A heuristic approach for setting an upper and lower utilization threshold is proposed in [19]. 

Below are some techniques to identify the source PM selection and to detect if the PM is in an 

overloaded state [20-23].  

- Median Absolute Deviation (MAD) uses median absolute deviation to assign an upper 

threshold of a PM to be marked as overloaded. The MAD is a measure of statistical 

dispersion, a robust statistic, being more resilient to outliers in a data set than the 

standard deviation. 

- Inter Quartile Range (IQR) uses the interquartile range to decide the threshold of a PM 

to be marked as overloaded. For symmetric distribution, half of IQR is equal to MAD. 

- Threshold (TH) provides the utilization when a PM must qualify as overloaded. 

- Local Regression (LR) is based on the Loess method [21]. Local regression builds a curve 

that approximates original data by setting up the simple models to localized subset of 

data. 

- Local Robust Regression (LRR) provides prediction for PM underload that is proposed as 

robust estimation method known as bisquare [24] that transform LR into iterative 

method.                     

• VM Selection. When a physical machine has more than one virtual machine running on it, 

then the challenge is how to select the virtual machine (VM) for migration when a physical 

machine is overloaded or under-loaded. In this case, a VM selection policy is needed that 

efficiently react in relation with assigned utilization threshold (for upper and lower threshold). 

Below some of the most common techniques for the process of VM selection are presented.  

- Maximum Correlation (MC): By the MC technique, the VM that has the maximum 

correlation coefficient compared to other VMs which are located on the same PM [25] 

[23] is migrated. This method is proposed by Verma at al. [26], based on the idea that 

the higher the correlation between the resource usages by applications running on an 

oversubscribed PM, the higher the probability of PM being overloaded. 
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- Minimum Migration Time (MMT): The MMT technique selects the VM that has the least 

memory, since it will be migrated faster [22]. The migration time is estimated as the 

amount of memory utilized by VMs divided by the network bandwidth available for a 

host [21]. 

- Random Selection (RS): The RS selects a VM for migration randomly from the VMs 

residing in the source PM [19]. 

- Constant Fixed Selection (CFS): CFS is similar to the Random Selection (RS) strategy. CPS 

selects from the VM list those that are in the first, middle, or last position to leave the 

overloaded PM [133]. 

- High Potential Growth (HPG): When the upper threshold is violated, the HPG policy 

migrates VMs that have the lowest usage of CPU depending on the CPU capacity that is 

defined by the VM parameters. This affects to minimize the potential increase of the 

PM’s utilization and prevent an SLA violation [19]. 

- Minimization of Migrations (MM): This policy selects the minimum number of VMs 

needed to migrate from a PM in order to lower CPU utilization below the upper 

utilization threshold if the upper threshold is violated [19].      

- Minimum Utilization (MU): This VM selection policy selects VMs that have the lowest 

CPU utilization, in order to reduce the processing overhead [25]. 

- Multi-objective optimization: This policy is suitable in dynamic environments. It is based 

on a multi-objective model where during the VM selection process it takes into account 

CPU parameters, such as temperature, resource use, and power consumption [134]. 

- Fuzzy Q-Learning (FQL): Since the process of VM selection is a decision-making problem, 

this policy uses fuzzy logic, which integrates several VM selection criteria which then 

dynamically select the most suitable VM selection approach. Thus, this policy tends to 

choose a more optimal strategy that should be used in the VM selection process [135]. 

- Fuzzy VM selection: This VM selection policy is based on machine learning techniques, 

to select VMs from an overloaded PM. This policy integrates the migration control 

algorithm with the fuzzy logic VM selection strategy [136].  



32 

 

• Destination PM Selection / VM Placement: Another issue in dynamic VM consolidation after 

we have selected the right VM for migration is to select in which PM to place. In the VM 

placement phase the destination PM needs to analyse carefully whether it will be overloaded 

after the migration process. Many authors see the destination PM selection and VM 

placement as a bin-packing problem.  

The VM placement algorithms generally can be categorized into the following types [27]: 

     (a) Power-based, the chosen VM migration to the target host should result in a system that 

is energy-efficient with utmost resource utilization. 

     (b) QoS-based, the chosen VM migration to the target PM should ensure maximal 

fulfilment of quality of service requirements. 

     Based on the literature, there are also more destination PM selection and VM placement 

schemes for the cloud infrastructure layer. Depending on the methods, they use some of VM 

placement schemes that can be classified as [28]: Graph theory-based, Genetic Algorithm-

based, Automata-based, Greedy Algorithm-based, constraint programming-based, integer 

programming-based, ACO-based (Ant Colony), PSO-based (Particle Swarm Optimization), etc.    

Below some of the most common heuristic-based techniques for the destination PM selection 

and VM placement are presented. 

- Random Choice (RC): The RC policy randomly selects as PM that is available to migrate 

the selected VM. If there is no PM available for VM migration, then a new PM will start 

from a sleep state [119].  

- First Fit (FF):  The available PMs are placed sequentially in an ordered list and for each 

VM that requires a destination PM then the first PM is selected from the list. If the first 

PM cannot accommodate a VM, then a second PM is checked, and it continues to other 

PMs until one of them has enough resource capacity to accommodate the VM [119]. 

- First Fit Decreasing (FFD): In this policy, the VMs are sorted in decreasing order based on 

resource demand and for the VM with the highest resource demand using the First Fit 

policy will be required the destination PM [117].  

- Next Fit (NF) / Round Robin (RR): This is similar to the FF policy, but the NF or RR policy 

does not start the search of the destination PM from the first PM in the ordered list, but 

starts from the last PM selected in the previous VM placement [117, 119]. 
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- Best Fit (BF): In this policy, the destination PM with the minimum residual resource is 

selected. 

- Best Fit Decreasing (BFD): BFD is another heuristic policy where it first sorts the VMs in 

decreasing order based on resource demands and then allocates the VMs to the PM with 

resources that meet the VM requirements [118].               

- Power Aware Best Fit Decreasing Algorithm (PABFD): This policy [19] first sorts the VMs 

according to their CPU utilization in descending order and then allocates VMs to the PM 

that provides the least increase of the power consumption.  

- Minimum Correlation Coefficient (MCC): In this technique, the correlation coefficient is 

used to represent the degree of association between a chosen VM and the target host 

[25]. During the chosen VM migration to the target host, if the correlation coefficient 

will increase, then MCC will increase the impact on the performance of the others VMs. 

Hence, to avoid performance degradation on others VMs a chosen VM will be migrated 

with the minimum correlation coefficient.  

- Heuristics, fuzzy logic and migration controls [22] [29]: This approach combines the 

heuristics and migration controls for VM consolidation. The key metrics that are 

investigated are: SLA violation, number of VM migrations, and energy consumption. 

- Utility functions [30]: This model addresses the VM placement problem by using utility 

functions, to maximize the profit of VM placement by minimizing energy consumption 

and SLA violations. The model is divided into the following categories: input, processing, 

and output.  

In general, VMC techniques are classified into two major groups: Dynamic VMC (DVMC) Techniques 

and Static VMC (SVMC) techniques [117-118].  

• DVMC Techniques: Based on workload variations as well as on specific time intervals, 

consolidation algorithms should make the decision to migrate VMs to the appropriate PMs. 

DVMC algorithms ensure the reallocating of VMs to a smaller number of PMs with the intent 

to reduce the number of active PMs.   

• SVMC Techniques: In these consolidation techniques, the VM-to-PM mappings are not 

changed for a long time and if the workload changes during this time, no migration is 
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performed. SVMC algorithms that enable the solution of initial VM placement in the minimum 

number of active PMs will increase the energy-efficiency and resource utilization of the data 

center. These techniques do not provide the reallocation of VMs in new PMs considering 

current VM-to-PM mapping.  

Figure 2.14 presents an overview of VMC techniques classification [117]. 

 
Figure 2.14: An overview of VMC techniques  
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DVMC algorithms through the live migration mechanism enable the running VM to migrate from one 

PM to another while it is running and providing service to its consumers.   

DVMC techniques can be classified into two groups: 

o Centralized DVMC Techniques: In centralized architectures, there is only a central controller 

that keeps the information on the capacity of available resources of all the PMs. The 

controller runs the centralized VMC algorithm that selects a destination PM for the selected 

VM migration, considering the resource availability of all PMs [117].  

o Distributed DVMC Techniques: Unlike centralized architectures that have a centralized 

controller, in distributed architectures the PMs exchange information about their resource 

availability with their own neighbour PMs and vice versa. If a PM wants to migrate any of its 

VMs then it executes distributed VMC algorithm to select one of the neighbouring PMs as a 

destination PM to place the migrated VM. 

To identify whether the source PM is an overloaded or underloaded state, there are two groups of 

DVMC techniques that tackle this issue: 

o Threshold-Based DVMC Techniques: These algorithms are used to detect whether a PM is an 

overloaded or underloaded state upper and lower threshold values. In this case, the resource 

utilization ratio (Equation 2.1) of the PMi should be compared with some static or adaptive 

threshold values, and if the resource utilization ratio exceeds the upper utilization threshold 

value, then the PMi is considered as overloaded or over-utilized, and VMs of PMi should be 

migrated out. On the other hand, if the resource utilization ratio is below the lower utilization 

threshold value, then the PMi is considered as underloaded or under-utilized, and VMs of PMi 

should be migrated out, so that PMi to go into sleep mode [19].       

o Threshold-Free DVMC Techniques: In threshold-free techniques, the resource utilization ratio 

of the PM is not comparable to any threshold value to detect if the PM as an overloaded or 

underloaded state [117]. In this case, the source PMs are selected randomly or depending on 

the algorithm some functions are applied that give priority to any PM in relation to others, 

based on the lower or higher resource utilization ratio.        

From various research works related to DVMC techniques, threshold based DVMC techniques are 

classified into two groups [117]: 
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o Static Threshold-Based Techniques: To identify whether a PM as an overloaded or 

underloaded state, fixed or predefined values are used as upper and lower thresholds. 

Threshold values do not change over time, therefore referred to as static thresholds [117]. 

o Dynamic Threshold-Based Techniques: In these algorithms, to identify whether a PM as an 

overloaded or underloaded state, the values of the thresholds are dynamically assigned as 

the resource utilization ratio of the PM changes over time. Actually, the threshold values 

adapted depending on the changes in resource utilization [21].       

 In relation to the VM selection policy, the DVMC techniques are classified into two main categories: 

o Multiple/Clustered VM Selection: In cases of multi-layered applications, where an application 

is located in one or more VMs, another application is in another VM, and then there is a 

functional dependency between applications and VMs. In the case of communication 

between applications in different VMs that are not hosted in nearby PMs, it may lead to 

communication difficulties and the degradation of application performance. In such cases, 

instead of migrating a single VM should be considered a group of VMs or clustered VMs for 

migration.  

o Single VM Selection: In this category, the single VM selection algorithms select a single VM to 

migrate. 

An important issue to be addressed in the dynamic consolidation of VMs is the future workload 

estimation of the PM. DVMC algorithms that make the decision for migration based on the prediction 

of future resource utilization show better performance compared to algorithms based on current 

resource utilization. In this sense, two groups of algorithms can be categories. 

o Predictive DVMC Algorithms: These algorithms make the decision to migrate VMs from one 

PM to another based on the estimated future resource demand of VMs [117].  

o Non-predictive DVMC Algorithms: The decision to migrate VMs from one PM to another 

based on the current resource demand of VMs [117].    

To solve the problem of VM consolidation as a multi-objective optimization problem, different 

algorithms and approaches were proposed. Since it is known that VM consolidation is an NP-hard 

problem, it is not easy to find an optimal solution with a large number of PMs and VMs.  The most 
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well-known algorithms that deal with VM consolidation problems are heuristics, meta-heuristics, 

mathematical programming and machine learning [63]. 

• Heuristic algorithms find the solution step-by-step by taking into consideration the best local 

decision. Some existing approaches to the VM consolidation problem have treated it as an 

optimization problem, to find a near optimal solution through heuristic algorithms. In this 

case, the heuristic algorithms can consolidate the workload in a multi-objective optimization 

problem. These algorithms are suitable to solve the VM consolidation as a bin-packing 

problem [128]. According to the bin-packing problem, each VM is considered an item and 

each PM is considered a bin.  

There are some heuristic algorithms that solve the bin-packing problem as they are: First-Fit 

(FF) algorithm, Best-Fit (BF) algorithm, Next-Fit (NF), Random-Fit (RF), First Fit Decreasing 

(FFD) and Best Fit Decreasing (BFD). As well, modified versions of these algorithms are used 

depending on the viewpoint of different authors. 

• Meta-heuristic algorithms can compute near optimal solutions for complex multi-objective 

optimization problems. The well-known problems are ant colony optimization and genetic 

algorithms. Ant Colony Optimization (ACO) is a multi-agent approach (artificial ants) for 

complex combinatorial optimization problems, such as the Traveling Salesman Problem (TSP) 

and network routing [62]. In relation to VM consolidation problem, ant algorithms are used 

in terms of Ant System (AS), Max-Min AS (MMAS), and Ant Colony System (ACS).  

Genetic Algorithms (GA) have been shown to be successful in solving various optimization 

problems. GA is used to find the optimal solution to a given computational problem that 

maximizes or minimizes a particular problem. In addition, other well-known algorithms used 

to solve the VM consolidation problems are Simulated Annealing (SA), Particle Swarm 

Optimization (PSO), Tabu Search, and Hybrid Optimization algorithms.   

• Mathematical programming uses a mathematical formulation to find an optimal solution by 

searching all the possible solutions. Well-known mathematical programming algorithms for 

VM consolidation are Stochastic Programming, Linear Programming (LP), Non-Linear 

Programming, Dynamic Programming, Constraint Programming (CP), Quadratic 

Programming, and Game Theory. Compared to heuristics and meta-heuristics, these 

algorithms provide good performance to compute the optimal solution.    
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• Machine learning is a computer science discipline that has the objective to develop learning 

capabilities in computer systems [64]. Several works use ML algorithms for workload 

prediction and power consumption modelling in a data center. The most commonly used ML 

techniques are Linear Regression (LR), K-Nearest Neighbour Regression (K-NNR), and 

Reinforcement Learning (RL). 

2.5.2 Virtual Machine Live Migration Components 

During the live migration process, it is important to define what should be migrated and which 

content should migrate.  The migration process affects the CPU state, memory contents, and storage 

content.  

o CPU state 

The CPU state of the VM needs to be context switched from one PM to another. This is a small 

amount of information to transfer and represents the lower bound to minimize the service 

downtime [122]. 

o Memory Contents 

Memory migration is a process of moving the contents of VM’s memory from one physical machine 

to another. The memory content that is subject to the migration process represents a larger amount 

of information, including the physical machine processes memory and guest OS memory within the 

virtual machine. The memory module that needs to migrate are [101]:  

• VM Configured Memory: The amount of actual physical memory that is given to guest VM by 

the hypervisor.  

• Hypervisor Allocated Memory: It is part of the VM configured memory, but with a smaller size 

then it does. If a VM tries to access this memory and free it, then the decision is taken from 

the hypervisor. 

• VM Used Memory: It is the memory that is used by VM OS and all running processes. These 

memory pages keep track by the guest VM. 

• Application Requested Memory: It is the amount of memory that is required for running an 

application, which is allocated by the guest VM OS. 



39 

 

• Application Actively Dirtied Memory: It is the part of the application requested memory, which 

is frequent access and modified by a running application.  

The process of memory transfer can be divided into phases [102]: 

• Push phase: The hypervisor transfers memory pages to the destination PM while VM on the 

source is still running. To maintain consistency, the pages that have been modified during the 

transfer process must be resent.   

• Stop-and-copy phase: First, the source VM is stopped, pages are copied across to the 

destination VM and then start a new VM.  

• Pull phase: If the new VM executes and tries to access a page that has not yet been copied, 

then this page is faulted in across the network from the source VM. 

All the migration techniques try to reduce total migration time and down time. There are two main 

techniques in memory migrations: a) pre-copy and b) post-copy. 

a) Pre-copy technique  

At this stage, the pages are copied iteratively from the source to the destination PM while the VM 

continues to run. During the iteration procedure, some memory pages may be modified or dirtied, 

so they have to be re-sent to the destination PM in a future iteration [103] [126]. Then it is passed to 

the termination phase, which depends from the defined threshold, and if one of the three following 

conditions is met [101]: (1) the number of iterations exceeds pre-defined iterations, or (2) the total 

amount of memory that has been sent, or (3) the number of dirty pages in the previous round fall 

below the defined threshold.  

Finally, in the stop-and-copy phase, the migration of the VM is suspended at the source host, after 

that move processors state and remaining dirty pages. When the VM migration process finishes 

correctly, then the hypervisor resumes the migrated VM on the destination PM. This technique is 

implemented in many kinds of hypervisors like Xen, VMware, and KVM.  

The flowchart in Figure 2.15 illustrates the VM migration through pre-copy technique [101]. 



40 

 

 

Figure 2.15: Pre-copy technique flowchart [101] 
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• Active Push: In order to reduce the duration of residual dependency from the destination 

PM is to proactively push the VM pages from the source to the destination even the VM is 

running on the destination. If the page fault occurs at the destination VM then this situation 

is handled through the demand paging. 

• Pre-paging: Through the pre-paging feature tends to avoid or mitigate the page fault rate 

and the reduction of major faults to be predicted in advance, and adapt the better page 

pushing sequence to access the VM’s memory pages. This is done using the faulting 

addresses as hints to estimate the spatial locality of the VM’s memory access pattern.   

• Dynamic Self-Ballooning (DSB):  DSB is a mechanism that is used to avoid the transfer of 

free memory pages. DSB enables the guest OS to reduce its memory footprint by releasing 

its free memory pages back to the hypervisor and this speedup the migration process.  

Therefore, the purpose is to avoid the sending of unused pages to the destination PM 

because this increases the total migration time. 

The flowchart in Figure 2.16 illustrates the VM migration through the post-copy technique [101]. 

 

Figure 2.16: Post-copy technique flowchart [101] 
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c) Hybrid technique (pre- and post-copy) 

The hybrid technique includes pre- and post-copy VM migration techniques with the intention to 

improve the total migration time and service downtime, as the most important parameters in the 

overall performance of the migration process. According to this approach [105] [126], in the first 

iteration, it works as a pre-copy technique while the VM is running on source PM. After the first 

iteration of the memory transfer, the VM is stopped and then resumes at the destination PM with its 

processor state and dirty pages. Then the remaining pages are transferred through the post-copy 

technique.  

The flowchart in Figure 2.17 illustrates the VM migration through the hybrid technique [101]. 

 

Figure 2.17: Hybrid technique flowchart [101] 
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Storage content represents a large amount of information need to be transferred from the source to 

destination. The transfer of full disk image over the network takes a considerable time, so to reduce 

the transfer time and to avoid them transfer the hypervisor first identify the unnecessary contents 

and unused space. This reduces the migration time in total. The storage content that needs to be 

migrated is [101]: 
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• Virtual Disk Size: represents the disk size that is allocated for VM use, which is assigned when 

the VM is created.  

• VM Used Blocks: are the system and user data blocks, which are stored in a VM image. These 

blocks are accessed and used by the guest VM OS. 

• Hypervisor Allocated Blocks: represents the space allocated by the hypervisor to VM for data 

storage. The size of this space may be same as virtual disk size if pre-allocation is performed. 

o File System Migration 

To facilitate the migration process of VMs, the system should ensure that each VM with a consistent, 

location independent view of the file system that is available on all PMs [126]. A way to do this is to 

provide each VM with its own virtual disk, to which the file system is mapped, and transport the 

contents of this virtual disk along with the other states of the VM. Although seeing that in today’s 

trends the capacity of the disks is higher, the migration of the contents of an entire disk over the 

network is not a proper choice. Another solution could be to have a global file system on each 

machine where e VM could be located. This excludes the possibility of copying files from one machine 

to another, while all files may be accessible through the network. Moreover, it is impractical to ensure 

a consistent global root file system across all machines [106].  

2.6.  Performance Metrics 

Despite the fact that the VM live migration process has great benefits in data centers, it should not 

be ignored even its cost such as performance loss and energy overhead. This cost is also critical for 

businesses to achieve their goals.      

To increase efficiency in VM consolidation and quality of services at an acceptable level, the overall 

performance should be evaluated through several metrics, like energy consumption, number of VM 

migrations, Service Level Agreement violations, performance degradation due to migration, energy 

consumption and SLA.  

The live VM migration performance can be measured by the following metrics: 

1. Downtime: This metric represents the time when a service is not available during the 

processor states migration process. The downtime metric Tdown depends on the page dirty 
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rate D, page size L, duration Tn of the last pre-copy round n, and link speed B, and is defined 

as in Equation (2.1) [101], [103], [107]:  

                                                                                                  (2.1) 

2. Pages Transferred: This metric indicates the number of pages transferred and duplicate pages 

during VM migration [101], [103], [107].  For a round i, the page transferred is calculated as 

in Equation (2.2):  

                                                                             (2.2) 

where Vmem is the amount of VM memory; Ti-1 is the time taken to migrate dirty memory 

pages, which is generated during just previous round.  

The elapsed time of VM migration Ti at each round is defined in Equation (2.3):  

                                                                                                        (2.3)            

Where R is memory transmission rate during VM migration. 

The network traffic Vmig during VM migration is defined in Equation (2.4): 

                                                                                         (2.4) 

The migration latency Tmig is calculated as in Equation (2.5):  

                                                                                                         (2.5) 

3. Preparation Time: This metric represents the time difference between the moment of 

initiation of the migration process and transferring the VM’s state to the destination PM, 

without interrupting the execution and dirtying memory pages.     

4. Resume Time: This is the time when the VM migration has finished and resumes the VM 

execution at the destination PM. 
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5. Application Degradation: This is a parameter that indicates the performance of an application 

that is interrupted or slow down services due to the migration process. 

6. Link speed: This is also an important parameter that affects the performance of VM migration. 

Bandwidth allocation or capacity of the link is inversely proportional to downtime and total 

migration time. Faster transfer during the migration process requires more bandwidth, thus 

migration requires less time to complete [108]. 

7. Page dirty rate: This is the rate at which VM memory pages are modified by VM applications 

and this directly affects the number of pages that are transferred in each pre-copy iteration 

[108]. Higher page dirty rates cause increased data being sent per iteration and this leads in 

increasing total migration time and service downtime. Dirty page rate and migrating VM 

performance are in nonlinear relationships. If the rate of dirty pages is lower than link 

capacity, the migration process can transfer all modified pages at a frequent time then this 

leads in lower total migration time and downtime. Otherwise, the migration performance 

degrades.   

8. Energy consumption (E): This is a key parameter since the target of VM consolidation is to 

reduce energy consumption. Energy consumption of the data center can be generated from 

various sources such as CPU, Memory, power supply units, disk storage boxes and cooling 

systems. Energy consumption is given in Equation (2.6) [66]. 

                                                                                              (2.6) 

where, E is Energy Consumption, u(t) is the CPU usage, Power is Power Consumption, which 

is proportional to CPU usage as shown in Equation (2.7). 

                                                                 (2.7) 

where q is the fraction of energy consumed by the idle server, Pmax  is the maximum power 

consumption by utilized server, and u is the CPU utilization. 

Energy consumption of the data center for the whole experimental time is measured in KWh. 

9. Service Level Agreement Violations (SLAV): This is an important metric to measure the 

quality of service (QoS). Actually, SLA is the agreement between cloud provider and consumer 

in terms of maximum response time and minimum throughput. SLAV is proposed in [21] and 

( ( ))E Power u t dt= ò

max max( ) (1 )Power u q P q P u= × + - ×
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measure by the SLA violations due to over-utilization (SLAVO) and SLA violation due to 

migration (SLAVM). Performance degradation due to PM overloading and due to VM 

migrations metrics is shown in the Equation (2.8) [39], [66]. 

                                                                                     (2.8)              

SLAVO indicates the percentage of time, during which active PMs have experienced the CPU 

or memory utilization of 100% as: 

                                                                                               (2.9) 

Where M is the number of PMs, Tsi is the total time that the PM i has experienced the 

utilization level of 100% leading to an SLA violation.  is the total time period of the PM i 

during active state. 

SLAVM shows the overall performance degradation as a result of live migration of VMs, as 

shown in Equation (2.10). 

                                                                                             (2.10) 

Where N is the number of VMs; is the estimate of the performance degradation of the 

VMs j caused by migrations; is the total CPU capacity demanded by the VM j during its 

lifetime. 

10. Number of VM migrations: Live migration of virtual machines is a costly operation, 

considering some parameters like amount of CPU processing on a source PM, the network 

traffic between the source and destination PMs, downtime of the services and total migration 

time [33]. Therefore, a smaller number of the VM migrations means an efficient 

consolidation. 

The authors in [21] have defined the total migration time and performance degradation along 

VMs live migration, as shown in Equation (2.11) and (2.12), respectively. 
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where is the total time for VM j migration; is amount of memory used by VM j, and 

is the available bandwidth to the VM j. 

                                                                                          (2.12) 

where is the total performance degradation by VM j, t0 is the time when the migration 

starts, Tmj is the time taken to complete the migration, uj(t) is the CPU utilization by the VM j.  

11. Energy consumption and SLA violation (ESV): A metric combines energy and SLA violations. 

Actually, if we try to reduce too much energy than the SLA violation will be increased, so need 

to find a trade-off that will consume less power and still incur a less SLA violation [22].  For 

this purpose, the ESV metric is defined, which is given by Equation (2.13). 

                                                                                                   (2.13) 

where E is energy consumption and SLAV is the SLA violations of all VMs. 

 

2.7.  CloudSim  

CloudSim is an extensible simulation framework that enables modelling, simulation and 

experimentation of cloud computing infrastructures and application services [42]. The main features 

of CloudSim are [43]: 

o Modelling and simulation of large-scale cloud computing data centers. 

o Modelling and simulation of virtualized server hosts. 

o Energy-aware computational resources. 

o Support for data center network topologies and message-passing applications. 

o Modelling and simulation of federated clouds. 

o Support for user-defined policies for allocation of hosts and host resources to virtual 

machines. 

CloudSim enables researchers and experts from industry to perform tests and experiments, and to 

develop the best policies, based on specific scenarios and configuration in all the critical aspects 

related to cloud computing. 
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Figure 2.18 shows the layered implementation of the CloudSim architecture. 

 

Figure 2.18: Layered CloudSim architecture [42] 

The top layer of CloudSim is the User Code, which contains the basic entities such as the number of 

PMs with all their specifications, the number of tasks and the application’s configuration, the 

specifications of VMs, the number of users and the types of their applications, and scheduling policies 

and strategies for the data center broker. Based on these modules, an application developer in the 

cloud can implement various functions, such as workload distribution with increasing demand, 

perform robust tests based on application configurations, and model reliable and customized 

techniques. 

CloudSim layer enables the modelling of a virtual environment and has special management interface 

for different resources. This layer implements the basic functions, such as providing the appropriate 

PMs for VMs, application execution management and monitoring the dynamic state of the system. 

Therefore, to map the PMs to VMs, the cloud provider can implement the strategies and different 

techniques by adding the programming modules based on the functions of this layer. 
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2.8.  Summary 

In this chapter, we have given an overview of the key concepts and characteristics of cloud 

computing, starting from fundamental characteristics in cloud computing, cloud service models, 

deployment models and actors in the cloud. Virtualization has also been described as a fundamental 

and useful technique that enables efficient resource management in the cloud environment. The 

agreement between the cloud provider and the consumer, known as SLA, has been addressed, which 

defines the obligations between the parties and ensures that the requirements regarding the quality 

of services have been met. 

We have provided an overview of dynamic resource allocation in cloud infrastructures with a focus 

on virtual machine consolidation (VMC) through the live migration mechanism. The components and 

possibilities of the live migration process were explained. To evaluate the overall performance in the 

cloud infrastructure are presented the fundamental metrics.  

In addition, we have introduced the CloudSim simulator, which is a well-known and very useful 

simulator in both industry and academia for modelling cloud computing processes. 
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   3                                                                                                                                                                                      

Related Work 

3.1. Introduction  

In this chapter, we analyze the research work related to resource allocation in cloud infrastructure. 

Section 3.2 presents and discusses VM consolidation approaches based on live migration process. 

Approaches that have dealt with dynamic VM consolidation based on hierarchical architectures are 

presented in Section 3.3. Section 3.5 addresses the problem of task scheduling and resource 

allocation in cloud environments. Section 3.4 summarizes this chapter. 

3.2.  VM Consolidation based on Live Migration 

An important mechanism to allocate resources to the virtual machines (VMs) in a data center is 

live migration. Live migration is a costly operation that consumes network bandwidth and energy. 

The problem of VM consolidation and mapping with physical machines (PMs) need to address the 

issues: a) when to start the VM live migration process, b) which PM is targeted as a source for VM 

live migration, c) which VMs need to migrate from selected, which is the destination PM to placement 

the selected VMs. These issues that pose an optimization problem have been addressed from the 

different research works. 

There are several approaches that have addressed the VM consolidation process through live 

migration. 

Wood et al. [44] propose a system called Sandpiper to detect overloading physical machines and 

creates a new mapping of physical to virtual resources, resizing virtual machines, and initiating 

migrations. To detect overloaded physical machines, the Sandpiper collects the usage statistics for 
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VM and PM and based of them create a mirror of resource usage, and then applied the prediction 

techniques. 

Beloglazov and Buyya [21], propose an adaptive heuristic for dynamic consolidation of VMs based 

on the statistical analyses of the historical data. To detect whether the physical machine is 

overloaded or underloaded they used lower and upper thresholds. Methods that are used for host 

overloading are Median Absolute Deviation, Interquartile Range, Local Regression and Robust Local 

Regression. To select VMs to migrate from overloaded and underloaded host they propose three 

policies:  The Minimum Migration Time Policy, The Random Choice Policy, and The Maximum 

Correlation Policy. Whereas, for the VM placement is used the Power Aware Best Fit Decreasing 

(PABFD). This algorithm is a modification of the Best Fit Decreasing (BFD) algorithm. The primary 

focus of their work was only to reduce energy consumption and do not consider other performance 

metrics. 

Murtazaev and Oh [33] propose an algorithm for server consolidation called Sercon to minimize 

the number of used servers and number of migrations. Sercon considers a threshold value so that 

the CPU’s physical machine not to reach 100% of the utilization that leads to performance 

degradation. This algorithm migrates VMs from the least loaded nodes to the most loaded ones. 

Sercon inherits some characteristics of well-known heuristic algorithms for bin-packing problems, 

such as First-Fit and Best-Fit. From the results, it can be concluded that the proposed algorithm is 

scalable for middle-sized data centers.    

      Feller et al.  [34] propose a fully decentralized dynamic VM consolidation scheme based on an 

unstructured peer-to-peer (P2P) network of physical machines to address the scalability and packing 

efficiency issues. This scheme uses a dynamic topology that is built by periodically and randomly 

exchanging neighbourhood information among physical machines. The VM consolidation operates 

only within the scope of the neighbourhoods where the system can scale with an increasing number 

of PMs and VMs, without having to require the global system knowledge. In this regard, another 

contribution is the modelling of a migration-cost aware ACO-based dynamic VM consolidation 

algorithm, which focuses on minimizing the number of PMs, and the number of migrations required 

to move from one machine to another. 

Khanna et al. [46] propose an approach for dynamic consolidation of VMs based on live migration. 

Their approach for host overload detection is also based on resource usage exceeding a threshold 

value. Their goal is to minimize the number of hosts by maximizing the variance of resource capacity 
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residuals. This is achieved by ordering VMs in non-decreasing order of their resource usage and 

migrating the least loaded VM to the least residual resource capacity host. 

Beloglazov et al. [19] propose energy-aware heuristic algorithms for dynamic allocation of VMs 

to hosts based on live migration. They decide on the overload or underload state of a host based on 

whether the CPU usage is higher or lower than the overload or underload thresholds, respectively. 

The authors apply a modified Best-Fit- Decreasing (BFD) heuristic to pack VMs to fewer hosts, which 

considers the power increase of hosts. 

Gong and Gu [47] propose a dynamic consolidation approach called Pattern-driven Application 

Consolidation (PAC) based on extracting patterns of resource usage called signatures using signal 

processing approaches such as Fast Fourier Transform (FFT) and Dynamic Time Warping (DTW). 

Based on extracted signatures, they perform dynamic placements of VMs to the hosts that have the 

highest match between VM resource usage signature and host free capacity signature. Their work 

focuses on periodic global consolidation for VM resource usage patterns that show periodicity. The 

authors also consider on demand VM migrations for instantaneous overloads, but in contrast to our 

approach, they base overload detection on a single resource usage value exceeding a static threshold. 

Andreolini et al. [48] propose an approach for host overload detection in which a host is declared 

as overloaded when there is a substantial change in the load trend of the host, as a result of applying 

the CUSUM algorithm. Their goal is similar to the goal of our work for providing a robust and stable 

approach avoiding unnecessary live migrations, but their load change point detection requires past 

history usage data to be available, at which point the SLA violations have already happened. In 

contrast, our approach applies long-term prediction to avoid violations before they happen. 

Esfandiarpoor et al. [110] propose a VM consolidation approach for virtualized data centers in 

order to reduce energy consumption, by addressing structural features such as racks and network 

topology of the data center in cloud environments. Their model initially improved the existing VM 

placement algorithm that is known as Modified Best Fit Decreasing (MBFD) by proposing new 

algorithms named OBFD, Place VMs Rack by Rack (RBR), Place VMs in Non-Underutilized Rack (NUR), 

and Hybrid of Server and Rack Consolidation (HSRC). To minimize the energy consumption the 

intention is to turn off the routers with low traffic or idle routers and cooling equipment. From the 

experimental results, the proposed algorithms OBFD, RBR, NUR, and HSRC save up to 1.6%, 11.8%, 

12.5% and 14.7% energy, respectively, compared to an existing MBFD algorithm.        
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Yadav et al. [112] propose an energy-aware dynamic VM selection algorithm to consolidate VMs 

from overloaded or underloaded physical machines in order to minimize the energy consumption, to 

reduce the SLAs violation and to maximize the Quality of Service (QoS). The algorithm named MuMs 

(Maximum Utilization Minimum Size) for the VM selection scheme, where selects VMs from 

overloaded or under-loaded PM and migrated to the other PM with sufficient capacity. Therefore, 

the VM with the highest utilization of the CPU is selected which is divided by the total size of the RAM 

allocated to this VM. To estimate the efficiency of the algorithm, several metrics are used: total 

energy consumption, SLA violation, number of migrations, and number of hosts shutdown. The 

MuMs algorithm is implemented in the CloudSim simulator and is compared with state-of-the-art 

algorithms such is Median Absolute Deviation (MAD), Linear Regression (LG), and Inter Quartile 

Range (IQR). 

Yadav et al. [109] propose adaptive heuristic algorithms, named Least median square Regression 

(LmsReg) for overloaded PM detection and Minimum utilization Prediction (MuP) for VM selection 

of overloaded PMs. The LmsReg algorithm aims to minimize energy consumption and avoid SLA 

violation. The upper CPU utilization threshold is determined based statistical analyses of the past CPU 

utilization of the PMs. The variability of CPU utilization directly affects the upper CPU utilization 

threshold, and if this variability is small then CPU utilization reaches 100% utilization, therefore this 

leads to SLA violation. To find an optimal solution a robust regression technique is used, which is 

robust and reliable for dynamic environments.  The MuP policy works in such a way that the selection 

of VM is determined depending on CPU utilization over the period of time. So, select a VM who’s CPU 

utilization is less than the other VMs on same overloaded PM. This policy greatly reduces SLA 

violation and performance degradation at the migration process. The algorithms are evaluated with 

real CPU utilization data of heterogeneous PMs for metrics as energy consumption, SLA violation, the 

number of host shutdown, number of VMs migrations, and performance ratio metric. LmsReg and 

MuP are compared with other existing algorithms for overloaded PM detection such as Median 

Absolute Deviation (MAD), Linear Regression (LR), Inter Quartile Range (IQR) and VM selection, such 

as Minimum Migration Time (MMT), Maximum Correlation (MC) and Minimum Utilization (MU). The 

results are generated by the CloudSim simulator and show that the proposed algorithms perform 

better than other existing algorithms that are taken for comparison.      

Fard et al. [114] developed a VM selection policy to decrease the number of migrations during 

the live migration process, in order to prevent performance degradation. The proposed VM selection 
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policy named Maximum Fit (MF) calculates the deviation between the utilization of overloaded PMs 

and its threshold and through binary search tends to find a VM on the PM in which the utilization is 

close to the deviation. The implementation of the algorithm is performed on the CloudSim simulator 

and PlanetLab data. They showed that their VM selection policy performs better than existing VM 

selection policies Minimum Migration Time (MMT) and Local Regression (LR).   

Wang and Tianfield [115] propose two approaches regarding dynamic VM consolidation (DVMC) 

in order to reduce energy consumption without compromising the SLA. One proposed approach is a 

VM selection policy known as high CPU utilization-based migration VM selection (HS), and another 

approach is a VM placement policy named Space Aware Best Fit Decreasing (SABFD). The HS policy 

sort VMs based on their CPU utilization in decreasing order and the VM with the highest CPU 

utilization in the overloaded PM will be selected first to migrate. The migration of VMs with the 

highest CPU utilization will continue until the PM becomes non-overloaded. In addition, the SABFD 

policy first sorts VMs based on their CPU utilization in decreasing order. The PMs that have enough 

resources in MIPS (millions of instructions per second) will be estimated for the first VM. The PM with 

the minimal available resource in MIPS after the VM is placed in will be selected to migrate this VM 

to. The process repeats until all the VMs have migrated. This VM placement policy for migrating VMs 

to the destination PMs contributes to decreasing the number of migrations and PM shutdowns, and 

this leads to energy saving. The results show that through the HS policy the energy consumption is 

lesser than the well-known VM selection policy MMT (Minimum Migration Time) [21], while the SLA 

violation metric was higher than MMT. In addition, the results show that SABFD policy performs 

better than well-known VM placement policy PABFD (Power Aware Best Fit Decreasing) [21] on both 

energy consumption and SLA violation metrics.  

Liu et al. [116] developed an approach based on Ant Colony System (ACS) algorithm for allocating 

the VMs in the minimum number of active PMs in order to reduce energy consumption in data 

centers. The authors also developed an order exchange and migration (OEM) mechanism for the ACS 

named OEMACS algorithm, to meet the needs of both homogeneous and heterogeneous physical 

machine environments. According to this approach, the structure of VMs is constructed by artificial 

ants based on global search information. OEMACS distributes pheromone between VM pairs that 

indicates a bond among the VMs on the same PM and record suitable VM groups through learning 

from historical experience. The OEMACS algorithm is efficient for large-scale problems and by 

experiments it is seen that this algorithm performs well in minimizing the number of active PMs, 
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improving the resource utilization, load balancing between resources, and reducing power 

consumption.   

Moghaddam et al. [113] propose an energy-aware VM selection policy for CPU load balancing, in 

order to minimize the number of migration and to reduce the SLA violations. The VM selection policy 

using the hybrid load balancing model considers the CPU utilization of the VMs on each PMs and 

linear correlation between the CPU usage of the VMs. The intention is to design an optimal policy 

that selects the appropriate VMs for migration in order to decrease the time of migration, the 

number of overloaded and under-loaded PMs and to reduce the energy consumption and SLA 

violations. To evaluate the performance of the proposed VM selection policy several metrics are 

used, such is the total energy consumed by PMs, the total SLA violations, the ESV metric that is 

expressed as production between energy consumption and the SLA metric, and the total number of 

VM migrations.        

There are several works that apply prediction techniques and algorithms for resource allocation in 

cloud infrastructure.  

Bobroff et al. [50] proposes a dynamic server consolidation and migration algorithm by combining 

time series forecasting and bin packing heuristic techniques to minimize the number of physical 

machines. The proposed algorithm called Measure Forecast Remap (MFR) dynamically remaps VMs 

to PMs in order to minimize the number of PMs required to support a workload at a specific rate of 

SLA violations. From the experiments, it is evident that the proposed MFR algorithm achieves a 

significant reduction in resource consumption, up to 50% compared with static allocation 

approaches.  However, the MFR algorithm does not treat the number of migrations required to a 

new VM placement. 

Prevost et al. [68] propose a framework combining the load demand prediction and stochastic 

state transition models in order to optimize cloud resource allocation by minimizing energy 

consumed. They used neural network and autoregressive linear prediction algorithms to forecast 

loads in cloud data center applications. To predict the host utilization, they used statistical and neural 

network. 

Di et al. [67] propose a prediction method based on Bayes model to predict a mean load over a 

long-term time interval. The prediction principle of the model combines the mean load over a future 

time interval, up to 16 hours and mean load over consecutive future intervals that are referred to as 
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a pattern. The Bayesian prediction is based on some important properties, which include the 

expectation, predictability, trends, and pattern of physical machine load. The improvement of the 

predictive power of a Bayesian model for physical machine load prediction is done by looking at 

whether the above properties are complementary to each other. They have evaluated their method 

using Google data centers traces for one month with thousands of machines, where the Bayes 

method outperforms other techniques that are taken for comparison by 5.6-50 % in long-term 

prediction.  

Gong et al. [51] and later Shen et al. [52] proposes an approach for VM fine-grained resource 

allocation based on resource demand prediction. They base their resource demand prediction on two 

methods: a) Fast Fourier Transform to find periodicity or signature of resource demand and b) a state-

based approach using Markov chains. If they predict a conflict, they apply a live migration action to 

resolve it, considering the migration penalty. As the authors point out, using a multi-step Markov 

model to predict further into the future lowers the prediction accuracy. 

Islam et al. [53] proposes resource prediction approaches based on machine learning. More 

specifically, they propose and experiment with Linear Regression and an Error Correction Neural 

Network. They show experimentally the superiority of the neural network in making more accurate 

predictions, but they do not apply their techniques to host overload detection or in general for VM 

resource allocation. 

Khatua et al. [54] proposes an approach for VM load prediction several time steps into the future 

by applying an Auto-regressive Integrated Moving Average (ARIMA) model. They apply their 

approach for horizontal scaling in cloud settings. If an overload situation is detected, based on some 

threshold value, then the number of VMs is increased. Also, their approach does not consider the 

uncertainty and prediction errors in their model of long-term prediction, which is important for 

increasing the quality of allocation decisions. 

Qiu et al. [55] propose an approach for VM load prediction based on a deep learning prediction 

model. More specifically, this model is composed of two layers, the Deep Belief Network (DBN) and 

a regression layer. The DBN is used to extract the high-level workload features from the past VM 

resource utilizations, while the regression layer is used to predict the future load values. The authors 

evaluate experimentally only the prediction accuracy of the approach, but do not apply it on any VM 

resource allocation problem. 
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3.3.  VM Consolidation based on Hierarchical Architectures 

To increase the physical machine utilization and power efficiency of data centers, a hierarchical 

architecture is needed.  

Some authors have investigated the use of hierarchical architecture for VM consolidation. 

Jung et al. [58] have proposed a holistic controller framework called Mistral that optimizes power 

consumption and overall performance. The authors argue that Mistral can be configured as a multi-

level hierarchical controller to allow the management of large-scale systems. This approach has dual 

objectives; power and performance, and to use both of them the framework uses a utility-based 

model. They assumed a set of distributed applications to be managed with multiple tiers of 

components. Each tier may have some replicas that reside inside VMs running on the PMs, with one 

replica for VM. Each application is associated with a set of transaction types, through which the users 

access its services. Mistral controllers are activated to determine which VM should reside on PM and 

how much CPU it should receive. In addition, a system configuration consists of the set of VMs, the 

PM on which VMs reside, and the CPU fraction allocated to them. According to the experiments, the 

authors conclude that Mistral provides better overall utility than existing controllers do. It is 

recommended that Mistral can be used as a multi-level hierarchical controller in large scale systems. 

Nurmi et al. [45] have proposed Eucalyptus, an open source cloud computing framework for VM 

creation and resource control in a hierarchical manner. The Eucalyptus architecture is hierarchical 

and composes of four high level components.  

Feller et al. [61] propose a scalable and fault tolerant VM management framework called Snooze. 

This framework uses a hierarchical architecture that is composed of three software components. A 

Local Controller (LC), who controls the physical machines. These local controllers are managed by a 

Group Manager (GM). Finally, at the high tier of the architecture is a Group Leader (GL), who 

distribute VM requests from the users between the GMs. As well, Snooze supports a power 

management and VM consolidation aspects.  

Farahnakian et al. [49] propose a distributed controller to perform dynamic VM consolidation to 

improve the resource utilizations and to reduce the energy consumption. They used an ant colony 

system to optimize VM placement. The VM consolidation problem treated as one-dimensional bin 

packing problem. 



58 

 

Farahnakian et al. [56] have proposed an architecture based on multi-agent systems for dynamic 

VM consolidation. The authors split the problem of dynamic consolidation into two subproblems, 

namely host status detection and VM placement optimization. This two-level architecture uses a local 

agent for each host, which detects when the host is overloaded through a reinforcement learning 

(RL) approach. Another agent called global agent has a supervisory role. It receives information from 

the local agent and takes decisions for the migration of VMs.  

Farahnakian et al. [57] propose a VM management framework based on multi-agent systems 

aimed to reduce SLA violations and power consumption. The agents, arranged in a three-level 

hierarchical architecture, are called global, cluster and local agents. A local agent is responsible for 

the resource usage of the host. To coordinate the local agents by respective clusters, a cluster agent 

is used, and a master node runs a global agent. 

Hwang et al. [65] have proposed a hierarchical resource management architecture for VM 

consolidation in order to improve the energy efficiency. The resource demands are modelled as 

random variables. Hierarchical resource architecture uses two managers; a global manager assigns 

VMs into a cluster, while a local manager deploys the VMs to PMs in the cluster. 

3.4.  Task Scheduling and Resource Allocation in Cloud Environments 

Several approaches have been presented to solve the problem of task scheduling in cloud 

environments. The general task-scheduling problem is NP-complete [76]. Thus, the research in this 

field focuses on finding low-complexity heuristics that perform well in the scheduling process.  

The task scheduling problem is generally divided into two categories: static and dynamic scheduling. 

In the static scheduling category, all information related to tasks such as execution and 

communication cost as well as the relationship between tasks is known in advance. In the dynamic 

scheduling category, such information in relation to tasks is not available and decisions are made at 

runtime [72].  

In general, static algorithms are grouped into two categories: Heuristic algorithms and Guided 

Random Search algorithms. Heuristic algorithms through polynomial time complexity produce 

approximate solutions, which are often good solutions. Guided Random Search algorithms also give 

approximate solutions, but here to improve the solution quality needs more iterations, so it makes it 

more costly than the heuristic algorithms [86]. 

The heuristic algorithms are grouped into three subcategories: list-scheduling algorithms, 
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clustering algorithms and duplication-based algorithms. Clustering algorithms are mostly used for 

homogeneous systems to form clusters of tasks that are assigned to processors.  

The duplication-based algorithms have higher time complexity (i.e., cubic) and the duplication of 

the execution of tasks and this leads to the higher processor power. Therefore, these algorithms are 

considered as not very practical.  

List-scheduling algorithms provide the most efficient schedules in relation to other categories. In 

this case, the scheduling algorithm has two phases: the prioritizing phase, in which priority is assigned 

to each task and a processor selection phase, in which the suitable processor is selected. If two or 

more tasks have equal priority, then a task is chosen randomly. 

There are many approaches by different researchers, and we will present some of them. 

El-Rewini and Lewis [87] propose a Mapping Heuristic (MH) scheduling algorithm that schedules 

program modules represented as nodes in a task graph with communication onto the target machine 

topology. MH performs ordering of tasks and then allocates them to the processor. MH handles the 

contention information, communication delay, the balance between computation and 

communication in multiprocessor systems. Compared with recently heuristic algorithms the MH 

algorithm has lower performance because MF only considers a processor ready when then it finishes 

the last task he has on the ordered list. The time complexity of the MH algorithm is , where 

v is the number of tasks and p is the number of processors. 

Dynamic Level Scheduling (DLS) [88] is another compile-time scheduling heuristic algorithm, 

which considers inter-processor communication overhead when mapping precedence graphs onto 

heterogeneous processor architectures. DLS dynamically assigns task priority and match these tasks 

with processors at each step to eliminate shared resource contention. DLS estimates the availability 

of each processor if it is ready to perform any task and thus schedules a task to allocate to a currently 

busy processor. Processor selection is based on the Earliest Start Time (EST) parameter, which does 

not guarantee the minimum completion time for a specific task and this is a weakness of the 

algorithm. DLS does not address the idle time between two tasks that are scheduled to be processed 

on the same processor. The time complexity of the DLS algorithm is , where v is the number 

of tasks and p is the number of processors. 

Iverson et al. [89] propose a heuristic algorithm called Levelized Min-Time (LMT) Algorithm. The 

approach is built in two phases. In the first phase, the problem of mapping and scheduling of the 

precedence constraints is divided into a series of non-precedence constraints sub-problems. This 

2( )O v p×
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process is known as level sorting. In the second phase, are treated individually sub-problems from 

the first phase. The approach that makes this process is called a Min-Time algorithm. The first and 

second phase together forms the LMT algorithm. The time complexity of the LMT algorithm is 

, where v is the number of tasks and p is the number of processors. 

Another static scheduling heuristic algorithm for heterogeneous processors is called Best 

Imaginary Level (BIL) [90]. BIL defines a static level of a node incorporating the effect of inter-

processor communication overhead and processor heterogeneity. The algorithm has the target to 

minimize the scheduling length (makespan) of the input task graph. The BIL algorithm offers an 

optimal solution for linear task graph. The time complexity of the BIL algorithm is , 

where v is the number of tasks and p is the number of processors. 

Radulescu and van Gemund [91] present two static list-scheduling approaches called Fast Load 

Balancing (FLB) and Fast Critical Path (FCP). The priority of tasks in these two approaches is assigned 

dynamically or statically. The weaknesses of the FLB and FCP algorithms are that they make poor 

scheduling for irregular task graphs and large processor speed variance. 

Topcuoglu et al. [92] [86] have proposed two low-complexity heuristic algorithms for scheduling 

DAGs tasks on a bounded number of heterogeneous processors called Heterogeneous-Earliest-

Finish-Time (HEFT) and Critical-Path-on-a-Processor (CPOP). The HEFT algorithm has two phases: a 

task prioritizing phase, which defines the priority of all tasks, and a processor selection phase which 

selects tasks depending on their priority and schedules them on a suitable processor. The CPOP 

algorithm has two phases: a task prioritizing and processor selection phase like the HEFT algorithm, 

but CPOP algorithm uses a different strategy to set the priority of tasks and to determine the suitable 

processor for each selected task. The time complexity for the HEFT and CPOP algorithms is  

, where v is the number of tasks and p is the number of processors. The HEFT algorithm is one the 

best algorithms in the group of list scheduling heuristic algorithms for task scheduling. 

A list scheduling heuristic algorithm for a bounded number of heterogeneous processors is called 

Heterogeneous Critical Parent Trees (HCPT) [93]. The HCPT algorithm uses a mechanism to construct 

the scheduling list L instead of assigning priorities to the tasks. The algorithm divides the task graph 

into a set of unlisted-parent trees. The root of each unlisted-parent tree is a critical node (CN). HCPT 

consists of two phases: listing tasks and machine assignment. To evaluate the HCPT algorithm, a large 

set of application graphs are used that are generated randomly with varying characteristics based on 

2 2( )O v p×
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real world problems, such as Gaussian elimination, and molecular dynamic code. HCPT algorithm 

guarantees better scheduling results than FLB, DLS and CPOP, which are explained in this section. The 

time complexity of the HCPT algorithm is , where v is the number of tasks and p is the 

number of processors.     

Ilavarasan et al. [94] propose a task scheduling algorithm for heterogeneous computing systems 

called High Performance task Scheduling (HPS). The HPS algorithm consists of three phases: level 

sorting, task prioritization, and processor selection. In the level sorting phase, the given task graph is 

traversed in a top-down fashion to sort task at each level in order to group the tasks that are 

independent of each other. So, tasks at the same level can be executed in parallel. In the task 

prioritization phase, for each task a priority is assigned and calculated through the attributes Down 

Link Cost (DLC), Up Link Cost (ULC) and Link Cost (LC) of the task. The DLC of a task represents the 

maximum communication cost among all the immediate predecessors of the task. The ULC of a task 

represents the maximum communication cost among all the immediate successors of the task. The 

LC of a task is the sum of DLC, ULC and maximum LC of all its immediate predecessor tasks. Based on 

LC values, at each level, the task with the highest LC value receives the highest priority, followed by 

the task with the next highest LC value and so on the same level. In the processor selection phase, 

the processor with minimum Earliest Finish Time (EFT) for a task is selected to execute the task [72]. 

Evaluation of HPS algorithm is performed for parameters such is makespan, speedup, efficiency and 

the scheduling time. The time complexity of the HPS algorithm is , where v is the 

number of tasks and p is the number of processors.     

Ilavarasan and Thambidurai [85] present another list scheduling for heterogeneous computing 

systems called low complexity Performance Effective Task Scheduling (PETS). The PETS algorithm as 

the HPS algorithm [94] explained above has three phases: level sorting, task prioritization, and 

processor selection. In the level sorting phase, the tasks are divided into levels and for each level, the 

tasks are independent, similar to HPS algorithm. In the task prioritization phase for each task is 

assigned and calculated priority through attributes Average Computation Cost (ACC), Data Transfer 

Cost (DTC) and the Rank of Predecessor Task (RPT). In the processor selection phase, the processor 

with minimum Earliest Finish Time (EFT) for a task is selected and assigned to execute the task. It also 

uses an insertion-based policy for a task scheduling in an idle slot between two previously scheduled 

task on a given processor [72]. The performance of the PETS algorithm has been evaluated based on 

well-known problems such as LU decomposition, Fast Fourier Transformation, and Molecular 

2( )O v p×
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Dynamics code, and is tested for average schedule length ratio, speedup, efficiency and running time 

metrics. The results have shown that the PETS algorithm performs better than LMT, CPOP and HEFT 

algorithms. The time complexity of the PETS algorithm is , where v is the number of 

tasks and p is the number of processors.     

Daoud and Kharma [95] present a static list-based scheduling algorithm for heterogeneous 

distributed computing systems called Longest Dynamic Critical Path (LDCP). LDCP addresses the fact 

that a single DAG may have more than one critical path, if scheduled on more than one non-identical 

processor. The LDCP algorithm consists of three phases: task selection, processor selection and 

update status. In the task selection phase, the algorithm first identifies a set of tasks that have a key 

role in determining the provisional schedule length, then for each processor at the beginning of the 

scheduling process has constructed a directed acyclic graph that corresponds to a processor. In the 

processor selection phase, using the insertion-based policy, the selected task is assigned to a 

processor in order to minimize its finish execution time. In the update status phase, when a task is 

scheduled on a given processor, the status of the system must be updated in order to reflect the new 

changes. During the calculation in the algorithm is neglected the communication cost overhead 

between the tasks that are scheduled on the same processor. The LDCP algorithm is compared with 

two other algorithms HEFT and DLS, which are explained in this section, and the results show that 

LDCP algorithm performs better than HEFT and DLS in terms of normalized schedule length and 

speedup. The time complexity of the LDCP algorithm is , where v is the number of tasks and 

p is the number of processors. 

Bittencourt et al. [96] propose a scheduling algorithm an improvement version of the HEFT 

algorithm called Lookahead. The algorithm takes an improvement for HEFT to provide more 

information in the scheduling decision-making process before allocating each task. The first approach 

of the Lookahead algorithm is the use of lookahead information from the task graph in order to 

minimize the estimated finish time of the children of the task being scheduled. The second approach 

tackles the priority task list, changing the order of the scheduled tasks in order to see which order 

gives a better-estimated finish time. The Lookahead algorithm has the same structure as HEFT but 

computes the estimated finish time metric for each child of the current task. In addition, the 

Lookahead algorithm satisfies improvements in cases where the communication cost is higher with 

respect to computation. From simulated experiments of the Lookahead algorithm, it is evident that 

the algorithm provides shorter makespan up to 20% on average. The time complexity of the 

2( ( log ))O v p v×
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Lookahead algorithm is where v is the number of tasks and p is the number of processors. 

Arabnejad and Barbosa [72] propose a list-scheduling algorithm for heterogeneous computing 

systems called Predict Earliest Finish Time (PEFT). PEFT algorithm compared to state-of-the-art 

algorithms has a look ahead attribute which does not increase the time complexity. The algorithm is 

based on an Optimistic Cost Table (OCT) which is used for rank tasks and for processor selection. The 

OCT is the matrix where the rows indicate the number of tasks and the columns indicates the number 

of processors. Values from the cost table are used in the processor selection phase. PEFT adds to 

Earliest Finish Time (EFT) the processing time stored in the cost table for the pair (task, processor). 

All the processors are tested, and the one that has the minimum value is selected. To set the task 

priority must be computed the average OCT for each task over all processors. The results show that 

the PEFT algorithm performed better than state-of-the-art quadratic algorithms in terms of the 

schedule length ratio, efficiency and frequency of the best results, and offers the lowest quadratic 

time complexity. The time complexity of the PEFT algorithm is , where v is the number of 

tasks and p is the number of processors.     

    Parsa and Entezari-Maleki [77] propose a task-scheduling algorithm called RASA (Resource 

Aware Scheduling Algorithm) that takes the scalability characteristics of resources into account. RASA 

is compared with two well-known scheduling algorithms, Max-Min and Min-Min, making use of their 

advantages and avoiding their disadvantages. Initially, RASA estimates the completion time of the 

task on each of the available computing resources and then applies Min-Min and Max-Min 

algorithms. For executing small tasks before large tasks, the RASA uses Min-Min strategy, and to 

avoid delays in the execution of large tasks and to ensure concurrency in the execution small and 

large tasks, RASA uses Max-Min strategy. RASA is more efficient in task scheduling and achieves 

better load balancing.  

To achieve better results than RASA, an improved version of the Max-Min algorithm has been 

proposed by Elzeki et al. [78]. Their improved Max-Min algorithm is based on the expected execution 

time as a basis for selecting tasks instead of completion time. This approach has resulted in better 

load balancing and smaller makespan than other algorithms used for comparison. 

Canon et al. [84] have analyzed 20 static makespan-centric Directed Acyclic Graph (DAG) 

scheduling heuristics by investigating how robustness and makespan are correlated. The authors 

have addressed the issue whether dynamically changing the order of the tasks on their processors 
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can improve robustness. The twenty heuristic algorithms that are analysed, in alphabetical order, are 

BIL, CPOP, DPS, Duplex, FCP, FLB, GDL, HBMCT, HCPT, HEFT, k-DLA, LMT, MaxMin, MCT, MET, 

MinMin, MSBC, OLB, PCT, WBA. From the evaluation of the algorithms above are derived some 

conclusions such as: it is better to respect the static order of the tasks on the processors than to 

change this order of the tasks dynamically; the robustness and makespan attributes are correlated, 

and in this case static scheduling tends to be the most robust; algorithms such as HEFT, HBMCT, GDL, 

PCT, are among the best for makespan and robustness. 

To schedule large-scale workflows with various QoS parameters, Chen and Zhang [81] have 

proposed an Ant Colony Optimization (ACO) algorithm. According to this approach, the users can 

specify their QoS preferences and determine the minimum QoS thresholds for a given application. 

The basic parameters of QoS, which are addressed in this model, are reliability, time and cost. The 

objective of the proposed ACO algorithm is to find a suitable scheduling plan that satisfies all user 

defined QoS parameters. The model consists of seven instance-based heuristics that guide the search 

behaviour of ants, and an adaptive scheme to manage these heuristics.       

Hu et al. [79] have proposed a probability dependent priority algorithm to determine the 

allocation strategy that requires the smallest number of physical machines to execute tasks. The 

model considers the processing of interactive jobs only, where jobs usually have small processing 

requirements and needed good response time performance. The number of physical machines 

required is affected by the resource allocation and job scheduling strategy within the application 

environment. In this model, the Service Level Agreement (SLA) is based on response time distribution 

that is more relevant than the mean response time in terms of performance requirements of 

interactive applications.   

Pandey et al. [80] have proposed a scheduling strategy based on a Particle Swarm Optimization 

(PSO) algorithm to schedule applications to cloud resources that tackle both computation cost and 

data transmission. They used heuristics to minimize the total cost of execution of application on cloud 

environments. The algorithm was compared with the existing heuristic algorithm ’Best Resource 

Selection’ (BRS) where PSO can achieve three times cost savings compared to BRS, and the best 

distribution of the workload to resources. This approach can be used for a variety of tasks and 

resources by increasing the dimension of the particles and the number of resources.  

Byun et al. [82] have proposed an architecture for the automatic execution of large-scale 
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workflow applications on dynamically and elastically provisioned computing resources. A heuristic 

algorithm named Partitioned Balanced Time Scheduling (PBTS) is proposed that estimates the 

optimal number of resources to execute a workflow within a user-specified finish time. The algorithm 

also generates a task to resource mapping and is designed to run online. This approach treats the 

elasticity of the cloud resources but does not consider the heterogeneity of computing resources by 

assuming there is only one type of VM available.   

Malawski et al. [69] have addressed the issue of efficient management under budget and deadline 

constraints on Infrastructure-as-a-Service (IaaS) clouds. They propose various static and dynamic 

strategies for both task scheduling and resource provisioning. The three algorithms that are proposed 

are: a) Dynamic Provisioning Dynamic Scheduling (DPDS), which is an online algorithm that provisions 

resources and schedules task runtime. DPDS consists of two main phases: a provisioning procedure 

that based on resource utilization, and a scheduling procedure; b) Workflow-Aware DPDS (WA-

DPDS), which is an extended version of the DPDS algorithm by introducing a workflow admission 

procedure. WA-DPDS compares the current cost and remaining budget, tackles the cost of the 

currently running VMs, and the cost of workflows that have been admitted; c) Static Provisioning 

Static Scheduling (SPSS), in contrast to the above algorithms, the SPSS algorithm creates a 

provisioning and scheduling strategy before running any workflow tasks. From the results, it is 

evident that an admission procedure based on workflow structure and the task’s estimated execution 

time can improve the quality and performance. Their work considers only a single type of virtual 

machines (VM) and does not treat heterogeneity of IaaS clouds. 

Rodriguez and Buyya [83] have proposed a resource provisioning and scheduling strategy for 

scientific workflows in cloud infrastructures, specifically in the Infrastructure-as-a-Service (IaaS) 

model. The authors have modelled this strategy through a static cost-optimization, meta-heuristic 

optimization technique, Particle Swarm Optimization (PSO), to optimize the total execution cost 

while meeting deadline constraints. The algorithm considers the fundamental principles of the IaaS 

cloud such as pay-as-you-go model, heterogeneity, elasticity, dynamic provisioning of computing 

resources, performance variations, and VM boot time parameters. 

Mittal and Katal [98] have proposed a task-scheduling algorithm that builds upon the advantages 

of the state-of-the-art algorithms considering the distribution and scalability characteristics of cloud 

resources, named as Optimized Task Scheduling Algorithm (OTSA). The algorithm distributes the 

tasks over the resources in an appropriate manner to gain the lower value of the makespan metric. 
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The OTSA is compared to some of the existing algorithms such as Min-Min, Max-Min, RASA, Improved 

Max-Min, and Enhanced Max-Min, and from the results show that the OTSA algorithm in most cases 

performs better than other algorithms.         

Liu et al. [99] have proposed a task-scheduling algorithm based on Genetic and Ant Colony 

Optimization algorithm in the cloud environments. This approach is a combination of Genetic and 

ACO algorithms (GA-ACO) in order to get the best result of task scheduling and takes less time. The 

focus of the GA-ACO algorithm is as follows. At the beginning of the task scheduling process, it takes 

advantage of a genetic algorithm’s global search ability, and forms chromosome by indirect encoding. 

Then, through the fitness function, the reciprocal of the task completion time is chosen. After the 

selection, crossover and mutation, the optimal solution is generated and convert this solution into 

ACO’s initial pheromone, and in this way, the optimal solution of the task scheduling is generated. 

From the simulation results, it is seen that the integration of GA and ACO is useful to solve the task 

scheduling problems in cloud environments, and efficiently improves the searching of the algorithm.   

Cui and Xiaoqing [97] have proposed a workflow task-scheduling algorithm in cloud environments 

based on genetic algorithm. In this algorithm, the priority of each task is assigned by an up-down 

levelling method, where all workflow tasks are divided into the different levels that enable the 

parallel execution of workflow tasks.  The task-scheduling problem is addressed in two dimensions. 

First, a new genetic crossover is designed, and secondly a mutation operation to produce new 

different offspring for increasing the population diversity. The evaluation of the individual fitness of 

the population realized through the fitness function synchronously considering the scheduling time 

and the scheduling cost. The simulation results show that the proposed algorithm offers better 

performance in reducing the workflow scheduling cost. 

Gawali and Shinde [100] proposed a heuristic approach for task scheduling and resource 

allocation in cloud computing environments. Their approach combines the Modified Analytic 

Hierarchy Process (MAHP), Bandwidth Aware divisible Scheduling (BATS) + BAR optimization, Longest 

Expected Processing Time pre-emption (LEPT), and divide-and-conquer methods. Through the MAHP 

process, each task is processed before its actual allocation to cloud resources. The resources are 

allocated using the combined BATS plus Bar optimization methods and consider the bandwidth and 

load of cloud resources as constraints. The proposed model moreover pre-empts resource intensive 

tasks using LEPT pre-emption. To improve the model more, the divide-and-conquer approach is used, 

where the improvement it is seen from the experiments by comparing with existing BATS and 
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Improved Differential Evolution Algorithm (IDEA) frameworks applied to performance metrics as 

turnaround time and response time. Finally, the proposed approach in terms of resource utilization 

enables efficient resource allocation with high utility. Maximum utilization is achieved for computing 

resources such as CPU, memory, and bandwidth, where it differs from other existing approaches that 

consider only the CPU and memory.   

Bryk et al. [111] addressed the area of workflow ensemble scheduling algorithms under cost and 

deadline constraints in IaaS clouds, with a focus on file transfers between workflow tasks which have 

a large impact on workflow ensemble execution. They developed and implemented a global storage 

model for transferring files between tasks. The model enables to calculate the bandwidth dynamically 

and supports a configurable number of replicas, allowing to be tested for various levels of congestion 

in the system. The paper also addresses the issue of how file transfers affect the execution of 

scientific applications.  It is evident that some applications, for example, the Google Cloud Storage 

may spend up to 90% of their execution time on file transfers. Also, caching files in local VM storage 

should be considered where some applications indicate caching ratios greater than 50%.  

Tsai et al. [137] provided an approach to optimize the problem of task scheduling and resource 

allocation using a differential evolution algorithm. The proposed algorithm, called improved 

differential evolution algorithm (IDEA), focuses on the cost and time model in the cloud environment. 

In the cost model, the costs of processing and receiving subtasks are calculated, whereas for the time 

model the time for waiting, receiving, and processing are included, excluding the variations of tasks 

which are not covered. 

Maguluri and Srikant [138] proposed a throughput optimal load balancing and scheduling 

algorithm for a cloud data center with the assumption that the job sizes are unknown in the 

beginning, however, more information becomes available later. Knowing that each job requests a 

certain amount of resources, such as CPU, memory, disk space and more, these jobs need to be 

scheduled non-preemptively on physical machines. However, although the job sizes are unknown, 

the algorithm does not waste the resources, only in cases when the job sizes have high variability, 

then the resource wastage is high. The algorithm works when the job sizes are not bounded, when 

they are geometrically distributed. The proposed algorithm is non-preemptive, so these types of 

algorithms are more difficult to address because the state of the system for different time intervals 

is coupled. 
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Cheng and Wang [139] proposed an energy-saving task scheduling algorithm for cloud 

environments, which is based on the vacation queuing model. The authors have used the vacation 

queuing model to schedule tasks in heterogeneous cloud environments, taking into account the 

change in the state of a compute node, latency during the process of transition of states, and the 

different energy consumption parameters. The algorithm is based on similar tasks. However, this 

approach does not promise to ensure proper utilization of resources.   

Lin et al. [140] proposed a task scheduling algorithm considering the bandwidth resource, based 

on a nonlinear programming model. Algorithm named as Bandwidth-Aware Task-Scheduling (BATS) 

is a heuristic algorithm for divisible load scheduling to solve the bounded multi-port model. The 

model allocates an appropriate number of tasks to each VM including CPU, memory, and network 

devices. The task scheduling problem based only on CPU and memory resources without the 

bandwidth resource is not a sustainable solution, because due to the insufficiency of the network 

bandwidth it can result in waste of resources. Based on experimental results the BATS algorithm 

performs well in decreasing the execution time and is convenient for scheduling task in bandwidth-

bounded cloud environments.   

Liu et al. [141] proposed a parallel task scheduling algorithm which is an extension of the first-

come-first-serve (FCFS) technique, named aggressive-consolidation-based first-come first-serve 

(ACFCFS) algorithm. The algorithm uses the parallel workload consolidation which includes parallel 

workloads of different PMs from the set of PMs in order to improve resource utilization. To organize 

VMs, the method of two-tier processor partition for parallel workload consolidation is used. This two-

tier method divides the CPU into two priorities, one with high CPU priority and the other with low 

CPU priority, and both VM groups are mapped to one processor.  

The performance of tasks that run on VMs with high CPU priority is close to the tasks that run on 

dedicate processors, whereas the idle CPU cycles perform well on tasks that run on VMs with low 

CPU priority. In the ACFCFS algorithm, users must specify a task’s process number and the CPU 

utilization values. Also, as an extended version of the existing FCFS algorithm, the ACFCFS algorithm 

retains all the advantages of FCFS, such as no requirements for a task’s runtime estimation, no 

starvation, no task migration, and is easy to implement.  

Experimental results show that this algorithm is robust in terms of evaluating CPU usage in parallel 

processes and CPU cycles.  
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Keshk et al. [142] proposed a task scheduling policy as an improved adaptation of the ant colony 

technique for the problem of load balancing. The Ant Colony Optimization (ACO) technique uses 

random optimization search, so it is a reasonable technique for a cloud environment for allocating 

the incoming tasks to VMs. This algorithm known as a Modified Ant Colony Optimization for Load 

Balancing (MACOLB) aims to balance the system workload and to minimize the makespan for tasks 

in the given set. The load balancing factor in MACOLB is a key feature to ensure a lower degree of 

imbalance in the system, hence it contributes to overall performance gain. However, the proposed 

approach does not address the availability of resources and the weight of tasks.   

Shamsollah et al.  [143] proposed a model for scheduling physical machine load based on a multi-

criteria approach. The model takes into account several criteria with different priorities for allocating 

processor load fractions. This approach is built on Analytical Hierarchy Process theory (AHP), which 

is recognized as an adequate method for the scheduling problem, as a problem based on priorities 

and with variable parameters over time. AHP as a decision-making method and with a multi-criteria 

attributes consists of three levels: objective level, attributes level, and alternatives level.                       

However, the proposed approach does not provide satisfactory optimization because makespan is 

defined under priority conditions and is different over time. 

Goudarzi et al. [144] proposed a resource allocation approach in order to reduce power 

consumption and migration cost in a cloud infrastructure, assuring that SLA criteria are met at the 

client-level under probability considerations. A penalty is charged to the provider’s system if the 

client’s requirements are not fulfilled, limited to a specific upper ceiling to perform the service in 

accordance with the terms of the SLA. Addressing the resource allocation problem specifically in VM 

placement, an algorithm based on convex optimization and dynamic programming is used. 

Experimental evaluation shows that incorporating the SLA in an effective VM placement phase results 

in lowering of the operating costs in a cloud environment.  

Ghanbari et al.  [145] addressed the load scheduling problem through a multi-objective 

optimization of divisible load to increase performance. The method enables to estimate the current 

computation rates of worker processors. 

The proposed approach based on a multi-level tree network-topology explores the effect of the 

multi-criteria method regarding payment, makespan, and utility, where the results show that the 

approach offered reduces the makespan, increase the utility, and optimizes the process of scheduling 

tasks in a cloud environment.    
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Radojevic and Zagar [146] proposed a model for load balancing in a cloud infrastructure which 

automates the scheduling of tasks and minimizes human intervention. The model incorporates 

virtualized resources and the experience of the end users in order to influence the decision for load 

balancing proactively. The model continuously monitors computing resources, including load 

balancers and applications in the physical machines, and based on the collected information, the 

decisions will be directed to the load balancers. However, the model has some drawbacks, such as 

the lack of an analysis of capabilities of nodes and the configuration parameters. Also, the system 

does not provide the backup process, which can result in a single point of failure.  

Zhu et al. [147] addressed the real-time task scheduling problem through the rolling-horizon 

architecture. In their approach, an energy-aware scheduling algorithm named as EARH is modeled 

for real-time, aperiodic, and independent tasks, in which the authors have incorporated rolling-

horizon strategy.  The EARH algorithm has integrated resource scaling up and scaling down strategies 

which adjust the active PM’s scale in order to meet the requirements of the task in real time and save 

energy. Experimental results show that the proposed approach improves the quality of scheduling 

for different workloads and aims to save energy in a cloud environment.   

 

 

3.5.  Summary 

This chapter has presented and discussed related work on cloud resource allocation. Research works 

were analyzed in these directions; the state of the art on the VM consolidation through live migration 

based on centralized architectures; the VM consolidation based on hierarchical architectures; and 

research work in task scheduling and resource allocation in cloud environments. 

By considering these approaches, we have identified the requirements that should be fulfilled in this 

thesis.                                         
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             4                                
Long-Term Predictions for Host 
Overload and Underload Detection 
in Cloud Infrastructures 

4.1.  Introduction 

One of the key mechanisms for dynamic resource allocation is live migration of VMs. Using live 

migration makes it possible to manage cloud resources efficiently by adapting resource allocation to 

VM loads, keeping VM performance levels according to SLAs and lowering energy consumption of 

the infrastructure. However, one problem to address in the context of live migration is to detect 

when a PM is overloaded or underloaded. 

Most of the existing approaches that address the problem of live migration are based on monitoring 

resource usage, and if the actual or the predicted next value exceeds a specified threshold, then a 

host is declared as overloaded. A problem with the existing approaches lies in that decisions about 

when a PM is overloaded or underloaded are made from a single resource usage value or a few future 

values, so this leads to improper decisions, unnecessary live migration overhead and stability issues. 

However, it should be noted that live migration is an expensive action which can lead to VM 

performance violations. A more promising approach is to base live migration decisions on resource 

usage predictions several steps ahead in the future. This increases stability by performing migration 

actions only when the load persists for several time intervals, but also allows cloud providers to 

predict overload states before they happen [38]. However, one should keep in mind that predicting 

further into the future increases the prediction error and the uncertainty and, in this case, it violates 

the advantages of long-term predictions.  

In this chapter, a new approach for PM overload and underload detection based on long-term 

resource usage predictions is presented. The following issues are specifically addressed: 
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o A new approach of dynamic resource allocation of VMs in cloud infrastructure is presented. 

It combines local and global VM resource allocations. Local resource allocation enables 

allocating CPU resource shares to VMs according to the current load, while global resource 

allocation enables live migration actions when a PM is overloaded and underloaded in order 

to mitigate VM performance violations and to reduce energy consumption.    

o Another issue that is presented is based on long-term resource usage predictions to detect 

when a PM is overloaded or underloaded. 

o In relation to the new approach of long-term resource usage predictions the uncertainty and 

VM live migration overheads are considered. 

 

4.2.  Resource Manager Architecture 

The resource manager architecture works on the principle of managing an IaaS cloud in which several 

VMs run on the physical machine. The overall architecture of the resource manager is shown in Figure 

4.1, consisting of a VM Agent, Host Agent and Global Agent.  

 
Figure 4.1: Resource manager architecture 

The tasks of each agent are described below [38]: 

• VM Agent: for each VM there is a VM Agent which is responsible for local resource allocation 

decisions by dynamically determining the resource shares to be allocated to its own VM. 

Allocation decisions are made in discrete time intervals where in each interval the resource 

share to be given in the next time interval is determined. In our approach, the time interval is 
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set to 10 seconds in order to adapt quickly to load changes. The time interval is not set to less 

than 10 seconds, since in long-term prediction this would increase the number of time steps 

to predict into the future, lowering the prediction accuracy. On the other side, setting an 

interval larger than 10 seconds can lead to inefficiencies and SLA violations due to the lack of 

quick adaptation to the load changes. This way of dynamic resource allocation enables the 

cloud provider to adapt the resources given to each VM according to the current load, thus 

keeping the required performance level with the minimum resource costs. 

• Host Agent: for each host (or physical machine) there is a Host Agent that receives the 

resource allocation decisions of all VM Agents and determines the final allocations by 

resolving any possible conflicts. The Host Agent decides about the final CPU allocations for all 

VMs. The possibility of any conflict can arise when the CPU requirements of all VMs exceed 

the total CPU capacity, but if there is no conflict, then the final CPU allocation is the same as 

the allocations requested by the VM agents. If there is a conflict, the Host Agent computes 

the final CPU allocations according to the following equation: 

                                                        (4.1)  

where FinalAlloc is the final allocation, ReqAlloc is the required allocation, Sum_ReqAlloc is 

the sum of all VMs’ requested allocations and TotalCap is the total CPU capacity.                     

Another important function of the Host Agent is to detect whether the host (PM) is 

overloaded or underloaded. Then, this information is passed to the Global Agent that then 

initiates live migration actions for moving VMs away from overloaded or underloaded hosts 

according to the global allocation algorithm. 

• Global Agent: has the duty to make global resource allocation decisions to initiate live 

migration actions of VMs from overloaded or underloaded hosts to the other hosts in order 

to reduce SLA violations and energy consumption. The Global Agent receives information 

from the Host Agent if a host will be overloaded or underloaded in the future, and based on 

this information performs the appropriate VM live migration action if it is worth the cost. The 

Global Agent is based on the resource allocation algorithm used in previous work [21] for 

global VM resource allocation and the Power Aware Best Fit Decreasing (PABFD) [21] 

algorithm for VM placement. In our approach, we have modified these techniques to apply 
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them in the long-term prediction with uncertainty. In the VM selection stage is used the 

Minimum Migration Time (MMT) [21] policy, but with the modification that only one VM is 

selected for migration in each decision round even if the host can possibly remain overloaded 

after migration. This reduces the number of simultaneous VM live migration, and the 

overhead derived from these actions. For the consolidation process, our approach focuses on 

the underloaded hosts that are detected by the proposed long-term prediction techniques. 

From the list of hosts identified as underloaded, the ones that have lower average CPU usage 

of previous historical values are considered first. Applying the proposed long-term prediction 

techniques, the hosts that are not underloaded are chosen as the VM live migration 

destination. 

4.2.1 Host Overload Detection 

To detect if a host is overloaded, a long-term time series prediction approach is used. In our approach, 

long-term prediction means predicting 7-time intervals ahead into the future. A host is considered 

overloaded if the actual and the predicted total CPU usage of 7-time intervals ahead into the future 

exceed an overload threshold. The predicted total CPU usage of a time interval into the future is 

estimated by summing up the predicted CPU usage values of all VMs of the corresponding time 

interval [38].  

The value of predicting 7-time intervals into the future is chosen such that it is greater than the 

estimated average live migration time (around 4-time intervals). The average live migration time is 

assumed to be known and its value of 4-time intervals is estimated by averaging over all VM live 

migration times over several simulation experiments. In real world scenarios, this value is not known 

in advance, but it can be estimated based on the previous history of live migration times. On the 

other side, having a larger value than 7-time intervals is not useful because some overload states that 

do not last long can be skipped.  

Based on some experiments, increasing the number of prediction time intervals further into the 

future does not increase the stability and performance. 

The overload threshold value is determined dynamically based on the number of VMs and relates to 

the VM SLA violation metric, as explained in the next sections. 
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4.2.2 Host Underload Detection 

Since in the above section it is the duty of the host agent to detect whether a host is underloaded in 

order to apply dynamic consolidation by live migrating all its VMs to other hosts and turning off the 

host to save energy. Also, the long-term time series predictions of CPU usage are used. A host is 

considered underloaded if the actual and the predicted total CPU usage of 7-time intervals ahead 

into the future are less than an underload threshold. Hence, the value of 7-time intervals is long 

enough to skip short-term underload states, but not too long as to miss any opportunity for 

consolidation [38]. 

The underload threshold value is a constant value, and it is set to 10% of the CPU capacity, but it can 

be configured by the administrator according to his or her preferences for consolidation 

aggressiveness. 

4.2.3 Host Not-Overload Detection 

To make the decision to initiate the live migration process, the global agent needs to know the hosts 

that are not overloaded in order to use them as destination hosts for VM live migrations. 

A host is declared as not overloaded if the actual and the predicted total CPU usage of 7 time intervals 

ahead into the future is less than the overload threshold [38]. The actual and the predicted total CPU 

usage of any time interval is estimated by summing up the actual and predicted CPU usage of all 

existing VMs plus the actual and the predicted CPU usage of the VM to be migrated. The purpose is 

to check whether the destination host remains not overloaded after the VM has been migrated. 

4.2.4 Uncertainty in Long-Term Predictions 

The process of detecting the host if it is overloaded or overloaded based on long- term predictions 

carries with it the uncertainty of correct predictions, which can lead to erroneous decisions. To take 

into account the uncertainty of long-term predictions, a probabilistic distribution model of the 

prediction error is used. The probability density function of the prediction error for every prediction 

time interval is first computed. Since the probability distribution of the prediction error is not known 

in advance and different workloads can have different distributions, a non-parametric method to 

build the density function online is required. Therefore, in our approach, a non-parametric method 
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for probability density function estimation based on kernel density estimation [123] is used. It 

estimates the probability density function of the prediction error every time interval based on a 

history of previous prediction errors [38]. In this case, the probability density function of the absolute 

value of the prediction error is used. Since there are 7-time interval predictions into the future, 7 

different prediction error probability density functions are built online. 

4.2.5 Probabilistic Overload Detection 

To detect if a host is overloaded, i.e., if the future total CPU usage will be greater than the overload 

threshold, we use the probability density function of the prediction error for each predicted time 

interval. This is defined in Algorithm 1 that returns true or false with some probability whether the 

future CPU usage will be greater than the overload threshold [38]. 

First, the algorithm finds the probability that the future CPU usage will be greater than the overload 

threshold. If the predicted CPU usage is greater than the overload threshold, the difference, called 

max_error, between the predicted CPU usage and overload threshold, is found. For the future CPU 

usage to be greater than the overload threshold, the absolute value of the error (i.e., the difference 

between predicted and future value) should be less than max_error. Based on a cumulative 

distribution function of the prediction error, the probability that the prediction error is less than 

max_error, i.e., the future CPU usage is greater than the overload threshold, is found. Since it can 

happen that the future CPU usage will be greater than the overload threshold, and also that the 

prediction error will be greater than max_error, the probability that this happens, given as   (1-

probability)/2, is added to the calculated probability to yield the final probability (probability+1)/2. 

Algorithm 1: Overload Detection 

1: if  Pred_Total_Util >= OverThreshold then 
2:      max_error=Pred_Total_Util - OverThreshold 
3:      probability=CumulativeProbability(max_error) 
4:      probability=(probability+1)/2 
5: end 
6: else 
7:      max_error=OverThreshold - Pred_Total_Util 
8:      probability=CumulativeProbability(max_error) 
9:      probability=(probability+1)/2 
10:      probability=1-probability 
11: end 
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12: probability=(probability)*100 
13: randnum=rand.nextInt(100) 
14: if randnum < probability then 
15:      return true 
16: end 
17: else 
18:      return false 
19 end 

 
If the predicted CPU usage is less than the overload threshold, by the same approach, first, the 

probability that the future CPU usage will be less than the overload threshold is found. Then, the 

probability that the future CPU usage will be greater than the overload threshold is given as (1-

probability). Finally, the algorithm returns true with the estimated probability.  

Algorithm 1 returns the overload condition probabilistically only for a single prediction time interval. 

Therefore, to declare the host as overloaded, the actual CPU usage should exceed the overload 

threshold, and the algorithm should return true for all 7 prediction time intervals in the future. 

The interpretation of taking into account prediction uncertainty in overload detection is as follows. 

Although CPU prediction can lead to values above the overload threshold, there is some probability, 

due to the uncertainty of prediction, that the CPU utilization will be lower than the threshold. This 

means that for some fraction of the time the host will not be considered as overloaded. This increases 

the stability of the approach, as shown by the lower number of live migrations for the probabilistic 

overload detection approach, compared to other approaches.  

Furthermore, when CPU prediction is lower than the overload threshold, there is some probability 

that the CPU utilization will be greater than the threshold. This means that for some fraction of the 

time the host will be considered as overloaded. In summary, we can say that the host is considered 

as overloaded or not in proportion to the uncertainty of prediction, which is the right thing to do, as 

supported by our experimental results compared to approaches that do not take prediction 

uncertainty into account. 

4.2.6 Probabilistic Not-Overload Detection 

To take into account the uncertainty of long-term predictions in detecting whether a host is not 

overloaded, Algorithm 2 is proposed. It returns true, with some probability, if the future CPU usage 

of some prediction time interval will be less than the overload threshold. The host is declared as not 
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overloaded if the actual CPU usage is less than the overload threshold, and Algorithm 2 returns true 

for all 7 prediction time intervals in the future. 

Algorithm 2: Not-Overload Detection 

1: if  Pred_Total_Util >= OverThreshold then 
2:      max_error=Pred_Total_Util - OverThreshold 
3:      probability=CumulativeProbability(max_error) 
4:      probability=(probability+1)/2 
5:      probability=1-probability 
6: end 
7: else 
8:      max_error=OverThreshold - Pred_Total_Util 
9:      probability=CumulativeProbability(max_error) 
10:      probability=(probability+1)/2 
11: end 
12: probability=(probability)*100 
13: randnum=rand.nextInt(100) 
14: if randnum < probability then 
15:      return true 
16: end 
17: else 
18:      return false 
19: end 

 

4.2.7 Probabilistic Underload Detection 

To detect whether a host is underloaded, Algorithm 3 is proposed. It returns true, with some 

probability, if the future CPU usage of some prediction time interval will be less than the underload 

threshold. The host is declared as underloaded if the actual CPU usage is less than the underload 

threshold, and Algorithm 3 returns true for all 7 prediction time intervals into the future. 

Algorithm 3: Underload Detection 

1: if  Pred_Total_Util >= UnderThreshold then 

2:      max_error=Pred_Total_Util - UnderThreshold 
3:      probability=CumulativeProbability(max_error) 
4:      probability=(probability+1)/2 
5:      probability=1-probability 
6: end 
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7: else 
8:      max_error=UnderThreshold - Pred_Total_Util 
9:      probability=CumulativeProbability(max_error) 
10:      probability=(probability+1)/2 
11: end 
12: probability=(probability)*100 
13: randnum=rand.nextInt(100) 
14: if randnum < probability then 
15:      return true 
16: end 
17: else 
18:      return false 
19: end 

4.3.  Experimental Results 

An experimental evaluation of the proposed approach is done through the CloudSim [42] 

simulator. It is a well-known simulator that permits the simulation of dynamic VM resource allocation 

and energy consumption in virtualized environments. We have made modifications and extensions 

to the simulator to integrate the proposed approach and to provide support for setting the CPU CAP 

to VMs for local resource allocation.  

In our experiments, a virtualized data center with 100 heterogeneous hosts is simulated. Two 

types of hosts are simulated, each with 2 CPU cores. One host has CPU cores with 2,100 MIPS and 

the other one has CPU cores with 2,000 MIPS, while both have 8 GB of RAM. One host simulates the 

power model of the HpPro-LiantMl110G4 Xeon3040 computer, and the other one simulates the 

power model of the HpProLiantMl110G5 Xeon3075. On each host are scheduled 3 VMs (in total 300 

VMs). Four types of VMs are used, and each VM requires one VCPU. Three VMs require a maximum 

VCPU capacity of 1000 MIPS, while the other one requires 500 MIPS. Two VMs require 1740 MB of 

RAM, one requires 870 MB, and the last one requires 613 MB. 

To test realistic workloads, the CPU usage data of real VMs running on the PlanetLab [37] 

infrastructure are chosen to simulate VM workloads. Each VM runs one application (cloudlet in 

CloudSim terminology) and the cloudlet length, given as the total number of instructions, is set to a 

large value in order to prohibit cloudlets to finish before the experiment ends. The experiment is run 

for 116-time intervals, and the duration of a time interval is set to 10 seconds. 



81 

 

We also use WEKA [124], a machine learning framework with Gaussian Processes for regression 

through its Java API for long-term time series prediction. A history of previous CPU usage data with 

a length of 20 samples is used for prediction and forecasting model training. To keep the simulation 

time to acceptable levels, the forecasting model is trained every 5 time intervals with new CPU usage 

data. For kernel density estimation, the empirical probability distribution implementing the Variable 

Kernel Method with Gaussian Smoothing of the Apache Commons Math 3.6 API [125] is used. A 

history of previous prediction errors with a length of 30 samples is used for probability density 

function model training, which is done in each time interval. 

The experimental results are generated by comparing six different approaches, as follows: 

a. No-Migrations (NOM): This approach allocates CPU resources locally to VMs but does not 

perform live migration actions.  

b. Short-Term Detection (SHT-D): Represents the detection of whether a host is overloaded, 

not-overloaded, or underloaded based on short-term CPU usage predictions. Thus, this 

technique detects an overload state if the actual and the predicted CPU usage values of the 

next two-time intervals in the future are above the overload threshold. The same applies to 

not-overload and underload states where the actual and predicted CPU values for the next 

two-time intervals into the future are used. 

c. Long-Term Detection (LT-D): This approach represents overload, underload and not-

overload detections on long term CPU usage predictions of the next 7 control intervals into 

the future. 

d. Long-Term Probabilistic Detection (LT-PD): Bases overload, underload and not-overload 

detections on long term CPU usage predictions of the next 7 control intervals into the future 

but considers prediction uncertainty through prediction error probability distribution 

modelling. 

e. Local Regression Detection (LR-D): This approach uses the local regression technique to 

predict the resource usage in the future. We have chosen this state-of-the-art technique 

since it achieves the best performance as shown by the authors [21] compared to other 

techniques that use static or adaptive utilization thresholds. 
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We have defined five performance metrics for evaluation of the proposed approach, as discussed 

below: 

a. VM SLA Violation (VSV): This metric represents the penalty of the cloud provider for violating 

the performance of the VMs of the cloud consumer. The performance of an application 

running inside a VM is at an acceptable level if the required VM resource usage is less than 

the resource share allocated. A VM SLA violation is defined to happen if the difference 

between the allocated CPU share and CPU usage of a VM is less than 5% of the CPU capacity 

for 4 consecutive time intervals. The idea is that application performance degraded if the 

required CPU usage is near to the allocated CPU share. The penalty of a VM SLA violation is 

the CPU share by which the actual CPU usage exceeds the 5% threshold difference from the 

allocated CPU, for all 4 consecutive time intervals. In this case it is the goal of the global agent 

to mitigate VM SLA violations by providing sufficient free CPU capacity through VM live 

migration, in order to have the CPU share allocation above the required usage by more than 

5% for each VM. Through experiments the VM SLA Violation metric if defined to overload 

states of hosts. It is calculated dynamically based on the number of VMs. Let us define N as 

the number of VMs on a host. To avoid a VM SLA violation, each VM should have more than 

5% capacity above CPU usage, so the total free CPU capacity of the host should be more than 

N ∗ 5%. Based on this, the overload threshold is calculated as the total CPU capacity (100%) 

minus N∗5%. This means that the overload threshold represents the CPU usage level above 

which some VMs will have SLA violations. 

b. Energy Consumption (E): This metric computes energy consumption in a data center 

measured in KWh, for the whole experimental time. 

c. Number of VM Migration (NM): This metric represents the number of VM migrations for the 

whole experimental time. 

d. Energy and VM SLA Violations (ESV): This metric combines energy consumption (E) and 

cumulative VM SLA Violation (CVSV), as given in the formula below: 

                                               ESV=E · CVSV                                                 (4.2) 

where E is energy consumption and CVSV is the cumulative VSV value of all VMs for the entire 

experimental time. 
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The simulation experiment is run for two different load levels called LOW and HIGH and three 

different VM live migration SLA violation penalties, mp=2%, mp=4% and mp=6% (MP2, MP4, MP6). 

The load level represents the CPU usage consumed by each VM. The load levels (Low and High) are 

taken by multiplying the PlanetLab CPU usage values for each time interval with a constant value of 

8 and 14, respectively. 

The experiment is repeated five times for each combination of approach and load level. 

To see the effect the load level has on the VM SLA violation, Figure 4.2 presents the cumulative VSV 

value for each approach averaged over all combinations of load levels and migration penalties The 

cumulative VSV value is the sum of VSV values of all VMs for the whole experimental time. The graph 

shows that the LT-PD technique achieve lower VM SLA violation levels than the other approaches 

because it considers the prediction uncertainty. It is also evident that the LR-D technique 

approximately like LT-D perform better than SHT-D approach because both techniques apply 

prediction of resource usage into the future, but without taking prediction uncertainty into account. 

Therefore, taking into consideration long-term prediction uncertainty in decision-making is useful for 

lowering VM SLA violations. 

 

Figure 4.2: Cumulative VSV over all loads and migration penalties 

To see the effect the load level has on VM SLA violations, in Figure 4.3 the cumulative VSV value is 

shown, averaged over all migration penalties, for each approach and the two load levels. From the 

graph can be observed that in all approaches, increasing the load increases the VM SLA violations, 

which is expected since there is more contention for resources. It is also seen that for both load levels, 
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the LT-PD technique achieves the lowest VSV value compared to the other approaches. 

 

Figure 4.3: Cumulative VSV over all migration penalties and two load levels 

In Figure 4.4, the number of VM live migrations for each approach averaged over all combinations of 

load levels and migration penalties is shown. From the graph it can be observed that the LT-PD 

approach achieves the smallest number of live migrations compared to other approaches.  

 

Figure 4.4: Number of live migrations over all loads and migration penalties 
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The results show that the transition from short-term prediction to long-term prediction increases the 

stability of the approach thus reducing the number of live migrations. It is also evident that 

considering uncertainty of long-term predictions and live migration penalties increases stability and 

reduces the number of live migrations further. Another notable case is the LR-D approach, which has 

the highest number of VM live migrations compared to other approaches for the fact that the LR-D 

approach takes live migration actions if only one predicted usage point in the future is above the 

threshold, while the other approaches check several points into the future.    

In Figure 4.5 it is shown for each approach how the number of live migrations is affected by the load 

level. It can be noticed that the number of live migrations of the LT-PD approach is significantly 

smaller than for other approaches.  

 

Figure 4.5: Number of live migrations over all migration penalties for two load levels 

Figure 4.6 shows the energy consumption of the data center for the whole experimental time for 

each approach over all combinations of load levels and migration penalties. 
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Figure 4.6: Energy over all loads and migration penalties 

In Figure 4.7, we show for each approach how the energy consumption is affected by the load level. 

It can be observed that that increasing the load increases the energy consumption for all approaches. 

Decreased energy consumption with a decrease in the load level can be explained by the fact that 

low load creates more opportunities for consolidation and turning off hosts. 

 

Figure 4.7: Energy over all migration penalties for two load levels 

Figure 4.8 shows the ESV value for the whole experimental time for each approach over all 
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combinations of load levels and migration penalties. The graph shows that LT-PD has lower ESV 

value than other approaches.  

 

Figure 4.8: ESV value over all loads and migration penalties 

In Figure 4.9, we show for each approach how the ESV metric is affected by the load level. It is 

observed that the ESV metric is lower for the LT-PD approach than the other approaches for each 

load level. 

 

Figure 4.9: ESV value over all loads and migration penalties 
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4.4.  Summary 

In this chapter, we have presented a VM resource allocation approach in a cloud infrastructure 

environment. It allocates resources locally by changing the CPU share given to VMs according to the 

current load. While global resource allocation is done by migrating VMs from overloaded or 

underloaded hosts to other hosts to reduce VM SLA violations and energy consumption. Long-term 

predictions of resource usage are used to detect if a host is overloaded or underloaded, based on 

Gaussian processes as a machine learning approach for time series forecasting.  

We have also considered the prediction uncertainty through a probability distribution model of the 

prediction error, based on the kernel density estimation method. 

Based on the results of the experiments, we can draw conclusions in two directions. First, making 

long-term predictions of resource demand can increase stability and overall performance of a cloud. 

Second, making overload detection decisions proportional to the uncertainty of predictions increases 

the overall performance of the VM migrations in the cloud infrastructure.  
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                                                                                                      5                                                                                                                                            

The Experiential Heterogeneous 
Earliest Finish Time Algorithm 
for Task Scheduling in Clouds   

5.1.  Introduction 

Task scheduling in cloud environments is the problem of assigning and executing computational 

tasks on the available cloud resources. Effective task scheduling approaches reduce the task 

completion time, increase the efficiency of resource utilization, and improve the quality of service 

and the overall performance of the system. In this chapter, we present a novel task scheduling 

algorithm for cloud environments based on the Heterogeneous Earliest Finish Time (HEFT) algorithm, 

called experiential HEFT. It considers experiences with previous executions of tasks to determine the 

workload of resources. To realize the experiential HEFT algorithm, we propose a novel way of HEFT 

rank calculation to specify the minimum average execution time of previous runs of a task on all 

relevant resources. Experimental results indicate that the proposed experiential HEFT algorithm 

performs better than HEFT and the popular Critical-Path-on-a-Processor (CPOP) algorithm considered 

in our comparison. 

The Infrastructure-as-a-Service (IaaS) service model in cloud computing can be used to adjust the 

capacity of cloud resources depending on changing demands of applications. This feature is known 

as auto-scaling [69].      

Task scheduling in cloud infrastructures is the problem of assigning tasks to appropriate resources 

[70]. Task scheduling can have a significant impact on the performance of the system and is 

particularly challenging when the cloud resources are heterogeneous in terms of their computation, 

memory, and communication characteristics, due to different execution speeds, memory capacities, 

and communication rates between processors.  
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Typically, the scheduling process in the cloud consists of several phases [75]: resource discovery 

and filtering, where a broker discovers the resources in the network and collects their status 

information; resource selection, where the target resources are selected, based on the main 

parameters of the task and the resources; task submission, where tasks are submitted to selected 

resources.   

Task scheduling algorithms select and allocate suitable resources to tasks such that the overall 

execution can be completed to satisfy objective functions specified by users or cloud providers [73-

74]. For example, to improve Quality of Service (QoS) for users and maximize profit for cloud 

providers, parameters such as resource utilization, throughput, performance, execution times, 

computational cost, bandwidth, energy consumption, and Service Level Agreements (SLAs) may be 

considered [71]. The task-scheduling problem can be classified into static and dynamic scheduling. In 

static scheduling, all information about tasks such as execution and communication costs for each 

task and the relationship with other tasks are known in advance. In dynamic scheduling, there is no 

prior information, i.e., decisions are made at runtime [72]. 

In Figure 5.1, we present a system model for the workflow scheduling problem in cloud 

environments. There are three layers: the task graph layer is composed of tasks with precedence 

constraints, the resource graph layer which represents a network of VMs, and the cloud 

infrastructure layer as a set of data centers connected by network links [127].       

 

Figure 5.1: A system model of workflow application scheduling in a cloud environment 
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In this chapter, we present a novel dynamic task scheduling algorithm for cloud environments 

with heterogeneous resources. It extends the Heterogeneous Earliest Finishing Time (HEFT) 

algorithm by utilizing past experiences with task executions; hence we call it the experiential HEFT 

(EHEFT) algorithm. It uses an additional parameter that calculates the minimum average execution 

time of previous runs of a task on all relevant resources. This parameter equips the proposed EHEFT 

with the ability to take the workload and processing power of resources into account when assigning 

a task to a processor. It gives priority to a resource that in the past has executed the task faster than 

others. Experimental results show that our EHEFT algorithm performs better and is more efficient 

than other than the original HEFT and the popular Critical-Path-on-a-Processor (CPOP) algorithm 

considered in our comparison. 

This chapter is organized as follows. Section 5.2 describes the task scheduling problem 

formulation. HEFT and CPOP are described in Section 5.3. Our novel EHEFT algorithm is introduced in 

Section 5.4. Experimental results are presented in Section 5.5. Section 6 concludes the paper and 

outlines areas for future work. 

5.2.  Task Scheduling Problem Description 

To split an application into tasks with appropriate sizes, we use DAGs. Each task of a DAG 

corresponds to the sequence of operations and a directed edge represents the dependency between 

the tasks.  

More precisely, a DAG is represented by the graph G = (V, E), where V is the set of v tasks and E is 

the set of e edges between the tasks. Each edge (i, j) E represents the dependency such that task ni 

should complete its execution before task  nj starts. If a task has no a parent task, this task is defined 

as the entry task of a workflow of tasks. If a task has no a child, this task is defined as the exit task of 

a workflow of tasks.  

From the DAG, we derive a matrix W that is a v x p computation cost matrix, where v is the number 

of tasks and p is the number of processors; wi,j represents the estimated execution time to complete 

task vi on processor pj. The average execution time of task vi is defined in Equation (5.1) [85] [72]: 

                                                                                          (5.1) 
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Each edge (i, j) E is associated with a non-negative weight ci,j which represents the communication 

cost between the task vi and vj. The average communication cost of an edge (i, j) is defined by Equation 

(5.2): 

                                                                                                              (5.2) 

 
is the average communication startup time and is the average transfer rate among the processors; 

datai,j is an amount of data required to be transmitted from task vi to task vj. In cases when tasks vi 

and vj are scheduled to run on the same processor, the communication cost is considered to be zero, 

because the intra-processor communication cost is negligible compared to the inter-processor 

communication cost.     

A task workflow example and a computation cost matrix of tasks 1-10 for the resources R1, R2, R3 

is shown in Figure 5.2. 

 

Figure 5.2: An example of task graph and computation time matrix of the tasks in each processor  

A popular metric in task scheduling is the makespan or schedule length, which defines the finish 

time of the last task in the given DAG. The makespan is defined by Equation (5.3): 

                                                                               (5.3) 

where AFT(nexit) represents the Actual Finish Time of the exit node. 

Furthermore, the Earliest Start Time EST (ni, pj)  of a node ni on a processor pj, which is defined in 

Equation (5.4): 
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                                     (5.4) 

where Tavail is the earliest time at which processor pj is ready to execute the task. pred(ni) is the set of 

immediate predecessor tasks of task ni. The inner max block in the EST equation denotes the time at 

which all data needed by ni arrive at processor pj. The communication cost cm,i is zero if the 

predecessor node nm is assigned to processor pj.  

Finally, EFT(ni, pj) defines the Earliest Finish Time of a node ni on a processor pj, which is defined in 

Equation (5.5): 

                                                                                          (5.5) 

5.3.  CPOP and HEFT 

In this section, we describe two popular algorithms for task scheduling, namely the Critical-Path-

on-a-Processor (CPOP) and Heterogeneous-Earliest-Finish-Time (HEFT) algorithms [72] [86]. 

Canon et al [84] have compared 20 scheduling algorithms and have concluded that both 

algorithms perform well, but the HEFT algorithm is the algorithm in terms of makespan. 

 Topcuoglu et al. [86] also consider the HEFT algorithm among the best list-based heuristic 

algorithms, and use the CPOP algorithm, among others, for comparison.  

In both algorithms, the tasks are ordered based on a scheduling priority defined by a ranking function. 

The rank value for an exit task ni is: 

                                                                                                                     (5.6) 

For other tasks, the rank values are computed recursively based on the Equations (5.1), (5.2) and 
(5.6), as defined in Equation (5.7): 

 

                                                          (5.7) 

where succ(ni) is the set of immediate successors of task ni, is the average communication cost of 

edge (i, j), and is the average execution time of task ni. 
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5.3.1 CPOP 

The CPOP algorithm consists of two phases: task prioritization and processor selection.  

The task prioritization phase assigns the priority of each task by computing the rank values for all 

tasks. In CPOP, for a given application the graph uses a critical path, where the length of this path is 

the sum of the communication costs of the tasks on the path and the communication costs between 

the tasks along the path.  

The sum of rank values set the priority of each task. Initially, the entry task is the selected task and 

marked as a critical path task. An immediate successor (of the selected task) that has the highest 

priority value is selected and is marked as a critical path. This process is repeated until the exit node 

is reached [86].  

In the processor selection phase, the task that has the highest priority is selected for execution. If the 

selected task is on the critical path, it will be scheduled on the critical path, it will be scheduled on the 

critical path processor. Otherwise, the task is assigned to a processor that minimizes the earliest 

execution finish time. 

The CPOP algorithm is shown in Algorithm 1 [86]. 

Algorithm 1 CPOP Algorithm 

1: Set the computation costs of tasks and communication costs of edges with 
mean values. 

2: Compute ranku , starting from the exit task. 

3: Compute rankd of tasks, starting from the entry task. 

4: Compute priority(ni) for each task ni in the graph. 

5: |CP| = priority(nentry), where nentry is the entry task. 

6: SETCP = {nentry}, where SETCP is the set of tasks on the critical path. 

7: nk ß nentry 

8: while nk is not the exit task do 

9:         Select nj where ((nj ∈ succ(nk)) and (priority(nj) == |CP|)).  

10:         SETCP = SETCP   U {nj}. 

11:         nk ß nj 

12: end while 

13: Select the critical path processor. 
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14: Initialize the priority queue with the entry task. 

15: while there is an unscheduled task in the priority queue do 

16:         Select the highest priority task ni from priority queue. 

17:         if ni ∈ SETCP   then 

18:           Assign the task ni on critical path processor 

19: else 

20:          Assign the task ni to the processor pj which minimized the EFT(ni, pj). 

21: Update the priority queue with the successors of ni. 

22: end while 

The CPOP algorithm has O (v2 x p) time complexity, where v is the number of tasks and p is the number 

of processors [72] [85]. 

 

5.3.2 HEFT 

Similarly, the HEFT algorithm also has the same two phases: task prioritization and a processor 

selection [72] [86].  

In the task prioritization phase, HEFT assigns the priorities of all tasks by computing the rank for each 

task, which is based on mean computation time and mean communication cost. The task list is ordered 

by decreasing of their rank values.  

The processor selection phase schedules the tasks on the processors that give the Earliest Finish Time 

(EFT) for the task. The algorithm uses an insertion policy that tries to insert a task at the earliest idle 

time between two already scheduled tasks on a processor. The slot should have enough capacity to 

accommodate the task.  

The HEFT algorithm also has O (v2 x p) time complexity, where v is the number of tasks and p is the 

number of processors [72] [85] [86]. 

The HEFT algorithm is shown in Algorithm 2 [86]. 

Algorithm 2 HEFT Algorithm 

1: Set the computation costs of tasks and communication costs of edges with 
mean values. 
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2: Compute 𝑟𝑎𝑛𝑘' for all tasks, starting from the exit task. 

3: Sort the tasks in a scheduling list by decreasing order of 𝑟𝑎𝑛𝑘' values. 

4: while there are unscheduled tasks in the list do  

5:            Select the first task ni, from the list for scheduling. 

6:            for each processor m do 

7:                 Compute EFT(i, m ) value using insertion-based scheduling policy 

8:            Assign task ni to the processor pj that minimized EFT of task ni. 

9: end while 
 

5.4. Experiential HEFT 

We now present a novel task-scheduling algorithm, called experiential HEFT (EHEFT), which gives 

the original HEFT algorithm the ability to take the workload and computational power of resources 

into account when assigning a task to processor. In the EHEFT algorithm, the average execution time 

of a task is calculated by the definition given in Equation (5.1). Furthermore, the calculation of the 

average communication cost is performed according to Equation (5.2). As an extension of Equation 

(5.7), we have added a parameter that calculates the rank by considering the minimum average 

execution time of the task on each relevant resource. This novel rank calculation is shown in Equation 

(5.8) [121]: 

       
                  (5.8) 

where R represents the set of processors; j is a processor of the set of processors. The execution time 

of the task i on processor j is defined by wi,j, while the number of previous executions of the task in 

processor j is defined by nj. 

The proposed EHEFT algorithm is shown in Algorithm 3 [121]. 

Algorithm 3 Experiential HEFT Algorithm 

1: Compute the computation cost for each task according to Equation (5.1) 

2: Compute the communication cost of edges according to Equation (5.2) 

3: Compute the average execution time of previous runs: 
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for each task 

   for each machine do 

sum up the time of the task’s previous executions in the assigned 
processor.  

end for 

4: Calculate the minimum as the proportion of the sum from Step 3 and the 
number of executions of a task in the assigned processor. 

5: end for 

6: Compute the rank value for each task according to Equation (5.8) 

7: Sort the tasks in a scheduling list by decreasing order of task rank values 

8: while there are unscheduled tasks in the list 

9:      select the first task i from the list 

     for each processor m do 

           Compute the EFT(i, m) value 

     end for 

     Assign task i to processor m that minimized EFT of task i. 

10: end while 

 

To prioritize processors that have executed a given task in a more efficient manner in the past, a 

sum and a count of previous execution times of tasks for each of the resources in the cloud is stored. 

When there is no such data, the EHEFT algorithm performs exactly as the HEFT algorithm itself. 

Therefore, EHEFT algorithm we propose is highly dependent on the values of past execution times of 

tasks. 

Assuming a high heterogeneity between cloud resources, variable processing powers, and 

workloads, as well as considering that some tasks are better suited for a particular processor 

architecture than others, by including the minimum average execution time of previous runs of a task 

in the resources of the cloud, the EHEFT algorithm gives precedence to a processor that has performed 

better in executing a given task in the past.  
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5.5.  Experimental Results 

In this section, we present experimental results of our proposed EHEFT algorithm compared to the 

existing HEFT and CPOP algorithms. The tests were conducted on an Intel Core i7-6500U CPU with a 

2.50 GHz × 4 speed, 16 GB of RAM, on Ubuntu 16.04 LTS.  

To evaluate the performance of the EHEFT algorithm the application graphs that are generated 

randomly, are considered. We have implemented and simulated three algorithms using the Python 

programming language. Our simulator has five input parameters: the number of resources (i.e., 

processors) in the cloud, the number of DAG nodes (i.e., tasks), connections between tasks, resource 

heterogeneity, and previous run statistics for each task 

The input parameters that are defined to build the weighted DAG are: 

• Number of computation nodes in the DAG (Number of DAG Tasks). 

• β (Range percentage of computation costs on processors). It is the heterogeneity factor for 

the processor speeds. A high β value causes higher heterogeneity and different computation 

costs among processors, and a low β value indicates that the computation costs for a given 

task are nearly equal among processors. The average computation cost of each task ni in a 

given graph  is selected randomly from a uniform distribution with range , 

where  is the average computation cost of a given graph that is set randomly in the 

algorithm. The computation cost of each task ni on each processor pj is randomly set from the 

following range. 

                                                                            (5.9) 

• CCR (Communication to Computation Ratio). This metric defines the ratio of the sum of the 

edge weights to the sum of the node weights for a given DAG. If a CCR value for a given DAG 

is very low, then it can be considered as a computation intensive application. 

For simplicity, constant values are set for the average computational and communication costs. The 

simulator defines a set of virtual resources with heterogeneous processing powers, as well as current 

computational workloads and communication costs for the given input DAG. The simulator is fed with 
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different input values to test variance of the algorithm in terms of makespan and runtime under 

different conditions.  

In our experiment, the following parameters with defined values are used: 

• β = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

•  Number of DAG Tasks = {5, 10, 15, 20, 25} 

•  Connectivity = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

•  Number of Processors = {2, 3, 4, 5, 6} 

Our experiments are run for each of the tasks in each of the processors. Such test runs were performed 

to collect statistics for the execution times that were then used to calculate the minimum average 

execution time for past runs of a given task on all cloud resources. 

To avoid that this additional parameter biases the ranking function, a scaling parameter is used. 

This scaling parameter determines the weight of the minimum average execution time for past runs 

in the overall calculation of rank. For all compared algorithms, the simulation conditions were the 

same.  

We use the following performance metrics for our evaluation of the proposed approach. 

5.5.1 Scheduling Length Ratio (SLR) 

To evaluate a schedule for a single DAG, the most commonly used metric is the makespan. The 

makespan represents the finish time of the last task in the scheduled DAG, as shown in Equation (5.3). 

Considering that a large set of task graphs that have different properties is used, then the schedule 

length should be normalized to a lower bound, which is known as the Schedule Length Ratio (SLR), 

defined in Equation (5.10). 

                                                                                           (5.10)                  

The denominator in SLR metric is the minimum computation cost of the critical path tasks, represented 

as CPMIN.  
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Figures 5.3 - 5.6 show the makespan of the three algorithms calculated by the example task graph 

and computation time matrix of the tasks in each processor of Figure 5.2. The calculation of the 

makespan is performed for (a) Number of Tasks (Figure 5.3), (b) Connectivity (Figure 5.4), (c) Number 

of Processors (Figure 5.5), and (d) Processor Range (Figure 5.6).  

In Figure 5.3, the simulations are run for five different DAG nodes, with an increasing number of 

nodes. As expected, the makespan increases with the number of nodes for each of the algorithms we 

evaluated. EHEFT performs better than the other algorithms because it considers the heterogeneity 

of resources when calculating the rank for a task. It assigns the execution of a task to a resource that 

not only has the best present conditions to achieve the earliest finish time, but that has also shown to 

do so in the past. 

 

Figure 5.3: Makespan for number of tasks  

Figure 5.4 shows that increasing the connectivity between nodes of the input DAG also increases 

the makespan of the algorithms linearly. The higher the number of dependent tasks on the graph, the 

more time it takes for the algorithm to assign and execute the tasks. Therefore, it is important to assign 

tasks that are part of critical paths to resources that can execute them in the fastest manner. In 

our simulations, we have put more load on the tasks in the critical path. Thus, the results indicate the 

ability of EHEFT to assign such tasks to resources with highest processing power. 
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Figure 5.4: Makespan for connectivity 

Figure 5.5 shows that increasing the number of processors and a constant node number for the 

input DAG decreases the makespan. The improvement in performance of the EHEFT algorithm is due 

to the variance in the calculation of the rank that the statistics of previous runs provide. 

 

Figure 5.5: Makespan for number of processors 

The main advantage of EHEFT over HEFT and CPOP is the processor range parameter Beta, as shown 

in Figure 5.6. EHEFT considers the processing efficiency of a resource for a task, given its previous run 

statistics. The performance of EHEFT improves with the increase of the processor range, because it is 
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the factor that makes the highest difference with respect to the average past execution time 

parameter. 

 

Figure 5.6: Makespan for processor range 

In Figure 5.7, we present the SLR value for each of algorithms calculated from the number of nodes. 

The graph shows that the SLR value for EHEFT is lower than for the HEFT and CPOP algorithms. 

 

Figure 5.7: Scheduling length ratio 
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5.5.2 Runtime 

The runtime metric represents the execution time to obtain the output of schedule for a given task 

graph. The results for the runtimes of our performed experiments are shown in the graphs below. 

Figures 5.8 – 5.11 show the runtimes of each of the algorithms calculated for the parameters (a) 

Number of Tasks (Figure 5.8), (b) Connectivity (Figure 5.9), (c) Number of Processors (Figure 5.10), and 

(d) Processor Range (Figure 5.11).  

Figure 5.8 shows that for small numbers of DAG nodes the difference in runtime between EHEFT 

and HEFT is small. The improvement in performance that the minimum average execution time of the 

task for each resource gives is only apparent when the number of nodes in the input DAG increases. 

 

Figure 5.8: Runtime for number of tasks 

Figure 5.9 shows that increasing the connectivity between the nodes in the graph results in an 

increased runtime for the algorithms. The small difference in performance between EHEFT and HEFT 

is due to the difference in the handling of critical path tasks in the overall runtime. The CPOP algorithm 

takes more time to execute due to its two-phase rank calculation. 
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Figure 5.9: Runtime for connectivity 

As shown in Figure 5.10, task assignment and execution are performed in a faster manner with an 

increasing number of simulated virtual resources, as indicated by the decrease in the runtimes of the 

algorithms. The EHEFT algorithm gains an edge in performance due to its ability to assign the heavy 

loaded tasks and the ones in the critical path to better performing resources.  

 

Figure 5.10: Runtime for number of processors 

Figure 5.11 shows that increasing the processor range improves the performance of all the 

algorithms that we evaluated. Since the CPOP algorithm assigns only tasks on the critical path to 

critical path processors, the EHEFT and HEFT algorithms show better results due to the fact that not 
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only critical path tasks may be assigned to high performance resources. Tasks that take more time to 

process and that are not on the critical path of the graph are better assigned to resources through the 

HEFT and EHEFT algorithms. The difference in performance between the EHEFT and HEFT algorithm 

lies in the fact that EHEFT assigns tasks to resources that were better suited to execute such tasks in 

the past. 

 

Figure 5.11: Runtime for processor range 

5.6. Summary 

In this chapter, we have presented a novel task-scheduling algorithm for cloud environments, called 

Experiential Heterogeneous Earliest Finish Time (EHEFT) algorithm. In EHEFT, we have modified the 

rank calculation of the original HEFT algorithm by adding a parameter that specifies the minimum 

average execution time of a task on each relevant resource. The EHEFT algorithm performs better than 

the original HEFT and CPOP algorithms in terms of scheduling length ratio and runtime. 
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                                                                                                          6                                                                                                         

Distributed Resource Allocation 
in Cloud Computing using Multi-
Agent Systems 

6.1. Introduction 

The virtualized infrastructure is a key component that enables a data center to serve multiple users 

in an efficient, flexible and secure way. The cloud infrastructure must accommodate varying demands 

within certain time constraints; hence, it requires powerful dynamic resource allocation methods. 

The Infrastructure-as-a-Service (IaaS) model of cloud computing allocates resources in the form of 

VMs that can be resized and live migrated at runtime [33].  

The rapidly growing demand from hundreds of millions of end users for the use of Internet-scale 

applications has caused cloud providers (such as Google, Amazon, and Microsoft) to operate large-

scale data centers around the world. These large-scale data centers consume a large amount of 

energy. A large energy consumption leads to high costs and to high carbon emissions. Currently, data 

centers that power Internet-scale applications consume about 1.3% of the worldwide electricity 

supply, and this fraction is expected to grow to 8% by 2020 [31]. 

In recent years, a primary focus of research in the field of cloud infrastructures is to reduce energy 

consumption and service level agreement (SLA) violations for efficiently managing resources. 

Most of existing state-of-art VM resource allocation approaches are centralized, but a centralized 

controller does not scale well for large cloud infrastructures, might represent a communication 

bottleneck, and is a single point of failure in terms of reliability [57].  

As well, some of the existing approaches for VM consolidation [32-35] have as their main objective 

the energy efficiency and the reduction of SLA violations. For VM consolidation, these approaches 
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use live migration actions. Some authors have treated the VM consolidation process as an 

optimization problem [36], taking into account constraints such as data center capacity and SLAs. 

In contrast to the existing dynamic VM consolidation approaches presented above, in this chapter 

we propose a distributed resource allocation approach based on multi-agent systems. Our approach 

does not use static or adaptive thresholds, but it is based on the utility function model based on host 

CPU utilization. Basing resource allocation decision on utility function optimization offers a flexible 

resource allocation policy that is not present in the threshold- and rule-based policies. This means 

that the core allocation algorithm, namely the utility function optimization mechanism, does not 

need to change. Changing the form of the utility function can easily change the resource allocation 

policy. 

6.2. System Architecture 

In this section, we discuss large-scale data center architectures consisting of m hosts and n virtual 

machines running on each host. Since the workload and the CPU usage change over time, an efficient 

approach for dynamic VM consolidation is needed. 

Our work [40] focuses on two models of architectures that will be presented below. Figure 6.1 depicts 

a two-level centralized architecture, consisting of a local agent called Host Agent and a central 

controller called Global Agent. The tasks of each agent are described below: 

• Host Agent (HA): is responsible for continuously monitoring the host’s CPU utilization and to 

determine whether the host is in an overloaded or underloaded state. This information is 

passed to the global agent that initiates live migration actions if needed. It is also responsible 

for initiating local allocation actions by deciding about the CPU capacity (CAP) allocation to 

each VM and resolving conflicts when the sum of the CAP values for all VMs is greater than 

the total CPU capacity. 

• Global Agent (GA): makes global resource allocation decisions to optimize the VM placement 

in order to reduce the SLA violations and energy consumption. It gets the information from 

the HA for a host’s status data, available CPU capacity, used CPU capacity, and the predicted 

CPU utilization, and performs the appropriate live migration actions. 
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Figure 6.1: Centralized allocation architecture 

Figure 6.2 shows a distributed architecture where the communication is performed between the HAs.  

In this case, a HA decides to perform live migrations without activating any central controller or GA. 

If the HA detects an overload or underload situation, it forwards a live migration request to another 

randomly selected HA to find a host as a possible destination for the VM placement.  

 

Figure 6.2: Distributed allocation architecture 

6.3. Centralized and Threshold-Based Distributed Allocation Approaches 

In this section, we describe a centralized resource allocation approach and a threshold-based 

distributed resource allocation approach. 
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6.3.1 Centralized Allocation 

The centralized allocation (CA) approach is based on the architecture shown in Figure 4.1, where the 

communication is performed between the GA and the HAs. The HA uses historical data to detect 

whether the host is in an overloaded or in an underloaded state. A host is considered as overloaded, 

if the actual and the past three host CPU usage values exceed an upper threshold. A host is considered 

as underloaded if the actual and the past three host CPU usage values are less than a lower threshold. 

If a host is in one of these situations, then the GA takes a decision for VM live migration. 

In a host overload situation, the VM that has the maximum average CPU utilization is selected. After 

selecting the first VM, the host is checked again if it is still overloaded in order to proceed with the 

selection of another VM. This process continues until the host is no longer overloaded. In a host 

underload situation, all of its VMs are selected for migration in order to turn off the host. 

The VM placement algorithm that allocates the VMs to hosts is based on the Best First Decreasing 

(BFD) algorithm [12], a heuristic algorithm known for solving bin-packing problems.  

6.3.2 Threshold-Based Distributed Allocation 

A distributed resource allocation approach is suitable for large data centers where centralized 

optimization complexity and single point of failure are important factors to consider. This approach 

is based on the architecture shown in Figure 4.2 where each HA makes live migration decisions in 

cooperation with other HAs.  

To determine the host’s overloaded or underloaded state, upper and lower thresholds are used. In 

this work, the lower threshold is set to 10% of the CPU capacity, and the upper threshold is calculated 

as the total CPU capacity (100%) minus N*5%, where N is the number of VMs.  

When the HA detects a host in an overloaded or under-loaded state, it makes a live migration request 

to a randomly selected host, to serve as a destination for the VM placement. If the request is rejected 

due to insufficient resource capacity, the HA randomly tries another host. If it fails to find a suitable 

host, after trying a predefined number of times, it powers on a new host. The VM selection process 

is the same as in the centralized approach. 
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6.4. Utility-Based Distributed Allocation Approach 

To increase flexibility and to achieve a better overall performance in a data center, we propose a 

novel Utility-based Distributed Allocation (UDA) approach. This approach is based on the architecture 

shown in Figure 6.2.  

Unlike the DA, to make VM live migration decisions and to detect a host’s overloaded or underloaded 

state, the UDA approach is based on a utility function model. In Figure 4.3, the host utility function 

model used in our approach is shown, based on host CPU utilization ranging from 0 to 100%. From 

the graph it is evident that the best value (max of 1) of the utility function is at host CPU utilizations 

of 70% and 0%. The 70% of CPU utilization is optimal, since the host is fully utilized but not 

overloaded. The utility value is set to 1 also when the CPU utilization is 0%, with the idea to promote 

the removal of VMs and host shutdown when the load is low. The goal of the HA is to initiate VM live 

migration actions in order to maximize the utility function, resulting in optimal resource utilization.  

According to the UDA approach during the monitoring process, a HA considers taking VM live 

migration actions if the utility value is lower than 0.8, for 4 consecutive time intervals.  

In this work, the value of 4 consecutive time intervals is the average VM live migration time. It is 

estimated by averaging over all VM live migration times over several simulation experiments. The 

reason is that in order to increase the stability of the approach, live migration actions are not started 

immediately but only if low utility states persist longer than the migration time. 

In this case, the HA should make a VM live migration request to a peer HA selected randomly. 

 

Figure 6.3: The utility function model 
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In Figure 6.4, the communication scheme between source and destination host is illustrated. 

 

Figure 6.4: Communication scheme between source and destination host 

     The communication proceeds as follows. When the source HA senses that there is a low utility 

state, it calls the start_decision() procedure. This procedure selects a destination host randomly and 

sends a migration request message. The message contains all information needed by the destination 

HA to make migration decisions, such as a list of VMs with their CPU utilization, free RAM capacity 

etc.  

     To mitigate any race conditions of receiving migration requests by other hosts, this procedure also 

sets the busy_with_migration variable to true. After receiving a migration request, if 

busy_with_migration is false, the receiving host sets it to true and calls the 

receive_migration_request() procedure that is explained in Algorithm 1. This procedure makes 

migration decision of migrating one VM from source to destination host or vice versa and notifying 

the source host for the decision with a reply message. If the destination host is busy with processing 

another migration request, it send a reply indicating the reason of request rejection as busy.  

     The HA uses two threads, one for accepting requests and one for making migration decisions. This 

is done for not blocking the sending HA for a reply. After receiving the reply, the source HA calls 

receive_migration_reply() that is explained in Algorithm 2. Algorithm 1 is executed on the destination 

host in response to a VM live migration request. This algorithm estimate, which VM should be 

migrated and in which direction the maximum utility increase should be given.   

Algorithm 1 receive_migration_request() 

1: push_p = DO_NOTHING 
2: utility_before = get_utility(source_h) + get_utility(dest_h) 
3: for each VM in  source_h.VM_list  do   

Destination HostSource Host
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start_decision()

receive_migration
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4: utility_after = get_utility(source_h_util -  vm.get_avrg_util())+ 
     get_utility(dest_h.get_avrg_util(h) + vm.get_avrg_util()); 

5:      utility_increase = utility_after - utility_before; 
6: if (utility_increase > max_util_increase) &             

(dest_h.get_free_ram() >= vm.ram)  then 
7:     max_util_increase = utility_increase; 
8:     max_migrating_vm = vm; 
9:     push_p = PUSH_VM; 
10:        end if 
11: end for 
12: for each VM in dest_h.getVMList() do 
13: utility_after = get_utility(source_h_util + vm.get_avrg_util())+   

get_utility(dest_h.get_avrg_util(h) - vm.get_avrg_util()); 
14:        utility_increase = utility_after - utility_before; 
15: if (utility_increase > max_util_increase) &              

(source_h.get_free_ram() >= vm.ram)  then 
16:     max_util_increase = utility_increase; 
17:     max_migrating_vm = vm; 
18:     push_p = PULL_VM; 
19:     end if 
20: end for 
21: if  max_util_increase > utility_diff_thr  then 
22:      send.Reply(push_p, migrating_vm); 
23: end if 
24: else 
25:       send.Reply(DO_NOTHING, null);  
26       busy_with_migration = false;   
27: end 

 

Utility_before is the sum of the source and destination host utility values before VM live migration. 

Utility_after is the sum of the source and destination host utility values after VM live migration. The 

increase of the host utility value as a result of VM live migration is defined through utility_increase.  

The get.avrg_util() method gives the average CPU utilization of VMs, source and destination hosts, 

calculated for the past 4 consecutive intervals. The utility increase should be greater than a 

predefined utility_diff_thr threshold in order to take a VM migration action. This is done to increase 

the stability of the approach and reduce unnecessary VM live migrations. The variable 

busy_with_migration also is set to false on both source and destination hosts, when the VM live 

migration process is finished. 
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Algorithm 2 is executed on the source host after receiving the response from the destination host.     

In Algorithm 2, the push_pull variable indicates the direction of VM live migration. If its value is 

DO_NOTHING, there is no live migration action because there is no increase in utility function, or the 

destination host is busy with another migration process. 

To differentiate between the cases, the variable reject is tested to check if the destination host is 

busy with another migration. The busy_counter variable limits how many times to try other hosts if 

previous hosts are busy. The overload_counter limits how many times to try other hosts if there are 

no increases in utility.  

Algorithm 2 receive_migration_reply() 

1: if (push_pull == DO_NOTHING) & (reject == BUSY)  then 
2:      if  busy_counter != 0  then 
3:           start_decision(); 
4:           busy_counter --; 
5:      end if 
6:                      else 
7:           busy_counter = busy_counter_thr; 
8:           busy_with_migration = false; 
9:                    end 
10: else if  push_pull == DO_NOTHING  then 
11:      if  overload_counter != 0  then 
12:           start_decision(); 
13:           overload_counter --; 
14:      end if 
15: else if (source_h.get_avrg_util(h) >     

(source_h.getUpperThr(h)) 
16:            new_h = host_power_on(); 
17: migrate_vm_to_host(source_h, new_h, 

source_h.selectVM()); 
18:       end if 
19:       else  
20: busy_with_migration = false; 
21: overload_counter = overload_counter_thr; 
22:       end 
23: end if 
24: else if  push_pull == PUSH_VM   then 
25:      migrate_vm_to_host(source_h, dest_h, migrating_vm); 
26: end if 
27: else if push_pull == PULL_VM   then 
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28:      migrate_vm_to_host(dest_h, source_h, migrating_vm); 
29: end if 

 

In both cases, the start_decision() is called to make a new migration request to another randomly 

selected host. If a suitable host is not found for a number of trials, because there is no increase in 

utility (the overload_counter variable reaches a threshold) and the source host is in an overloaded 

state, then a new host is powered on. In this case, selectVM() is called to select the VM that should 

be migrated from the source host to the new host.   

If the value of the push_pull variable is PUSH_VM or PULL_VM, then it indicates a VM live migration 

action from source to destination host or from destination to source host, respectively. 

6.5. Experimental Results 

In this section, we present experimental results of our proposed UDA approach compared to three 

other approaches. The first one, called No Migration (NOM) approach, allocates CPU resources to 

VMs locally, but does not perform live migration actions.  

The second one is the Centralized Approach (CA), and the last approach is Distributed Allocation (DA), 

as described in Section IV. 

To have a controlled experimental environment and the possibility of repeated experimental runs, 

we have developed a simple event-based cloud simulator. We consider data centers of different sizes 

with the number of hosts varying from 100 to 700 and an initial allocation of 3 VMs per host. To 

simulate VM workloads, CPU usage data of real VMs running in PlanetLab [37], is used.  

Each VM runs one application with a variable workload. The experiment is run for 570-time intervals, 

and the duration of a time interval is set to 5 seconds. The simulation experiment is run for four 

different load levels called VLOW, LOW, HIGH and VHIGH. The load level represents the CPU usage 

consumed by each VM. The load levels taken by multiplying the PlanetLab CPU usage values for each 

time interval with a constant value are as follows: VLOW with 0.2, LOW with 1, HIGH with 2 and 

VHIGH with 3. The experiment is repeated ten times for each combination of approach and load level. 

We have defined four performance metrics for evaluation of the proposed approach, as discussed 

below. 
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6.5.1 VM Sla Violation (VSV) 

This metric represents the penalty of the cloud provider for violating the performance of the cloud 

consumer VMs. The VM SLA violation happens if the difference between allocated CPU and CPU 

usage of the VM is less than 5% of the CPU capacity for four consecutive intervals. The reason for this 

metric is that the performance of an application is poor if the required CPU usage is near the allocated 

CPU share. 

Considering the VM SLA violation metric above, we have defined an upper threshold for host 

overload detection, which is calculated dynamically depending on the number of VMs. To avoid a VM 

SLA violation, each host must have more than 5% capacity above the CPU usage for each VM, so the 

total free CPU capacity of the host should be more than N*5%, where N is the number of VMs. The 

overload threshold is calculated as the total CPU capacity (100%) minus N* 5% [14]. For the underload 

threshold, we used a fixed value of 10% of the CPU capacity. 

In the results, we show the cumulative VSV (CVSV) value that is estimated as the sum of VSV values 

of all VMs for the whole experimental time.    

6.5.2 Energy Consumption (E) 

This is an important metric, since the target of server consolidation in a data center is to reduce 

energy consumption. The total energy consumption of the data center, measured in KWh, for the 

whole experimental time is shown in the experimental results. 

6.5.3 Number of VM Migrations 

The process of live migration is costly because it takes a significant quantity of CPU processing on the 

source host, traffic load during the communication between the source and destination host [39] and 

can cause VM SLA violations. 

6.5.4 Energy and VM Sla Violations (ESV)  

This metric combines energy consumption (E) and cumulative VM SLA violation (CVSV) value in a 

single metric:  

                          𝐸𝑆𝑉 = 𝐸 × 𝐶𝑉𝑆𝑉                                                                               (6.1) 

To see the effect the load level has on the VM SLA violation, Figure 6.5 presents the cumulative VSV 
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value for each approach and the four load levels. For each approach, we notice that while the load 

increases, the SLA violations are increased. From the results, we can see that for all load levels, the 

UDA approach achieves the lowest CVSV value compared to the other approaches. 

 

Figure 6.5: Cumulative VSV over all load levels 

Figure 6.6 shows the energy consumption of the data center for the whole experimental time for 

each approach over all load levels. It is evident that by increasing the load, the energy consumption 

is increased for all approaches.  

The UDA approach, despite consuming more energy than the CA and DA approaches, has smaller SLA 

violations and therefore a lower ESV metric than other approaches, as shown in Figure 6.8. 

 

Figure 6.6: Energy over all load levels 
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Figure 6.7 shows how the load levels affect the number of live migrations. 

 
Figure 6.7: Number of live migrations over all load levels 

It can be noticed that the number of live migrations of the UDA approach is significantly smaller than 

CA and DA for low load levels (VLOW and LOW), while for high load levels (HIGH and VHIGH), the 

number of live migrations of the UDA approach is smaller than DA but greater than the CA approach. 

This is because for high load levels it needs more VM live migrations to achieve lower values of the 

SLA violations and ESV metric. 

Figure 6.8 shows the ESV metric over four load levels, where it is evident that the ESV metric is smaller 

for the UDA approach than the other approaches for each load level. 

 

Figure 6.8: ESV over all load levels 
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We have also estimated the ESV metric for different number of hosts, for all approaches and four 

load levels. We have tested for 100, 300, 500 and 700 hosts.  

In Figure 6.9, we show the ESV value for all load levels, such as (a) VLOW Load, (b) LOW Load, (c) 

HIGH Load, and (d) VHIGH Load.  

The UDA approach for all load levels achieves the smallest ESV value compared to the other 

approaches.  

 

(a) 

 

 
(b) 
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 (c) 

 

 
(d) 

 

Figure 6.9: ESV per number of hosts:  (a) VLOW load, (b) LOW load, (c) HIGH load, (d) VHIGH load  
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6.6. Summary 

We have presented a multi-agent distributed approach for dynamic resource allocation in cloud 

infrastructures based on utility function optimization. The advantage of our approach based on multi-

agent systems is that in each PM there is an agent who is responsible for making the decision to 

initiate the live migration process of VMs from one PM to another PM.  

Through our proposed approach, a centralized controller is avoided, which in a large cloud 

infrastructure could be a communication bottleneck and a single point of failure. This would decrease 

the overall reliability of the system. 

Compared to other approaches, the utility-based distributed resource allocation approach shows 

reduced VM SLA violations and minimized ESV metrics. 
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 7                    

Conclusion 

 

This chapter summarizes our research contributions for resource allocation in cloud infrastructure as 

well as presents future work. 

7.1.  Summary 

Cloud computing as a computation model that supports virtualization technology has provided 

great benefits to the IT infrastructure in general. These benefits are best observed by cloud providers 

and consumers. Cloud customers can obtain the resources they need on demand, at optimal cost, 

and with high performance, through a pay-as-you-go model. On the other hand, cloud providers 

obtain efficient resource utilization and a significant reduction in operational and energy costs. 

Therefore, to maintain these benefits for cloud consumers and cloud providers, adequate dynamic 

resource allocation approaches are needed, specifically in virtual machine consolidation.  

Although various VM resource allocation approaches have been proposed for cloud 

environments, there are still open research challenges that require implementation of innovative 

techniques in this direction. In this dissertation, several VM resource allocation approaches have 

been presented as a way of addressing some of the drawbacks of existing approaches, with a focus 

on the dynamic allocation of resources in cloud infrastructures. 

In a cloud infrastructure, the dynamic consolidation of VMs through live migration is a 

fundamental approach to reduce energy consumption and operational costs. More specifically, live 

migration in a data center has many benefits, such as load balancing, manageability and 

maintenance, minimum violation of the SLAs, energy management, improved performance and 

reliability, improving utilization of resources and reducing management costs. Most of the existing 
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approaches for VM consolidation are based on low-level utilization metrics and thresholds, so they 

have not guaranteed to deliver high performance of the applications for the cloud consumer and the 

cost-benefits of the cloud provider. In the context of live migration, the approaches to detect if a PM 

is overloaded or underloaded are based on short-term predictions. This means that they are based 

on monitoring if the current or the predicted next value exceeds a specified threshold, to determine 

whether a PM should be considered as overloaded or underload, respectively. Therefore, making 

decisions to initiate live migration actions based on short-term predictions can lead to hasty 

decisions, unnecessary live migration overhead, and stability issues.  

In this dissertation, an approach to dynamically allocate resources to VMs in cloud infrastructures 

has been presented. It combines local and global VM resource allocation strategies based on a multi-

agent resource architecture. In this approach, to detect whether a PM is overloaded or underloaded 

is based on long-term resource usage predictions. In the context of this work, long-term predictions 

mean predicting 7-time intervals ahead into the future. Based on this premise, a PM is declared as 

overloaded if the current and the predicted total CPU usage of 7-time intervals ahead into the future 

exceed an overload threshold. The same applies when a PM is declared as underloaded if the current 

and the predicted total CPU usage of 7-time intervals ahead into the future are less than an underload 

threshold. On the other side, a PM is declared as not overloaded if the current and the predicted 

total CPU usage of 7-time intervals ahead into the future is less than the overload threshold. For long-

term predictions, a supervised machine learning approach based on Gaussian Processes is used.   

Another important issue to note especially in long-term resource predictions is the fact that 

predicting further into the future increases the prediction error and the uncertainty, thus diminishing 

the benefits of long-term prediction. Based on this, we have also considered uncertainty as an 

integral feature of long-term resource predictions. To consider the uncertainty of long-term 

predictions, a probabilistic model of the prediction error is built online using the non-parametric 

kernel density estimation method. The results show that the approach presented for dynamic 

resource allocation which considers long-term predictions of resource demand and uncertainty of 

predictions increases stability and overall performance in the cloud infrastructure. 

A key function in cloud computing resource management is task scheduling, where the 

application of effective task scheduling techniques can reduce task completion time, increase the 

efficiency of resource utilization, increase the quality of services, and improve the performance of 

the system. Since cloud computing delivers services over the Internet, service customers must submit 
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their request online, where each service has a number of costumers and also a number of tasks that 

must be processed at a time. Therefore, it is imperative that systems have implemented scheduling 

techniques and policies that consider certain parameters, such as the nature of the task, the size of 

the task, the task execution time, the availability of resources, the task queue, and the load on the 

resources.  Thus, proper task scheduling may result in an efficient utilization of resources. The task 

scheduling problem itself is NP-hard, so heuristic algorithms must be implemented to solve it. Based 

on this, we have presented a task scheduling algorithm for cloud environments based on the 

Heterogeneous Earliest Finish Time (HEFT) algorithm, called experiential HEFT (EHEFT). It considers 

experiences with previous executions of tasks to determine the workload of resources. To realize the 

EHEFT algorithm, we propose a new way of HEFT rank calculation to specify the minimum average 

execution time of previous runs of a task on all relevant resources. Experimental results show that 

our EHEFT algorithm performs better and is more efficient in terms of scheduling length ratio and 

runtime rather than several well-known existing approaches. 

The IaaS model of cloud computing allocates resources in the form of VMs that can be resized 

and live migrated at runtime. Thus, for dynamic VM consolidation an important mechanism that 

provides major benefits for data centers is live migration of VMs, from one PM to another PM. Live 

migration of VMs enables the allocation of resources to running services without interruption during 

the migration process. This is important, especially for services with particular quality of service (QoS) 

requirements. In the context of VM resource allocation in most existing approaches, the problem lies 

in the fact that they are based on centralized resource manager architectures. These architectures 

are based on a central controller, which does not perform well for large cloud infrastructures, with 

the possibility of a communication bottleneck, and is a single point of failure in terms of reliability. In 

contrast to the existing dynamic VM consolidation approaches, we have presented a distributed 

resource allocation approach based on multi-agent systems. 

7.2.  Future Work 

To further improve the solutions proposed in this dissertation, we have identified several areas for 

the future work. Based on experimental results, the distributed VM resource allocation approach 

that uses the utility function based on multi-agent systems has resulted in better overall performance 

compared to a centralized approach and threshold-based distributed approach. A distributed VM 
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resource allocation approach is suitable for large-scale cloud infrastructures and avoids the 

drawbacks arising from the centralized approach in terms of single point of failure and 

communication bottlenecks. In this distributed architecture based on multi-agent systems, on each 

physical machine, there is an agent who is responsible for making the decisions for the live migration 

of VMs from one PM to another PM. A future challenge to be investigated is how local agents with a 

limited view should coordinate each other to achieve a global optimization objective. 

For a distributed VM allocation approach, what can be further investigated is the development of an 

accurate model that selects the best utility function to improve the reduction in energy consumption 

in a data center. Another direction that can be investigated in terms of the model for the utility 

function is the inclusion of other resources, such as memory and network I/O, since they have a 

significant impact on the overall performance in the process of dynamic VM consolidation. 

In the context of VM consolidation with a special emphasis on the live migration process, a challenge 

is to detect when a PM is in an overloaded or underloaded state, in order to make the decision to 

initiate the live migration process. Some of the existing approaches have based their prediction on 

monitoring resource usage where the actual or the predicted next value exceeds specified thresholds, 

i.e, the upper and lower threshold. Mostly, these approaches rely on live migration decisions based 

on short-term predictions and this leads to unnecessary live migration overhead and stability issues. 

Unlike existing approaches, we have based the live migration decisions on resource usage predictions 

several steps ahead in the future, thus making long-term predictions. This increases the stability of 

the live migration process. However, an interesting area of future work would be the investigation of 

long-term predictions of the usage of multiple resources such as CPU, memory, and I/O bandwidth 

and their interdependencies in allocation decisions. 

To further optimize the chain of dynamic resource allocation processes and especially VM placement, 

other factors such as network traffic and thermal issues should be considered. The process of VM 

consolidation where the migration of VMs to PMs located in different racks should take place also 

has network cost and VM traffic load. This network cost in a data center should not be neglected 

because it can lead to higher SLA violations. Therefore, in order to reduce network traffic, more 

efficient techniques and approaches with low computational complexity should be investigated. 

These techniques based on network-aware and traffic-aware patterns should analyze the impact of 

traffic and network topology inside a data center.  
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Another direction in which further research can be investigated and which is important for VM 

consolidation is the thermal problem of computing resources. A significant portion of electrical 

energy consumed by computing resources is converted into heat. Operation of devices at high 

temperatures reduces their lifetimes and the availability and reliability of the system. Although 

nowadays there are advanced cooling systems in modern data centers, however, for cloud providers 

they are expensive to buy, costly to maintain, and they consume energy as well. Therefore, it is 

necessary to develop thermal-aware VM consolidation techniques based on machine learning 

methods that reduce the energy consumption of the devices in the data center, and at the same time 

to reduce heat.  
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