

Third Cycle of Studies

Doctoral Dissertation Topic:

DYNAMIC RESOURCE ALLOCATION IN CLOUD COMPUTING

CANDIDATE: SUPERVISOR:

M.Sc. Artan Mazrekaj Prof. Dr. Bernd Freisleben

July 2020

UNIVERSITETI I EVROPËS JUGLINDORE
УНИВЕРЗИТЕТ НА ЈУГOИCTOЧНА ЕВРОПА
SOUTH EAST EUROPEAN UNIVERSITY

FAKULTETI SHKENCAVE DHE TEKNOLOGJIVE BASHKËKOHORE
ФАКУЛТЕТ ЗА СОВРЕМЕНИ НАУКИ И ТЕХНОЛОГИИ
FACULTY OF CONTEMPORARY SCIENCES AND TECHNOLOGIES

ii

Abstract

Cloud computing is a widespread Internet-based computing model that enables resource usage on

demand and as a service. Under this paradigm, services and resources are delivered in a pay-as-you-

go fashion, where cloud clients only pay for the resources they actually used and as long as they use

these services and resources. On the other hand, the cloud provider’s goal is to provide high-

performance services and resources at optimal cost for the cloud clients, and this can be achieved

through dynamic allocation of Virtual Machines (VMs) according to workload changes in order to

meet Service Level Agreement (SLA) criteria. To schedule the incoming tasks from cloud consumers

and to efficiently manage computer resources, cloud providers use scheduling algorithms. Task

scheduling and resource allocation enable cloud providers to maximize revenue and utilize resources

properly, so both are important issues in cloud infrastructures.

In this dissertation, the problem of task scheduling at the time these tasks are submitted to the

proper VMs in the cloud environment is addressed and solutions are proposed. Effective task

scheduling approaches reduce the task completion time, increase the efficiency of resource

utilization, and improve the quality of service and the overall performance of the system. A novel

task scheduling algorithm for cloud environments based on the Heterogeneous Earliest Finish Time

(HEFT) algorithm, called experiential HEFT, is proposed. It considers experiences with previous

executions of tasks to determine the workload of resources. To realize the experiential HEFT

algorithm, we propose a novel way of HEFT rank calculation to specify the minimum average

execution time of previous runs of a task on all relevant resources. Experimental results show that

the proposed experiential HEFT algorithm performs better than existing approaches considered in

our evaluation.

To dynamically allocate resources to VMs in an Infrastructure-as-a-Service (IaaS) cloud environment,

a resource management solution is proposed. It combines local and global VM resource allocations.

Local resource allocation means allocating CPU resource shares to VMs according to the current load.

Global resource allocation means performing live migration actions when a host is overloaded or

underloaded in order to mitigate VM performance violations and reduce the number of hosts to save

energy. To detect if a host is overloaded or underloaded, an approach based on long-term resource

iii

usage predictions is used, while for the long-term predictions a supervised machine learning

approach based on Gaussian Processes is proposed. Experimental results show that long-term

predictions of resource usage can increase stability and overall performance of the cloud

infrastructure.

Knowing that overload or underload detection based on long-term predictions carries with it the

uncertainty of correct predictions, which can lead to erroneous decisions, we propose an approach

in which we have considered the uncertainty of long-term predictions and the live migration

overhead. To consider the uncertainty of long-term predictions for overload detection, a novel

probabilistic model of the prediction error is built online using the non-parametric kernel density

estimation method. Based on experimental results, making overload detection decisions

proportional to the uncertainty of predictions increases the overall system performance of the live

migration process.

Finally, to address the problem of the VM consolidation approaches that rely on a centralized

architecture, a distributed resource allocation solution based on multi-agent systems is proposed.

Our approach uses a utility function based on host CPU utilization to drive live migration actions.

Agents, attached to each physical machine, are responsible for making decisions for the live migration

of VMs from one host to another host. The key novel feature of the proposed approach is that

allocation decisions are based on the individual agents’ utility functions, which offers the flexibility

of easily changing the allocation policy. Experimental results show that the utility-based distributed

resource allocation approach achieves better overall performance compared to a centralized

approach and a threshold-based distributed approach.

iv

Abstrakt

Cloud computing është një model i përhapur kompjuterik i bazuar në Internet që mundëson

përdorimin e burimeve sipas kërkesës dhe i cili ofrohet si shërbim. Sipas këtij modeli, shërbimet dhe

burimet ofrohen sipas mënyrës pay-as-you-go, ku klientët e cloud-it paguajnë vetëm për burimet që

ata i kanë në shfrytëzim dhe për sa kohë që ata i shfrytëzojnë këto shërbime dhe burime.

Nga ana tjetër, qëllimi i ofruesit të cloud-it është të sigurojë shërbime dhe burime me performancë

të lartë dhe me kosto optimale për përdoruesit e cloud-it, dhe kjo mund të arrihet përmes alokimit

dinamik të Makinave Virtuale (MV) varësisht nga ndryshimet e ngarkesës, në mënyrë që të

përmbushë kriteret e Service Level Agreement (SLA).

Për të planifikuar detyrat në hyrje nga përdoruesit e cloud-it dhe për të menaxhuar në mënyrë efikase

burimet kompjuterike, ofruesit e cloud-it përdorin algoritme për planifikim. Planifikimi i detyrave dhe

alokimi i burimeve u mundëson ofruesve të cloud-it të maksimizojnë të ardhurat dhe të përdorin

burimet siç duhet, kështu që të dyja këto janë çështje të rëndësishme në infrastrukturën e cloud.

Në këtë disertacion, është adresuar problemi i planifikimit të detyrave në kohën kur këto detyra u

dërgohen VM-ve të përshtatshme në mjediset cloud dhe janë propozuar zgjidhje. Qasjet efektive të

planifikimit të detyrave zvogëlojnë kohën e përfundimit të detyrës, rrisin efikasitetin e përdorimit të

burimeve dhe përmirësojnë kualitetin e shërbimit dhe performancën e përgjithshme të sistemit.

Është propozuar një algoritëm i ri për caktimin e detyrave për mjediset cloud, bazuar në algoritmin

Heterogeneous Earliest Finish Time (HEFT), i quajtur experiential HEFT. Algoritmi merr në konsideratë

përvojat me ekzekutimet e mëparshme të detyrave, ashtu që të përcaktoj ngarkesën e burimeve. Për

të realizuar algoritmin experiential HEFT, ne propozojmë një mënyrë të re të llogaritjes së rankut të

algoritmit HEFT, për të specifikuar kohën mesatare minimale të ekzekutimeve të mëparshme të një

detyre, në të gjitha burimet përkatëse. Rezultatet eksperimentale tregojnë se algoritmi i propozuar

experiential HEFT përformon më mirë se sa qasjet ekzistuese të cilat janë marrë në konsideratë në

vlerësimin tonë.

Për të alokuar në mënyrë dinamike burimet për MV-të në një mjedis të cloud-it Infrastruktura-si-

shërbim (IaaS), është propozuar një zgjidhje e menaxhimit të burimeve. Ai kombinon alokimet locale

dhe globale të burimeve të MV.

 Alokimi i burimeve lokale nënkupton ndarjen e burimit të CPU-së në MV-të sipas ngarkesës aktuale.

Alokimi I burimeve globale nënkupton kryerjen e veprimeve të migrimit kur një host është i

v

mbingarkuar ose i nënngarkuar në mënyrë që të lehtësojë shkeljet e performancës së MV-së dhe të

zvogëlojë numrin e hostave për të kursyer energji. Për të detektuar nëse një host është i mbingarkuar

ose i nënngarkuar, përdoret një qasje e bazuar në parashikimet afatgjata të përdorimit të burimeve,

ndërsa për parashikimet afatgjata është propozuar një qasje supervised machine learning e bazuar

në Proceset Gaussiane. Rezultatet eksperimentale tregojnë se parashikimet afatgjata të përdorimit

të burimeve mund të rrisin stabilitetin dhe performancën e përgjithshme në infrastrukturës cloud.

Duke e ditur se detektimi i mbingarkesës ose nënngarkesës bazuar në parashikimet afatgjata bartë

me vete pasigurinë e parashikimeve të sakta, të cilat mund të çojnë në vendime të gabuara, ne

propozojmë një qasje në të cilën kemi marrë parasysh pasigurinë e parashikimeve afatgjata dhe

ngarkesën e live migrimit. Për të marrë parasysh pasigurinë e parashikimeve afatgjata për zbulimin e

mbingarkesës, një model i ri probabilistik i gabimit të parashikimit është ndërtuar në internet duke

përdorur metodën non-parametric kernel density. Bazuar në rezultatet eksperimentale, marrja e

vendimeve për zbulimin e mbingarkesës në përpjesëtim me pasigurinë e parashikimeve rritë

performancën e përgjithshme të sistemit në procesin e live migrimit.

Së fundi, për të adresuar problemin e qasjeve të konsolidimit të MV-ve që mbështeten në një

arkitekturë të centralizuar, është propozuar një zgjidhje e shpërndarë e alokimit të burimeve bazuar

në sistemet me shumë agjentë. Qasja jonë përdorë një funksion utilitar të bazuar në përdorimin e

CPU-së së hostit për të drejtuar veprimet e live migrimit. Agjentët, të bashkangjitur në çdo makinë

fizike, janë përgjegjës për marrjen e vendimeve për live migrimin e MV-ve nga një host në tjetrin.

Karakteristika kryesore e qasjes së propozuar është që vendimet për alokim bazohen në funksionet

utilitare të agjentëve individual, e që ofron fleksibilitet të ndryshimit të lehtë të policës së alokimit.

Rezultatet eksperimentale tregojnë se qasja e alokimit të burimeve të shpërndarë të bazuar në utilitet

arrin performancë më të mirë të përgjithshme në krahasim me qasjet e centralizuara dhe qasjet e

shpërndara të bazuara në prag.

vi

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Dr. Bernd Freisleben.

His continuous support, advice, and encouragement have made it possible to finish this thesis.

I am especially grateful for his patience in discussing challenges in the context of this thesis and for

his advice on how to look at problems from different dimensions.

I am very grateful forever to Dr. Dorian Minarolli for his advice, motivation, and support during my

PhD studies, without which the completion of this thesis would have been more difficult.

I am deeply indebted to my parents, brother, and sisters for their lifelong support, trust, and

encouragement.

Last but not least, I would like to thank my wife Jehona for her endless patience and love, and my

children Erdi and Teo for their unconditional love and happiness.

vii

CONTENTS

I. Fundamentals and Related Work 1

1. Introduction 2

1.1. Motivation………………………………………………………………………………………… 2

1.2. Research Challenges…………………………………………………………………………… 3

1.3. Research Contributions…………………………………………………………………………. 6

1.4. Publications………………………………………………………………………………………. 8

1.5. Organisation of this Dissertation……………………………………………………………….. 9

2. Fundamentals 11

2.1. Introduction………………………………………………………………………………………11

2.2. Cloud Computing………………………………………………………………………………. 11

2.2.1 Key Cloud Characteristics……………………………………………………………… 12

2.2.2 Cloud Service Models……………………………………………………………………13

2.2.3 Cloud Computing Deployment Models………………………………………………... 15

2.3. Virtualization……………………………………………………………………………………. 18

2.4. Service Level Agreements (SLAs)…………………………………………………………… 20

2.5. Dynamic Resource Allocation in Cloud Computing………………………………………… 22

2.5.1 Virtual Machine Consolidation (VMC)…………………………………………………. 23

2.5.2 Virtual Machine Live Migration Components…………………………………………. 38

2.6. Performance Metrics……………………………………………………………………………43

2.7. CloudSim………………………………………………………………………………………... 47

2.8. Summary………………………………………………………………………………………... 49

3. Related Work 50

3.1. Introduction………………………………………………………………………………………50

3.2. VM Consolidation based on Live Migration…………………………………………………. 50

3.3. VM Consolidation based on Hierarchical Architectures……………………………………. 57

3.4. Task Scheduling And Resource Allocation in Cloud Environments……………………… 58

3.5. Summary………………………………………………………………………………………... 70

II. Long-term Predictions and Task Scheduling 71

4. Long-Term Predictions for Host Overload and Underload Detection in Cloud
Infrastructures 72

4.1. Introduction………………………………………………………………………………………72

4.2. Resource Manager Architecture……………………………………………………………… 73

4.2.1 Host Overload Detection………………………………………………………………...75

4.2.2 Host Underload Detection……………………………………………………………….76

4.2.3 Host Not-Overload Detection…………………………………………………………... 76

4.2.4 Uncertainty in Long-Term Predictions………………………………………………… 76

viii

4.2.5 Probabilistic Overload Detection………………………………………………………. 77

4.2.6 Probabilistic Not-Overload Detection………………………………………………….. 78

4.2.7 Probabilistic Underload Detection……………………………………………………... 79

4.3. Experimental Results………………………………………………………………………….. 80

4.4. Summary………………………………………………………………………………………... 88

5. The Experiential Heterogeneous Earliest Finish Time Algorithm for Task Scheduling in
Clouds 89

5.1. Introduction………………………………………………………………………………………89

5.2. Task Scheduling Problem Description………………………………………………………..91

5.3. CPOP and HEFT………………………………………………………………………………..93

5.3.1 CPOP……………………………………………………………………………………... 94

5.3.2 HEFT……………………………………………………………………………………… 95

5.4. Experiential HEFT……………………………………………………………………………… 96

5.5. Experimental Results…………………………………………………………………………...98

5.5.1 Scheduling Length Ratio (SLR)………………………………………………………... 99

5.5.2 Runtime…………………………………………………………………………………. 103

5.6. Summary………………………………………………………………………………………. 105

III. Distributed Resource Allocation 106

6. Distributed Resource Allocation in Cloud Computing using Multi-Agent Systems 107

6.1. Introduction……………………………………………………………………………………. 107

6.2. System Architecture…………………………………………………………………………...108

6.3. Centralized And Threshold-Based Distributed Allocation Approaches…………………. 109

6.3.1 Centralized Allocation…………………………………………………………………. 110

6.3.2 Threshold-Based Distributed Allocation……………………………………………... 110

6.4. Utility-Based Distributed Allocation Approach……………………………………………...111

6.5. Experimental Results………………………………………………………………………… 115

6.5.1 VM SLA Violation (VSV)………………………………………………………………. 116

6.5.2 Energy Consumption (E)……………………………………………………………… 116

6.5.3 Number of VM Migrations……………………………………………………………...116

6.5.4 Energy and VM SLA Violations (ESV)………………………………………………..116

6.6. Summary………………………………………………………………………………………. 121

IV. Conclusion 122

7. Conclusion 123

7.1. Summary………………………………………………………………………………………. 123

7.2. Future Work…………………………………………………………………………………… 125

8. References 128

ix

List of Figures

Figure 2.1. Key cloud characteristics .. 12

Figure 2.2. Cloud service models.. 14

Figure 2.3: A public cloud model ... 15

Figure 2.4: A private cloud model ... 16

Figure 2.5: A community cloud model ... 16

Figure 2.6: A hybrid cloud model .. 17

Figure 2.7: A virtualized physical machine .. 20

Figure 2.8: SLA life cycle [60] ... 21

Figure 2.9: A system model for resource allocation in a data center [118] 23

Figure 2.10: An example of VM consolidation ... 24

Figure 2.11: Proactive dynamic VM framework [129] .. 26

Figure 2.12: VM consolidation stages ... 28

Figure 2.13: VM consolidation flowchart ... 29

Figure 2.14: An overview of VMC techniques classification .. 34

Figure 2.15: Pre-copy technique flowchart [101] ... 40

Figure 2.16: Post-copy technique flowchart [101] ... 41

Figure 2.17: Hybrid technique flowchart [101] ... 42

Figure 2.18: Layered CloudSim architecture [42] .. 48

Figure 4.1: Resource manager architecture .. 73

Figure 4.2: Cumulative VSV over all loads and migration penalties .. 83

Figure 4.3: Cumulative VSV over all migration penalties and two load levels 84

Figure 4.4: Number of live migrations over all loads and migration penalties 84

Figure 4.5: Number of live migrations over all migration penalties for two load levels 85

Figure 4.6: Energy over all loads and migration penalties ... 86

Figure 4.7: Energy over all migration penalties for two load levels .. 86

Figure 4.8: ESV value over all loads and migration penalties .. 87

Figure 4.9: ESV value over all loads and migration penalties .. 87

Figure 5.1: A system model of workflow application scheduling in a cloud environment 90

Figure 5.2: An example of task graph and computation time matrix of the tasks in each processor 92

Figure 5.3: Makespan for number of tasks .. 100

Figure 5.4: Makespan for connectivity .. 101

Figure 5.5: Makespan for number of processors ... 101

Figure 5.6: Makespan for processor range ... 102

Figure 5.7: Scheduling length ratio ... 102

x

Figure 5.8: Runtime for number of tasks ... 103

Figure 5.9: Runtime for connectivity .. 104

Figure 5.10: Runtime for number of processors .. 104

Figure 5.11: Runtime for processor range ... 105

Figure 6.1: Centralized allocation architecture .. 109

Figure 6.2: Distributed allocation architecture ... 109

Figure 6.3: The utility function model .. 111

Figure 6.4: Communication scheme between source and destination host 112

Figure 6.5: Cumulative VSV over all load levels .. 117

Figure 6.6: Energy over all load levels .. 117

Figure 6.7: Number of live migrations over all load levels ... 118

Figure 6.8: ESV over all load levels .. 118

Figure 6.9: ESV per different number of hosts, for (a) VLOW load, (b) LOW load, (c) HIGH load and

(d) VHIGH load .. 120

xi

List of Abbreviations

Abbreviations Explanation

AaaS Analytics as a Service

ACO Ant Colony Optimization

BFD Best Fit Decreasing

BPaaS Business Process as a Service

CaaS Communications as a Service

CFS Constant Fixed Selection

CompaaS Compute as a Service

CP Constraint Programming

CPOP Critical Path on a Processor

DaaS Desktop as a Service

DC Data Center

DLS Dynamic Level Scheduling

DSaaS Data Storage as a Service

DSB Dynamic Self-Ballooning

DVMC Dynamic Virtual Machine Consolidation

EHEFT Experiential Heterogeneous Earliest Finish Time

EFT Earliest Finish Time

FF First Fit

FFD First Fit Decreasing

FFT Fast Fourier Transform

FQL Fuzzy Q-Learning

GA Global Agent

HA Host Agent

HEFT Heterogeneous Earliest Finish Time

HPG High Potential Growth

IaaS Infrastructure as a Service

IQR Inter Quartile Range

KVM Kernel-based Virtual Machine

LP Linear Programming

LR Local Regression

xii

LRR Local Robust Regression

QoS Quality of Service

MaaS Monitoring as a Service

MAD Median Absolute Deviation

MC Maximum Correlation

MH Mapping Heuristic

MIPS Millions of Instructions per Second

ML Machine Learning

MMT Minimum Migration Time

MU Minimum Utilization

NaaS Network as a Service

NF Next Fit

PaaS Platform as a Service

PABFD Power Aware Best Fit Decreasing Algorithm

P2P Peer to Peer

PM Physical Machine

PSO Particle Swarm Optimization

SaaS Software as a Service

SecaaS Security as a Service

RC Random Choice

RL Reinforcement Learning

RR Round Robin

RS Random Selection

SA Simulated Annealing

SLA Service Level Agreement

SLAV Service Level Agreement Violations

SVMC Static Virtual Machine Consolidation

TH Threshold

VM Virtual Machine

VMC Virtual Machine Consolidation

VMM Virtual Machine Monitor

VPC Virtual Private Cloud

XaaS X as a Service

1

Part I.

Fundamentals and Related Work

2

1
Introduction

1.1. Motivation

Cloud computing has become an effective solution for providing a flexible, manageable, on-demand

and dynamically scalable computing infrastructure for many applications. Cloud computing also

presents an important trend in the development of computing technologies, systems and

architectures, and receives great interest from academia and industry.

In general, this technology has enabled businesses, governmental organizations and other

institutions to benefit in time, quality of service, management, and operational cost. From the point

of view of enterprises, providers and consumers, other benefits are cost effective, on-demand self-

services, high efficiency, availability, flexibility, scalability and reliability, resource utilization,

applications as utilities over the Internet, configuring applications online, online development and

deployment tools, etc. The cloud consumers can use resources according to the pay-as-you-go model,

where payment is made depending on consumption and this in itself constitutes a benefit to

consumers.

Cloud service models are classified into three groups:

(1) Software-as-a-Service (SaaS) where applications that are in cloud infrastructure can be accessed

by various consumers’ devices through a thin client interface (such as a web browser).

(2) Platform-as-a-Service (PaaS) provides developers with a platform where they can develop, test,

deploy and host different applications.

(3) Infrastructure-as-a-Service (IaaS) provides consumers with computing resources such are

processing, storage, networks and other fundamental resources. The IaaS model is viewed having

huge interest for research by the fact that management of resources in the cloud infrastructure is a

3

complex issue, knowing the ever-increasing demand for computing resources. Seeing this model as

important, we have focused our work on IaaS.

Therefore, to increase the efficiency of the management of computing resources in a cloud

infrastructure, virtualization technology has a key role in modern data centers and cluster systems.

The use of virtualization technologies has greatly reduced operational costs, has enabled the creation

of a suitable environment for application development, debugging and testing. In addition, this

increase in computing efficiency results in lower space, maintenance, cooling and electricity costs [2].

Cloud computing infrastructures based on virtualization technology consist of multiple virtualized

nodes, in which multiple applications and services are running in Virtual Machines (VMs) [1]. The

virtualization layer uses lower-level resources to create multiple VMs known as a Virtual Machine

Monitor (VMM). Hence, this technology has enabled consumers to benefit from the most efficient

use of resources and as well as in the most favourable cost. However, the dynamic allocation of

resources to a virtualized infrastructure is a complex issue, based on the large number of physical

machines in the data center, rapid increase in demand and workload. Considering this complexity, it

is necessary to create the powerful mechanisms through techniques and algorithms for automation

and controlled resource management.

1.2. Research Challenges

In a data center, the primary goal of a dynamic resource allocation process is to avoid wasting

resources as a result of under- and over-utilization, which may result in a violation of the Service Level

Agreements (SLA) between the customers and the cloud provider. A key role in the dynamic resource

allocation process is played by important mechanism known as a VM live migration. Live migration

of VMs in a cloud infrastructure means moving the VM which is running on a physical machine (source

node) to another physical machine (destination node), while the VM is powered up. In general, live

migration of VMs is a process that has a cost in terms of consumption of resources. When we consider

the architecture of cloud infrastructures consisting of thousands of physical machines, the migration

process affects the performance of the system and applications. Task scheduling is also an important

issue closely linked to dynamic resource allocation in cloud infrastructures. There are several

challenges related to dynamic resource allocation in cloud infrastructure, as described below.

4

• Long-term predictions of resources challenges. Dynamic workloads in cloud infrastructures

can be managed through live migration of virtual machines from overloaded or underloaded

physical machines (PMs) to other PMs to save energy and to mitigate performance related to

Service Level Agreement (SLA) violations. Therefore, VM live migration is a resource allocation

mechanism that dynamically consolidates the low utilization VMs on few PMs. An important

issue of the live migration mechanism is to detect when a host is overloaded or underloaded.

The question that arises here is that: how to make long-term predictions of PMs’ workloads

by predicting resource utilization for detecting their overload and underload states? Some

existing approaches [19] [44] [46] are based on monitoring resource usage, and if the current

or the predicted next value exceeds a specified threshold, then a host is declared as

overloaded. The problem with these approaches is that basing decisions for host overload

detection on a single resource usage value or a few future values can lead to hasty decisions,

unnecessary live migration overhead, and stability issues. Thus, detecting whether a host is

overloaded or underloaded is based on current or short-term predictions of resource usage

and static usage thresholds, which can be sensitive to short spikes of load that can cause

stability problems and unnecessary live migrations. There are other approaches [21] that

apply heuristic algorithms for host overload and underload detection based on statistical

analysis of historical resource usage data. In this case, an adaptive usage threshold is used

based on statistical parameters of previous data, such as CPU usage Median Absolute

Deviation (MAD) or interquartile range (IQR). The authors also apply local regression methods

for predicting CPU usage values some time ahead into the future.

• VM resource allocation challenges. In the process of dynamic resource allocation as a

continuation of the above challenges, there are other challenges as well, especially in the

mapping of VMs to PMs. The process of mapping VMs to PMs in principle has the role of load

balancing and to avoid performance level violations.

There are several questions that can be raised here, such as: When to migrate a VM? Which

VM needs to migrate (selection of VM)? Which is the destination node (PM), and where

should the selected VM be placed? The typical problem here is the mapping between VMs to

PMs and dynamically changing it, when the workload changes during run time, in order to

reduce the number of PMs and to keep application performance to SLA conditions. In general,

this can be seen as a bin-packing problem of packing VMs of different sizes into the smallest

5

numbers of PMs (bins). Some of the existing approaches [36] [46] have treated it as a bin-

packing problem, where the sizes of items to be packed are VM resource utilizations (e.g. CPU

utilization) and the sizes of bins are resource capacities of PMs. The bin-packing problem itself

is an NP-hard problem so it requires heuristic methods to find approximate solutions to the

problem. The problem with these approaches is deciding when and which VM to migrate,

based on the use of low-level metrics, such as resource utilization. But the decision based

solely on this metric omits other high-level performance metrics, especially when it is known

that performance changes with the workload. Another problem with the bin-packing

technique is that as the workload changes, the size of the VMs also changes, so the problem

becomes multi-size bin packing with items to be packed elastically in size. The data center

also has heterogeneous PMs of different resource capacities, so the bins are of different sizes.

Also, the existing approaches have used policies implemented on heuristic ordering

algorithms, such are First-Fit-Decreasing (FFD) and Best-Fit-Decreasing (BFT), to packed VMs

to few PMs, but these policies are not suitable when a load balancing policy needs to be

implemented in the data center and more PMs are added. Therefore, a more flexible

approach that can change according to data center policy changes is required.

• Centralized resource allocation architecture challenges. An important mechanism that

provides major benefits for data centers is live migration of VMs, from one PM to another.

Live migration of VMs enables resource allocation to running services without interruption

during the migration process, and this is an important feature especially for services with

particular quality of service (QoS) requirements. There are several VM resource allocation

approaches [49] [56-57] that use a centralized architecture in order to reduce energy

consumption and number of migrations in the data center. These approaches use the

hierarchical architecture based on multi-agents for the dynamic VM consolidation task in a

large-scale data center. The problem with these approaches is that they use a central

controller (agent) and that does not scale well for large cloud infrastructures, might represent

a communication bottleneck, and is a single point of failure in terms of reliability. Another

issue is that the central controller (agent) should communicate with other local agents to

make a decision about the migration of the VMs, and this can lead to delays and decrease the

overall communication performance in large-scale systems. A central controller keeps the

information about the capacity of available resources of all the PMs. The controller runs the

6

centralized Virtual Machine Consolidation (VMC) algorithm that selects a destination PM for

the selected VM migration, taking into account the resource availability of all PMs. In such

situations, there is a need for a new approach based on a distributed architecture where the

decision to initiate the live migration process is not taken by a central controller or agent, but

the responsibility is distributed to individual agents.

1.3. Research Contributions

The main contributions of this dissertation are several approaches that enable the dynamic allocation

of resources in a cloud infrastructure:

• Long-term predictions for physical machine overload and underload detection in cloud

infrastructures

In cloud infrastructures, the dynamic workloads can be managed through live migration of

VMs from overloaded or underloaded PMs to other PMs in order to reduce power

consumption and to satisfy the SLA requirements. An important problem is how to detect

when a PM is overloaded or underloaded in order to initiate the live migration actions in time.

An approach that tackles long-term predictions of resource demands of VMs for PM overload

detection is presented. This approach enables live migration decisions to be based on

resource usage predictions several steps ahead into the future. This increases the stability

and application performance and allows cloud providers to predict overload states before

they happen. To dynamically allocate resources to VMs in an IaaS cloud, the approach

combines local and global VM resource allocations. Local resource allocation enables

allocating CPU resource shares to VMs according to the current load, while global resource

allocation enables live migration actions when a PM is overloaded or underloaded in order to

reduce the number of PMs and energy consumption and to mitigate VM performance

violations.

For overload or underload PM detection, long-term predictions of resource usage are made,

based on Gaussian processes as a machine learning approach for time series forecasting.

Compared to existing works, this approach considers long-term predictions of resource

7

demand and thus can increase stability and overall performance in cloud environments. The

approach is presented more detail in Chapter 4.

• Tackling uncertainty in long-term predictions

Knowing that overload or underload detection based on long-term predictions carries with it

the uncertainty of correct predictions, which can lead to erroneous decisions, we consider the

uncertainty in the migration process during virtual machine consolidation. Unlike existing

approaches, we propose an approach in which we have considered the uncertainty of long-

term predictions and the live migration overhead. To consider the uncertainty of long-term

predictions for overload detection, a novel probabilistic model of the prediction error is built

online using the non-parametric kernel density estimation method. The approach is explained

in more detail in Chapter 4.

• The Experiential Heterogeneous Earliest Finish Time Algorithm for task scheduling in clouds

With the enormous growth of cloud computing as a computation model, the number of

consumers and the demand for cloud resources also increases accordingly. Two basic

functions in cloud resource management, task scheduling and resource allocation, are

responsible for assigning costumer jobs to the appropriate resources to perform. In this

context, an issue closely related to the dynamic allocation of resources in the cloud

environment is the problem of task scheduling at the time the tasks are submitted to the

proper VM. The execution of a task has a cost and depends on how the resources are

allocated. Resource allocation constraints define restrictions on how to allocate resources,

and scheduling under resource allocation constraints provide proper resource allocation to

tasks. In cloud environments, the physical machines are located in different geographical

locations and have different abilities in the way their resources perform, and each has its own

cost ratio. Therefore, in these situations we should consider the cost and makespan

associated with the task schedule and the resources allocated. Starting from these premises

and constraints, resource allocation and task scheduling should be carefully coordinated and

optimized jointly in order to achieve an overall cost and time effective schedule. In this

manner, by minimizing cost and makespan, the task scheduling process can be optimized.

An approach that addresses the problem of task scheduling in cloud environments is

presented. The proposed algorithm, called experiential HEFT (EHEFT), is based on the existing

8

algorithm known as Heterogeneous Earliest Finish Time (HEFT). The EHEFT algorithm

considers experiences with previous executions of tasks to determine the workload of

resources. The algorithm also defines rank calculation to specify the minimum average

execution time of previous runs of a task on all relevant resources. Compared to existing work,

this approach enables effective task scheduling by reducing the task completion time,

increase the efficiency of resource utilization, and improve the quality of service and the

overall performance of the system. The approach is presented in more detail in Chapter 5.

• Distributed resource allocation in cloud infrastructures using multi-agent systems

The problem with existing approaches is that they are based on centralized VM resource

allocation architectures, which is considered a drawback because a central controller can be

seen as a single point of failure in the communication process. Therefore, we propose a

distributed VM resource allocation approach for VM consolidation relying on multi-agent

systems. This approach uses a utility function based on host CPU utilization to drive live

migration actions. Agents, attached to each PM, are responsible for making decisions for the

live migration of VMs from one PM to another PM. The key feature of the proposed approach

is that allocation decisions are based on the individual agents’ utility functions, which offers

the flexibility of easily changing the allocation policy. Compared to other approaches, the

utility-based distributed resource allocation approach achieves a better overall performance

avoiding a single point of failure and offers scalability in large-scale clouds. The approach is

discussed in more detail in Chapter 6.

1.4. Publications

The research papers that have been published during this dissertation are:

1. Dorian Minarolli, Artan Mazrekaj, and Bernd Freisleben. Tackling Uncertainty in Long-term

Predictions for Host Overload and Underload Detection in Cloud Computing. In Journal of

Cloud Computing: Advances, Systems and Applications 6(4), Springer, 2017.

2. Artan Mazrekaj, Dorian Minarolli, and Bernd Freisleben. Distributed Resource Allocation in

Cloud Computing using Multi-Agent Systems. In Telfor Journal, pp. 110-115, 2017.

9

3. Artan Mazrekaj, Dorian Minarolli, and Bernd Freisleben. Dynamic Resource Allocation in

Cloud Environments. In Information & Communication Technologies at Doctoral Student

Conference (ICT@DSC), Thessaloniki, Greece, pp. 105-114, May 2018.

4. Artan Mazrekaj, Arlinda Sheholli, Dorian Minarolli, and Bernd Freisleben. The Experiential

Heterogeneous Earliest Finish Time Algorithm for Task Scheduling in Clouds. In 9th

International Conference on Cloud Computing and Services Science (CLOSER 2019), Heraklion,

Crete, Greece, pp. 371-379, May 2019.

5. Artan Mazrekaj, Shkelzen Nuza, Mimoza Zatriqi, Vlera Alimehaj. An Overview of Virtual

Machine Live Migration Techniques. International Journal of Electrical and Computer

Engineering (IJECE), Vol. 9, No. 5, 2019.

1.5. Organisation of this Dissertation

This dissertation is organized as follows:

Chapter 2 introduces the fundamental topics of this work. This includes cloud computing, cloud

service models, cloud computing deployment models, cloud computing actors, virtualization, and

Service Level Agreements (SLAs). An overview of the topic of dynamic resource allocation as the main

focus of this thesis is also given.

Chapter 3 presents an overview of related work in the area of resource allocation in cloud

infrastructures.

Chapter 4 presents the proposed resource allocation approach based on long-term predictions for

PM overload and underload in cloud infrastructures. Uncertainty of long-term predictions is also

addressed. The approach, its implementation, and experimental results are presented.

Chapter 5 presents the proposed task scheduling approach as an issue closely related to the dynamic

allocation of resources in the cloud environment. The approach is based on the proposed algorithm

called experiential HEFT (EHEFT) which addresses the problem of task scheduling at the time the tasks

are submitted to the proper VM. The approach, its implementation, and experimental results are

presented.

10

Chapter 6 presents the proposed distributed VM resource allocation approach for VM consolidation

relying on multi-agent systems. This approach uses a utility function based on host CPU utilization to

drive live migration actions. The approach, its implementation, and experimental results are

presented.

Finally, Chapter 7 concludes the dissertation and discusses areas of future work.

11

 2

 Fundamentals
2.1. Introduction

In this chapter, we present the basic concepts of cloud computing. Section 2.2 deals with

fundamental concepts in the cloud, starting from key cloud characteristics, cloud service models,

cloud computing deployment models, cloud computing actors. An overview of virtualization is given

in Section 2.3 that has an important role to build a cloud infrastructure environment. Section 2.4

deals with Service Level Agreements (SLA), which represent an agreement between cloud provider

and cloud consumers. Resource allocation in cloud infrastructures is covered in Section 2.5. This

section also addresses live migration of virtual machines as an important dynamic resource allocation

mechanism. The evaluation metrics that are the key indicators to increase efficiency in VM

consolidation and quality of services are presented in Section 2.6. In section 2.7, the CloudSim

simulator is described, a framework for modelling and simulation of cloud computing infrastructures

and services. Section 2.8 summarizes this chapter.

2.2. Cloud Computing

Cloud computing has become a significant technology trend from which businesses and individuals

access applications from anywhere in the world. Users can use services from the cloud when and

where they need them, in the amount that they need, and pay for only the resources they use.

For the term cloud computing, there are many definitions from academy and industry practitioners.

Buyya et al. [3] define a cloud as: ”A Cloud is a type of parallel and distributed system consisting of a

collection of inter-connected and virtualized computers that are dynamically provisioned and

12

presented as one or more unified computing resources based on service-level agreements (SLA)

established through negotiation between the service provider and consumers.”

The NIST (National Institute of Standards and Technology) [4] defines cloud computing as: ”Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service provider

interaction. This cloud model is composed of five essential characteristics, three service models, and

four deployment models.”

Armbrust et al. [5] summarizes the key characteristics of cloud computing as: ”(1) the illusion of

infinite computing resources; (2) the elimination of an up-front commitment by cloud users; and (3)

the ability to pay for use of computing resources on a short-term basis as needed . . .” [6].

2.2.1 Key Cloud Characteristics

The main characteristics of cloud computing [7] [41] shown in Figure 2.1:

Figure 2.1. Key cloud characteristics

• On-demand self-service: a consumer can unilaterally provision computing capabilities.

• Broad network access: accessibility through heterogeneous thin or thick client platforms

(e.g., mobile phones, laptops, workstations, and PDAs).

• Resource pooling: computing resources are pooled to serve multiple consumers, and are

dynamically assigned and reassigned according to demand. The consumer has no control or

On-Demand Self-
Service

Rapid Elasticity

Broad Network
Access

Resource Pooling

Multitenancy

Measured Service

13

knowledge over the exact location of resources but may be able to specify location (e.g.

country, state, or data center). Examples of resources include storage, processing, memory

and network bandwidth.

• Rapid elasticity: shared pooled resources are used to enable horizontal scalability.

• Measured service: use of resources is automatically controlled and optimized through

metering capabilities.

• Multitenancy: a feature that enables multiple consumers to use the same resources.

2.2.2 Cloud Service Models

All services related to IT resources, including network resources, infrastructure, platforms and other

application offered by cloud computing are called a cloud service.

Cloud services are classified into three categories: a) Software as a Service (SaaS), b) Platform as a

Service (PaaS), and c) Infrastructure as a Service, that are shown in the Figure 2.2.

• Software as a Service (SaaS): In this model, applications are hosted by a cloud vendor and

offered as a service to the users. This provides a great benefit to consumers because they do

not need to take care to install and run applications locally, to upgrade and maintenance

software, about software licenses, and so on. They only have to pay for services they use.

Some of the SaaS providers are Google Apps, SalesForce, NetSuite, Oracle, IBM, Microsoft,

etc.

• Platform as a Service (PaaS): In this model, platforms and tools (including all the systems and

environments) are hosted by a cloud vendor and offered to developers, allowing them to

develop, test, deploy and to host web applications. Some of the PaaS are Google Apps Engine,

Microsoft Azure, Amazon’s Web services, etc.

• Infrastructure as a Service (IaaS): In this model, resources are delivered over the Internet,

such as servers, processing, storage, networks and other data center facilities. This model also

provides benefits to the consumer because it does not need to manage or control the

underlying cloud infrastructure. However, the consumer may have control over storage,

operating systems, deployed applications and limited control of select network components.

Some of the IaaS providers are Amazon EC2, Google Compute Engine, GoGrid, Flexiscale,

OpenNebula, Rackspace, etc.

14

Figure 2.2. Cloud service models

By enhancing the domain of cloud services as well as expanding various functions related to security,

privacy, user access management, compliance requirements, etc., the need for other cloud support

services emerged. Several of these are [7] [8]:

o Communications as a Service (CaaS) serves as an interface of communication across multiple

devices, such are video teleconferencing, web conferencing, instant messaging and voice over

IP.

o Compute as a Service (CompaaS) serves to provide compute capacity.

o Network as a Service (NaaS) supports transport connectivity and intercloud network services,

including routing, bandwidth, multicast protocols, VPN, security features etc.

o Data Storage as a Service (DSaaS) stores data in multiple third-party servers known as cloud

storage;

o Analytics as a Service (AaaS) / Data Analytics as a Service (DaaaS) provides platforms and

tools for analyses and mining of big data. Consumers and businesses can analyze their data in

the cloud.

o Desktop as a Service (DaaS) provides consumers to build, configure, manage, store and

execute remotely.

o Business Process as a Service (BPaaS) combines business process outsourcing with SaaS.

o Security as a Service (SecaaS) deals with the security services include authentication, antivirus,

anti-malware, encryption, web security, etc.

SaaS

IaaS

Web-based application
Mobile Devices
Business Services

PaaS

Applications

Development Tools
Runtime Environment
Control InterfaceDevelopers Services

CPU, RAM, Storage, I/O, Network. . .

Resource Management Interface
System Monitoring Interface
Virtualization

15

o Monitoring as a Service (MaaS) deals with the process of state monitoring of the services,

such are networks, systems and other features in the cloud.

o X as a Service (XaaS) is a recently developed model which refers as “Anything as a Service”,

“Everything as a Service”, and “X as a Service”. So, this model focuses more on the relationship

between customers and providers, it also has benefits to costumers over issues as total costs

are controlled and reduced, risks are reduced and to accelerate innovation.

2.2.3 Cloud Computing Deployment Models

Depending on the functions, management, ownership and services, the cloud deployment models

are categorized as follows.

• Public Cloud, also known as external cloud or multi-tenant cloud, in which the infrastructure

and computing resources are openly available to the general public such are business,

industry, government, non-profit organizations and individuals. Cloud infrastructure and

services provided and managed from the cloud providers. The most popular public clouds are

Google, Microsoft, Amazon Web Services, etc. The main characteristics of this model are

homogenous infrastructure, shared resources, multi-tenant, common policies, leased or

rented infrastructure, and economies of scale. Figure 2.3 shows an example of the public

cloud model.

Figure 2.3: A public cloud model

• Private Cloud is considered an internal cloud which is provided and managed by an enterprise

or a third party and which is not available to the general public. The main features and

Public Cloud

16

benefits of private clouds are higher security and privacy, more control, improved reliability,

cost and energy efficiency, customized policies, dedicated resources, in-house infrastructure

and so on. Figure 2.4 shows an example of the private cloud model.

Figure 2.4: A private cloud model

• Community Cloud shares infrastructure and computing resources across several

organizations. The resource management is governed by organizations that have participated

or by third-party providers. Figure 2.5 shows an example of the community cloud model.

Figure 2.5: A community cloud model

Private Cloud

Branch A
Branch B

Department 1

Department 2

Organization A

Public Private

Community Cloud

Organization B

Organization D

Organization C

17

• Hybrid Cloud combines of computing resources provided by two or more clouds (private,

community, or public). The main benefits of hybrid cloud are in relation to cost benefits,

improved security, scalability, risk management, more opportunity for innovation, etc. Figure

2.6 shows an example of the hybrid cloud model.

Figure 2.6: A hybrid cloud model

• Virtual Private Cloud is a segment of a public cloud that enables the users more control over

the resources they use. This model provides secure communication between an enterprise

and a public cloud provider. The customer’s data is isolated from the data of other customers

inside the cloud provider’s network.

The NIST cloud computing reference architecture [9] defines the key actors in terms of the roles and

responsibilities.

• Cloud Provider is a person, organization or entity responsible for making a service available to

interested parties. The duties of a cloud provider are to manage the computing infrastructure,

runs applications or software and arranges to deliver the cloud services to the cloud

consumers over the Internet. In the context of the SaaS model, the cloud provider is

responsible to configure, maintain, deploy updates and control the operation of the software

applications on a cloud infrastructure. In the context of the PaaS model, the cloud provider is

responsible to manage the platforms and tools, such as databases, software stacks,

middleware components, IDEs, SDKs, and other development and deployment tools etc.

Public Cloud
Private Cloud

Branch A
Branch B

Department 1

Hybrid Cloud

Security Controls

18

• Cloud Consumer is a person or organization that maintains a business relationship with and

uses the service from the cloud provider. The cloud consumer to pick up services from a cloud

provider can analyze services and pricing bids and is free to choose a cloud provider. After the

cloud provider is determined, the cloud consumer needs to sign an agreement between the

two parties (cloud consumer and provider), which is known as Service Level Agreement (SLA).

The SLAs specifies the technical criteria that must be fulfilled by the cloud provider for the

quality of service, security and privacy issues, service performance, etc. Furthermore, the

obligations and limitations that the cloud consumer has should be defined. Finally, the

consumer may be billed for the usage of the services.

• Cloud Auditor is a party that can perform an independent assessment of cloud services,

systems operations, performance, security, privacy and so on. The duty of the cloud auditor

is to control and verify the conformance of standards, and for security, auditing should include

the verification of the compliance with standards and security policies.

• Cloud Broker is an entity that manages the use, performance and delivery of cloud services

and negotiates relationships between cloud providers and cloud consumers. The core services

offered by cloud brokers are [10] [11]: a) Service Intermediation, a cloud broker enhances a

given service by improving some specific capability and provides the value-added service to

cloud consumers; b) Service Aggregation, a cloud broker combines and integrates multiple

services into one or more new services. c) Service Arbitrage is similar to service aggregation

except that the services being aggregated are not fixed.

• Cloud Carrier acts as an intermediary that provides connectivity and transport of cloud

services between cloud providers and cloud consumers.

2.3. Virtualization

Virtualization is a technology that divides computing resources to enable many operating

environments like hardware and software partitioning, machine simulation, emulation, time-sharing

and so on. This technology covers a wide range of areas as server consolidation, supporting multiple

operating systems, secure computing platforms, kernel development, system migration, etc. [12].

The cloud computing services are located in the data center, where each data center has thousands

19

of physical machines that need to serve many users and keep many applications, and then in such

cases, the hardware virtualization is very useful and a perfect fit.

Depending on the type of application use, virtualization can be categorized as follows [13]:

• Hardware virtualization (or server virtualization) enables consolidation of workloads of

multiple underutilized machines to fewer machines, so that the hardware and all

infrastructure is utilized in the most optimal way. The subcategories of the hardware

virtualization are full virtualization, emulation virtualization, and paravirtualization.

• Software virtualization enables the creation of multiple virtual environments inside the

physical machine. The subcategories of the software virtualization are operating system

virtualization, application virtualization and service virtualization.

• Memory virtualization aggregates physical memory across different physical machines into a

single virtualized memory pool. The subcategories of the memory virtualization are

application level control and operating system level control.

• Storage virtualization allows multiple physical storage devices operating as a common group

to appear as a single storage device. The methods of this virtualization model can be block

virtualization or file virtualization.

• Data virtualization organizes the data as an abstraction layer, which acts is independent from

data structure and database systems.

• Network virtualization enables the creation of multiple network segments on the same

physical network. This enhances performance and security in communication and data

exchange. This can be accomplished both in the internal and external network.

To illustrate virtualization technology, in the Figure 2.7 we have presented a typical hardware

virtualization scheme. Hardware virtualization allows running multiple operating systems and

software stacks on a single physical platform [6].

Each virtual machine (VM) used to be an instance of the physical machine so that the user gives the

impression of accessing the physical machine directly.

A software known as a Virtual Machine Monitor (VMM) or Hypervisor facilitates access to the virtual

machine and the physical machine.

20

Figure 2.7: A virtualized physical machine

Some VMM platforms that are very powerful in cloud computing environments are:

• Xen is a hypervisor that enables to execute a multiple computer operating system on the

same computer hardware concurrently. Xen allows the user to instantiate the operating

system and perform operations that they want [14]. Xen has served as a base for other open

source and commercial hypervisors.

• KVM, the kernel-based virtual machine (KVM), is a full virtualization solution for Linux. The

KVM supports several guests operating systems, including Linux distributions, Microsoft

Windows, OpenBSD, OpenSolaris, FreeBSD, etc. [15].

• VMWare ESXi is a hypervisor developed by VMWare that enables advanced virtualization

functions and operations in relation to processor, memory and I/O [6].

2.4. Service Level Agreements (SLAS)

One of the main objectives of a cloud provider is to provide QoS requirements to meet customer

expectations. Each service is typically accompanied by a service-level agreement (SLA), which defines

the service guarantees that a cloud provider offers to its customers [59].

The components of a typical SLA are [60]:

o Purpose describes the reason for the creating SLA.

o Parties describes the parties involved in the SLA and their roles.

o Validity period defines the SLA validity period by specifying the start and end time.

o Scope defines the types of services covered by the agreement.

Hardware

Virtual Machine Monitor

Operating System

App.1 App.2 App.3

Virtual Machine 1

Operating System

App.1 App.2 App.3

Virtual Machine n

. . .

21

o Restrictions defines the essential steps to be done in order to supply the required service

levels.

o Service-level objectives are approved by service providers and customers. They contain a

group of service level indicators like availability, performance and reliability.

o Service-level indicators are the base level indicators which are used to measure these levels

of service.

o Penalties define the situation when the provider cannot achieve the goals in the SLA. If the

SLA is taken by an external provider, there should be an option to terminate the contract.

o Optional services provide for any services that are not solely requested by the customer but

might be required as an exception.

o Exclusions specifies what is not covered in the SLA.

o Administration defines the procedures formed in the SLA to meet and measure its objectives.

SLA has six main stages to be completed. These stages are shown in Figure 2.8.

 Figure 2.8: SLA life cycle [60]

Development of services and
SLA templates

Discovery and Negotiation of
an SLA

Service
Provisioning and Deployment

Execution of services

Assessment and corrective actions
during execution

Termination and Decommission
of the Service

22

2.5. Dynamic Resource Allocation in Cloud Computing

In general, resource management in a cloud infrastructure is a complex issue, due to the scale of

modern data centers, taking into account the heterogeneity of the resource types and functions,

interdependencies among the resources and the variability and unpredictability of the workload [16].

Resource management means the process of allocating computing, storage, networking and power

resources to meet the performance objectives in relation to the services that should be offered to

consumers by the cloud providers.

 The most interesting issues in resource management in cloud computing include allocation of

resources, resource utilization through virtualization technology, local and global scheduling of cloud

services, workload management, scaling and provisioning, performance and optimization, resource

pricing, etc. As well, an important term is resource demand that is defined as the minimum amount

of hardware resources that are required for an application to be executed to meet the requirements

for Quality of Service (QoS). Therefore, to predict the amount of resources for an application should

be made a resource demand estimation [17].

 In cloud computing, various consumers demand a variety of services and their requirements and

needs may change over time. On the other side, from the cloud provider’s perspective, the cloud

resources must be allocated a fair and efficient manner; therefore, this is a great challenge to meet

the needs of all cloud consumers and QoS requirements.

 A typical resource allocation system in the data center is shown in Figure 2.9. A data center consists

of a large number of PMs, where each PM runs a Virtual Machine Monitor (VMM), and one or more

VMs. Each VM runs an application or an application component. Each PM communicates with the

data center manager [118].

In most data center management systems, the main components are controller, monitoring engine,

predictor and migration manager. The monitoring engine continuously collects data for each PM

through the controller on the state of CPU, memory, network and other resources. The processed

data and statistics pass to the migration manager. The migration manager uses information and

statistics received and through the VM consolidation techniques determines the migrations to be

performed. Changes are then made to the data center configuration through the controller. The

predictor as another component of the data center manager predicts the future workload, which

23

facilitates decision making of the migration manager to generate better configuration for the data

center.

 Figure 2.9: A system model for resource allocation in a data center [118]

2.5.1 Virtual Machine Consolidation (VMC)

In a cloud infrastructure, dynamic resource allocation is the process of dynamically assigning

resources to the cloud applications according to workload demand. In the Infrastructure as a Service

(IaaS) cloud computing service model, resources are allocated in the form of Virtual Machines (VMs)

that can be resized and live migrated at runtime. To satisfy the demand of users, the cloud providers

should manage resources efficiently.

VM consolidation in a data center is a complex but important process to increase the overall

utilization of physical resources and directly increases the quality of services. The goal is to increase

energy efficiency by consolidating VMs into the minimum number of PMs and switching idle PMs into

a power saving mode. During the consolidation process, the performance of applications based on

VM1

VMM

VM2

A
pplication 1

A
pplication 2

PM1

VM3

VMM

VM4

A
pplication 3

A
pplication 4

PM2

VMN-1

VMM

VMN

A
pplication N

-1

A
pplication N

PMn

Controller

Monitoring Engine Migration Manager

Data Center Manager

Statistics

PM's Resource Usage Migration Map

Predictor

24

QoS is also taken into account, which is predefined in the SLA between the consumer and the

provider.

In Figure 2.10, we present an example of VM consolidation where some of the under-utilized PMs

could be released and thus save energy in data centers [120].

Figure 2.10: An example of VM consolidation

The objective of VMC is to place more VMs into a less number of PMs by increasing the utilization of

resources. Two metrics are defined to measure the resource utilization ratio for PMs and in the

overall Data Center (DC); resource utilization ratio of the PM, (Equation 2.1), and the mean

resource utilization ratio of DC, . (Equation 2.2) [117].

 (2.1)

 (2.2)

N is the total number of active PMs in DC.

To keep under control the use of resources, physical and virtual machines in a data center should be

monitored periodically.

One of the important mechanisms for dynamic workload management in cloud infrastructures is live

migration of VMs from one PM to another. Live migration of VMs offers the possibility for allocation

of resources to running services without interruption during migration process that is important for

services with particular Quality of Service (QoS) requirements [18].

In general, live migration of VMs has several benefits including:

VM1 VM2

VM3

PM 1 PM 2

VM2

VM3

PM 1 PM 2

Idle

VM1

a) Before consolidation b) After consolidation

iPMR

DCR

UtilizedAmount of Resourceof
TotalAmount Resourceofi

i
PM

i

PMR
PM

=

1

1
i

N

DC PM
i

R R
N =

= å

25

• Load balancing provides high throughput and availability.

• Manageability and maintenance, movements of virtual machines and shutdown of hosts for

maintenance.

• Minimum violation of SLA (Service Level Agreement), meeting the SLA requirements between

cloud providers and cloud users.

• Energy management, consolidation of virtual machines, switch off underutilized servers to

reduce data center’s heat loss and power consumption.

• Improved performance and reliability, the application performance will not be degraded.

• Improving the utilization of resources.

• Reducing management costs.

Depending on the workload and environmental conditions, a single or a multiple VMs can be

migrated. Three kinds of migration are generally categorized:

• Single VM migration, where only one VM migrates at a time.

• Multiple VM migration, where two or more VMs are migrated simultaneously.

• Single and multiple VM migration, where one or more VMs are migrated simultaneously.

Dynamic consolidation of VMs based on a proactive framework can be divided into the following

domains [129]:

(a) Workload Prediction consists of a clustering process, predicting the window size, evaluating

the VM and user behaviour, and predicting the entire process chain as part of this domain.

This includes various strategies, such as workload estimation and scheduling, dynamic

provisioning and admission control, which estimate and determine whether resources should

be added or removed, whether the order of the query execution should be rearranged, or

whether a new incoming request should be allowed or rejected [130]. Predicting a resource’s

workload for a short or long-time interval is a fundamental process in dynamic resource

allocation and capacity planning in a data center. Proper and timely resource planning leads

to increased service performance and is concentrated on energy saving on a data center. This

process is made even more difficult by the fact that in a cloud environment, it is a challenge

in itself to predict the demand for all types of resources, knowing that there are different VM

26

requests with different numbers and types such as processors, memory, storage, and network

bandwidth.

Figure 2.11 illustrates one of the proactive dynamic VM consolidation frameworks.

Figure 2.11: Proactive dynamic VM framework [129]

The components of the workload prediction domain are [129-130]:

- Clustering process. During this stage, clustering techniques are used to enable efficient

dynamic VM consolidation, where depending on the requests received, requests are

shared in the appropriate clusters with different types of VMs. In the literature, there are

different clustering algorithms and techniques that are used for the dynamic VM

consolidation process.

27

- Prediction process. To predict the future demand for resources based on historical

workload data, accurate algorithms and techniques are needed. Several prediction

techniques and algorithms are used, depending on the perspective of the researchers, but

the most widely used are machine learning (ML) techniques [132].

- Prediction window size. At this stage, the calculation of the time interval in the future is

determined, for which the resource workload should be predicted. Based on this it can be

decided whether a PM should switch to sleep mode, thus reducing energy consumption.

In this case, the prediction process is highly dependent on the configuration mode at the

data center with special emphasis on PMs’ hardware. Depending on the prediction

window size, the prediction and clustering techniques must also be defined and observed.

- VM and user behaviour. This component analyzes the behavior of the user and the VM in

real time when requesting the allocation of VM resources. Also, the analyses of the

relationships and dependencies between users and VMs improves the overall prediction

process, where based on comparative conditions unwanted users and VMs are excluded

from the future step of the workload estimation process [131].

(b) Resource State. This is the state of all virtual and physical resources. This includes monitoring

and tracking tools, techniques and algorithms that detect if a PM is overloaded or

underloaded, and then facilitates the PM selection phase.

More specifically, the components within the resource state domain are:

- Monitoring tools. The monitoring process in a data center facilitates the continuous

monitoring of physical components and the accompanying infrastructure, as well as the

measurement of performance in case of access to applications, in order to maintain a high

level of reliability and quality of services. Thus, in the process of dynamic VM

consolidation, monitoring tools provide the information about the state of the PMs and

VMs, by analyzing the data generated by monitoring, select the main parameters that

affect the reduction of the computation load, and also select to switch on or off a suitable

PM.

- Overloaded and under-loaded PM detection. The number of PMs in a data center is large

and each PM has its VMs that execute different applications. Thus, it is a challenge to

measure their loads.

28

To detect if any of the PMs is overloaded or underloaded, a continuous monitoring

process by analyzing historical data of applications workload and resources usage should

be provided. Based on historical data, the PM’s workload several steps (some time

intervals) in the future should be predicted and based on this the cloud provider should

make a decision for the migration process. The ideal case to be achieved is that, based on

long-term workload predictions, a decision for live migration of VMs before PM overload

or underload happens is to be made. After that, it should be detected which of the PMs is

overloaded or underloaded. Then, it must be decided which of its VMs must be migrated

to other PMs.

The dynamic VM consolidation process is illustrated in the Figure 2.12 [120].

Figure 2.12: VM consolidation stages

(c) VM Selection. Another challenge in VM consolidation is which of the VMs from the

overloaded or underloaded PM will migrate to other PMs. Potentially, there can be more than

one VM that will be selected for migration. A suitable VM should be selected based on a

monitoring process through the VMM (Virtual Machine Monitor) to convey the applications

workload and the resource usage within the VM.

(d) Destination PM Selection and VM Placement. After selection of suitable VMs (one or more),

another issue is to target a suitable destination PM. Potentially, more than one PM can be a

destination for migrated VMs. Therefore, the state of PMs should be monitored to see if they

29

are overloaded or underloaded. Also, the state of the destination PM should be predicted

exactly after VM placement in order to ensure that is not overloaded.

To explain all steps of VMC based on live migration, we present a flowchart in Figure 2.13 [120].

• Overloaded and Underloaded PM Detection. A major challenge for live migration of VMs is

detecting when a PM is over-loaded or under-loaded. Problematic is the selection of the

overload utilization threshold. Due to unpredictable and dynamic workload, a static overload

utilization threshold is not suitable.

Figure 2.13: VM consolidation flowchart

In principle, a PM is considered as overloaded when during the resource usage monitoring process,

the actual and predicted next value exceeds a specified upper utilization threshold. As well, a PM is

PM Monitor

PM overloaded or
underloaded ?

No

VM selection

Yes

VM Placement

VMM

Is it a suitable
 VM ?No

Yes

Is it a sutiable
destination PM ?

PM Monitor

Yes

No

30

considered under-loaded then when actual and predicted next value exceeds a specified lower

utilization threshold.

A heuristic approach for setting an upper and lower utilization threshold is proposed in [19].

Below are some techniques to identify the source PM selection and to detect if the PM is in an

overloaded state [20-23].

- Median Absolute Deviation (MAD) uses median absolute deviation to assign an upper

threshold of a PM to be marked as overloaded. The MAD is a measure of statistical

dispersion, a robust statistic, being more resilient to outliers in a data set than the

standard deviation.

- Inter Quartile Range (IQR) uses the interquartile range to decide the threshold of a PM

to be marked as overloaded. For symmetric distribution, half of IQR is equal to MAD.

- Threshold (TH) provides the utilization when a PM must qualify as overloaded.

- Local Regression (LR) is based on the Loess method [21]. Local regression builds a curve

that approximates original data by setting up the simple models to localized subset of

data.

- Local Robust Regression (LRR) provides prediction for PM underload that is proposed as

robust estimation method known as bisquare [24] that transform LR into iterative

method.

• VM Selection. When a physical machine has more than one virtual machine running on it,

then the challenge is how to select the virtual machine (VM) for migration when a physical

machine is overloaded or under-loaded. In this case, a VM selection policy is needed that

efficiently react in relation with assigned utilization threshold (for upper and lower threshold).

Below some of the most common techniques for the process of VM selection are presented.

- Maximum Correlation (MC): By the MC technique, the VM that has the maximum

correlation coefficient compared to other VMs which are located on the same PM [25]

[23] is migrated. This method is proposed by Verma at al. [26], based on the idea that

the higher the correlation between the resource usages by applications running on an

oversubscribed PM, the higher the probability of PM being overloaded.

31

- Minimum Migration Time (MMT): The MMT technique selects the VM that has the least

memory, since it will be migrated faster [22]. The migration time is estimated as the

amount of memory utilized by VMs divided by the network bandwidth available for a

host [21].

- Random Selection (RS): The RS selects a VM for migration randomly from the VMs

residing in the source PM [19].

- Constant Fixed Selection (CFS): CFS is similar to the Random Selection (RS) strategy. CPS

selects from the VM list those that are in the first, middle, or last position to leave the

overloaded PM [133].

- High Potential Growth (HPG): When the upper threshold is violated, the HPG policy

migrates VMs that have the lowest usage of CPU depending on the CPU capacity that is

defined by the VM parameters. This affects to minimize the potential increase of the

PM’s utilization and prevent an SLA violation [19].

- Minimization of Migrations (MM): This policy selects the minimum number of VMs

needed to migrate from a PM in order to lower CPU utilization below the upper

utilization threshold if the upper threshold is violated [19].

- Minimum Utilization (MU): This VM selection policy selects VMs that have the lowest

CPU utilization, in order to reduce the processing overhead [25].

- Multi-objective optimization: This policy is suitable in dynamic environments. It is based

on a multi-objective model where during the VM selection process it takes into account

CPU parameters, such as temperature, resource use, and power consumption [134].

- Fuzzy Q-Learning (FQL): Since the process of VM selection is a decision-making problem,

this policy uses fuzzy logic, which integrates several VM selection criteria which then

dynamically select the most suitable VM selection approach. Thus, this policy tends to

choose a more optimal strategy that should be used in the VM selection process [135].

- Fuzzy VM selection: This VM selection policy is based on machine learning techniques,

to select VMs from an overloaded PM. This policy integrates the migration control

algorithm with the fuzzy logic VM selection strategy [136].

32

• Destination PM Selection / VM Placement: Another issue in dynamic VM consolidation after

we have selected the right VM for migration is to select in which PM to place. In the VM

placement phase the destination PM needs to analyse carefully whether it will be overloaded

after the migration process. Many authors see the destination PM selection and VM

placement as a bin-packing problem.

The VM placement algorithms generally can be categorized into the following types [27]:

 (a) Power-based, the chosen VM migration to the target host should result in a system that

is energy-efficient with utmost resource utilization.

 (b) QoS-based, the chosen VM migration to the target PM should ensure maximal

fulfilment of quality of service requirements.

 Based on the literature, there are also more destination PM selection and VM placement

schemes for the cloud infrastructure layer. Depending on the methods, they use some of VM

placement schemes that can be classified as [28]: Graph theory-based, Genetic Algorithm-

based, Automata-based, Greedy Algorithm-based, constraint programming-based, integer

programming-based, ACO-based (Ant Colony), PSO-based (Particle Swarm Optimization), etc.

Below some of the most common heuristic-based techniques for the destination PM selection

and VM placement are presented.

- Random Choice (RC): The RC policy randomly selects as PM that is available to migrate

the selected VM. If there is no PM available for VM migration, then a new PM will start

from a sleep state [119].

- First Fit (FF): The available PMs are placed sequentially in an ordered list and for each

VM that requires a destination PM then the first PM is selected from the list. If the first

PM cannot accommodate a VM, then a second PM is checked, and it continues to other

PMs until one of them has enough resource capacity to accommodate the VM [119].

- First Fit Decreasing (FFD): In this policy, the VMs are sorted in decreasing order based on

resource demand and for the VM with the highest resource demand using the First Fit

policy will be required the destination PM [117].

- Next Fit (NF) / Round Robin (RR): This is similar to the FF policy, but the NF or RR policy

does not start the search of the destination PM from the first PM in the ordered list, but

starts from the last PM selected in the previous VM placement [117, 119].

33

- Best Fit (BF): In this policy, the destination PM with the minimum residual resource is

selected.

- Best Fit Decreasing (BFD): BFD is another heuristic policy where it first sorts the VMs in

decreasing order based on resource demands and then allocates the VMs to the PM with

resources that meet the VM requirements [118].

- Power Aware Best Fit Decreasing Algorithm (PABFD): This policy [19] first sorts the VMs

according to their CPU utilization in descending order and then allocates VMs to the PM

that provides the least increase of the power consumption.

- Minimum Correlation Coefficient (MCC): In this technique, the correlation coefficient is

used to represent the degree of association between a chosen VM and the target host

[25]. During the chosen VM migration to the target host, if the correlation coefficient

will increase, then MCC will increase the impact on the performance of the others VMs.

Hence, to avoid performance degradation on others VMs a chosen VM will be migrated

with the minimum correlation coefficient.

- Heuristics, fuzzy logic and migration controls [22] [29]: This approach combines the

heuristics and migration controls for VM consolidation. The key metrics that are

investigated are: SLA violation, number of VM migrations, and energy consumption.

- Utility functions [30]: This model addresses the VM placement problem by using utility

functions, to maximize the profit of VM placement by minimizing energy consumption

and SLA violations. The model is divided into the following categories: input, processing,

and output.

In general, VMC techniques are classified into two major groups: Dynamic VMC (DVMC) Techniques

and Static VMC (SVMC) techniques [117-118].

• DVMC Techniques: Based on workload variations as well as on specific time intervals,

consolidation algorithms should make the decision to migrate VMs to the appropriate PMs.

DVMC algorithms ensure the reallocating of VMs to a smaller number of PMs with the intent

to reduce the number of active PMs.

• SVMC Techniques: In these consolidation techniques, the VM-to-PM mappings are not

changed for a long time and if the workload changes during this time, no migration is

34

performed. SVMC algorithms that enable the solution of initial VM placement in the minimum

number of active PMs will increase the energy-efficiency and resource utilization of the data

center. These techniques do not provide the reallocation of VMs in new PMs considering

current VM-to-PM mapping.

Figure 2.14 presents an overview of VMC techniques classification [117].

Figure 2.14: An overview of VMC techniques

VM Consolidation
(VMC)

Static VMC
(SVMC)

Dynamic VMC
(DVMC)

Distributed DVMC Centralized DVMC

Threshold-Free Threshold-Based

Static Threshold Dynamic Threshold

Multiple VM
Selection

Single VM
Selection

Non-Predictive
DVMC Agorithms

Predictive
DVMC Agorithms

Mathematical
Programming

Heuristics Meta-Heuristics

SLA Violation
Aware

Data Center
Energy Aware

Network Aware Thermal Aware

Machine Learning

35

DVMC algorithms through the live migration mechanism enable the running VM to migrate from one

PM to another while it is running and providing service to its consumers.

DVMC techniques can be classified into two groups:

o Centralized DVMC Techniques: In centralized architectures, there is only a central controller

that keeps the information on the capacity of available resources of all the PMs. The

controller runs the centralized VMC algorithm that selects a destination PM for the selected

VM migration, considering the resource availability of all PMs [117].

o Distributed DVMC Techniques: Unlike centralized architectures that have a centralized

controller, in distributed architectures the PMs exchange information about their resource

availability with their own neighbour PMs and vice versa. If a PM wants to migrate any of its

VMs then it executes distributed VMC algorithm to select one of the neighbouring PMs as a

destination PM to place the migrated VM.

To identify whether the source PM is an overloaded or underloaded state, there are two groups of

DVMC techniques that tackle this issue:

o Threshold-Based DVMC Techniques: These algorithms are used to detect whether a PM is an

overloaded or underloaded state upper and lower threshold values. In this case, the resource

utilization ratio (Equation 2.1) of the PMi should be compared with some static or adaptive

threshold values, and if the resource utilization ratio exceeds the upper utilization threshold

value, then the PMi is considered as overloaded or over-utilized, and VMs of PMi should be

migrated out. On the other hand, if the resource utilization ratio is below the lower utilization

threshold value, then the PMi is considered as underloaded or under-utilized, and VMs of PMi

should be migrated out, so that PMi to go into sleep mode [19].

o Threshold-Free DVMC Techniques: In threshold-free techniques, the resource utilization ratio

of the PM is not comparable to any threshold value to detect if the PM as an overloaded or

underloaded state [117]. In this case, the source PMs are selected randomly or depending on

the algorithm some functions are applied that give priority to any PM in relation to others,

based on the lower or higher resource utilization ratio.

From various research works related to DVMC techniques, threshold based DVMC techniques are

classified into two groups [117]:

36

o Static Threshold-Based Techniques: To identify whether a PM as an overloaded or

underloaded state, fixed or predefined values are used as upper and lower thresholds.

Threshold values do not change over time, therefore referred to as static thresholds [117].

o Dynamic Threshold-Based Techniques: In these algorithms, to identify whether a PM as an

overloaded or underloaded state, the values of the thresholds are dynamically assigned as

the resource utilization ratio of the PM changes over time. Actually, the threshold values

adapted depending on the changes in resource utilization [21].

 In relation to the VM selection policy, the DVMC techniques are classified into two main categories:

o Multiple/Clustered VM Selection: In cases of multi-layered applications, where an application

is located in one or more VMs, another application is in another VM, and then there is a

functional dependency between applications and VMs. In the case of communication

between applications in different VMs that are not hosted in nearby PMs, it may lead to

communication difficulties and the degradation of application performance. In such cases,

instead of migrating a single VM should be considered a group of VMs or clustered VMs for

migration.

o Single VM Selection: In this category, the single VM selection algorithms select a single VM to

migrate.

An important issue to be addressed in the dynamic consolidation of VMs is the future workload

estimation of the PM. DVMC algorithms that make the decision for migration based on the prediction

of future resource utilization show better performance compared to algorithms based on current

resource utilization. In this sense, two groups of algorithms can be categories.

o Predictive DVMC Algorithms: These algorithms make the decision to migrate VMs from one

PM to another based on the estimated future resource demand of VMs [117].

o Non-predictive DVMC Algorithms: The decision to migrate VMs from one PM to another

based on the current resource demand of VMs [117].

To solve the problem of VM consolidation as a multi-objective optimization problem, different

algorithms and approaches were proposed. Since it is known that VM consolidation is an NP-hard

problem, it is not easy to find an optimal solution with a large number of PMs and VMs. The most

37

well-known algorithms that deal with VM consolidation problems are heuristics, meta-heuristics,

mathematical programming and machine learning [63].

• Heuristic algorithms find the solution step-by-step by taking into consideration the best local

decision. Some existing approaches to the VM consolidation problem have treated it as an

optimization problem, to find a near optimal solution through heuristic algorithms. In this

case, the heuristic algorithms can consolidate the workload in a multi-objective optimization

problem. These algorithms are suitable to solve the VM consolidation as a bin-packing

problem [128]. According to the bin-packing problem, each VM is considered an item and

each PM is considered a bin.

There are some heuristic algorithms that solve the bin-packing problem as they are: First-Fit

(FF) algorithm, Best-Fit (BF) algorithm, Next-Fit (NF), Random-Fit (RF), First Fit Decreasing

(FFD) and Best Fit Decreasing (BFD). As well, modified versions of these algorithms are used

depending on the viewpoint of different authors.

• Meta-heuristic algorithms can compute near optimal solutions for complex multi-objective

optimization problems. The well-known problems are ant colony optimization and genetic

algorithms. Ant Colony Optimization (ACO) is a multi-agent approach (artificial ants) for

complex combinatorial optimization problems, such as the Traveling Salesman Problem (TSP)

and network routing [62]. In relation to VM consolidation problem, ant algorithms are used

in terms of Ant System (AS), Max-Min AS (MMAS), and Ant Colony System (ACS).

Genetic Algorithms (GA) have been shown to be successful in solving various optimization

problems. GA is used to find the optimal solution to a given computational problem that

maximizes or minimizes a particular problem. In addition, other well-known algorithms used

to solve the VM consolidation problems are Simulated Annealing (SA), Particle Swarm

Optimization (PSO), Tabu Search, and Hybrid Optimization algorithms.

• Mathematical programming uses a mathematical formulation to find an optimal solution by

searching all the possible solutions. Well-known mathematical programming algorithms for

VM consolidation are Stochastic Programming, Linear Programming (LP), Non-Linear

Programming, Dynamic Programming, Constraint Programming (CP), Quadratic

Programming, and Game Theory. Compared to heuristics and meta-heuristics, these

algorithms provide good performance to compute the optimal solution.

38

• Machine learning is a computer science discipline that has the objective to develop learning

capabilities in computer systems [64]. Several works use ML algorithms for workload

prediction and power consumption modelling in a data center. The most commonly used ML

techniques are Linear Regression (LR), K-Nearest Neighbour Regression (K-NNR), and

Reinforcement Learning (RL).

2.5.2 Virtual Machine Live Migration Components

During the live migration process, it is important to define what should be migrated and which

content should migrate. The migration process affects the CPU state, memory contents, and storage

content.

o CPU state

The CPU state of the VM needs to be context switched from one PM to another. This is a small

amount of information to transfer and represents the lower bound to minimize the service

downtime [122].

o Memory Contents

Memory migration is a process of moving the contents of VM’s memory from one physical machine

to another. The memory content that is subject to the migration process represents a larger amount

of information, including the physical machine processes memory and guest OS memory within the

virtual machine. The memory module that needs to migrate are [101]:

• VM Configured Memory: The amount of actual physical memory that is given to guest VM by

the hypervisor.

• Hypervisor Allocated Memory: It is part of the VM configured memory, but with a smaller size

then it does. If a VM tries to access this memory and free it, then the decision is taken from

the hypervisor.

• VM Used Memory: It is the memory that is used by VM OS and all running processes. These

memory pages keep track by the guest VM.

• Application Requested Memory: It is the amount of memory that is required for running an

application, which is allocated by the guest VM OS.

39

• Application Actively Dirtied Memory: It is the part of the application requested memory, which

is frequent access and modified by a running application.

The process of memory transfer can be divided into phases [102]:

• Push phase: The hypervisor transfers memory pages to the destination PM while VM on the

source is still running. To maintain consistency, the pages that have been modified during the

transfer process must be resent.

• Stop-and-copy phase: First, the source VM is stopped, pages are copied across to the

destination VM and then start a new VM.

• Pull phase: If the new VM executes and tries to access a page that has not yet been copied,

then this page is faulted in across the network from the source VM.

All the migration techniques try to reduce total migration time and down time. There are two main

techniques in memory migrations: a) pre-copy and b) post-copy.

a) Pre-copy technique

At this stage, the pages are copied iteratively from the source to the destination PM while the VM

continues to run. During the iteration procedure, some memory pages may be modified or dirtied,

so they have to be re-sent to the destination PM in a future iteration [103] [126]. Then it is passed to

the termination phase, which depends from the defined threshold, and if one of the three following

conditions is met [101]: (1) the number of iterations exceeds pre-defined iterations, or (2) the total

amount of memory that has been sent, or (3) the number of dirty pages in the previous round fall

below the defined threshold.

Finally, in the stop-and-copy phase, the migration of the VM is suspended at the source host, after

that move processors state and remaining dirty pages. When the VM migration process finishes

correctly, then the hypervisor resumes the migrated VM on the destination PM. This technique is

implemented in many kinds of hypervisors like Xen, VMware, and KVM.

The flowchart in Figure 2.15 illustrates the VM migration through pre-copy technique [101].

40

Figure 2.15: Pre-copy technique flowchart [101]

b) Post-copy technique

In the post-copy technique [104], the VM’s memory content is transferred after the processor state

has been sent to the destination host. According to this technique, first transmits all processor state

to the destination, starts the VM at the destination, and then actively pushes memory pages from

source to destination. Post-copy ensures that each memory page is transferred at most once, thus

avoiding the duplicate transmission overhead pre-copy. Some modalities of the post-copy technique

are as follows [101, 104] [126]:

• Demand paging: It ensures that each VM page is sent only once over the network, unlike in

the pre-copy technique where dirtied pages can be resent multiple times. When VM resumes

at the destination PM and requested memory pages results in page faults then the faulty

pages are serviced by retransmission from the destination PM, so this leads to degradation

of application performance. Therefore, demand paging provides the simplest and slowest

variant.

Migration start

Destination PM selection

Resource reservation at destination site

Capture whole VM memory & assume it is dirty

Iterative coping dirty pages of VM to destination PM

Stop & Copy ?

Suspend VM & transfer VM state [CPU,
registers, memory] to the destination PM

Yes

No

Resume VM at destination PM & commit

Migration end

41

• Active Push: In order to reduce the duration of residual dependency from the destination

PM is to proactively push the VM pages from the source to the destination even the VM is

running on the destination. If the page fault occurs at the destination VM then this situation

is handled through the demand paging.

• Pre-paging: Through the pre-paging feature tends to avoid or mitigate the page fault rate

and the reduction of major faults to be predicted in advance, and adapt the better page

pushing sequence to access the VM’s memory pages. This is done using the faulting

addresses as hints to estimate the spatial locality of the VM’s memory access pattern.

• Dynamic Self-Ballooning (DSB): DSB is a mechanism that is used to avoid the transfer of

free memory pages. DSB enables the guest OS to reduce its memory footprint by releasing

its free memory pages back to the hypervisor and this speedup the migration process.

Therefore, the purpose is to avoid the sending of unused pages to the destination PM

because this increases the total migration time.

The flowchart in Figure 2.16 illustrates the VM migration through the post-copy technique [101].

Figure 2.16: Post-copy technique flowchart [101]

Migration start

Destination PM selection

Resource reservation at destination site

Capture VM minimum state [CPU,
registers, I/O]

Transfer VM state to destination PM

Page fault ?

Transfer VM minimum state to the
destination PM

Yes

No

Resume VM at destination PM Migration end

Active push dirty pages of VM from
source PM

Copy the faulty pages from
source PM

All pages of VM transfered
sucessfully?

Yes

No

42

c) Hybrid technique (pre- and post-copy)

The hybrid technique includes pre- and post-copy VM migration techniques with the intention to

improve the total migration time and service downtime, as the most important parameters in the

overall performance of the migration process. According to this approach [105] [126], in the first

iteration, it works as a pre-copy technique while the VM is running on source PM. After the first

iteration of the memory transfer, the VM is stopped and then resumes at the destination PM with its

processor state and dirty pages. Then the remaining pages are transferred through the post-copy

technique.

The flowchart in Figure 2.17 illustrates the VM migration through the hybrid technique [101].

Figure 2.17: Hybrid technique flowchart [101]

o Storage Content

Storage content represents a large amount of information need to be transferred from the source to

destination. The transfer of full disk image over the network takes a considerable time, so to reduce

the transfer time and to avoid them transfer the hypervisor first identify the unnecessary contents

and unused space. This reduces the migration time in total. The storage content that needs to be

migrated is [101]:

Migration start

Destination PM selection

Resource reservation at destination site

Capture whole VM memory & assume it is dirty

Transfer VM dirty memory to
destination PM

Page fault ?

Yes

No

Migration end

Suspend VM & transfer VM state [CPU,
registers, VM memory] to the destination PM

Use on-demand paging to fetch
faulty pages from source PM

Yes

No
Stop & Copy ?

Resume VM at destiantion PM

43

• Virtual Disk Size: represents the disk size that is allocated for VM use, which is assigned when

the VM is created.

• VM Used Blocks: are the system and user data blocks, which are stored in a VM image. These

blocks are accessed and used by the guest VM OS.

• Hypervisor Allocated Blocks: represents the space allocated by the hypervisor to VM for data

storage. The size of this space may be same as virtual disk size if pre-allocation is performed.

o File System Migration

To facilitate the migration process of VMs, the system should ensure that each VM with a consistent,

location independent view of the file system that is available on all PMs [126]. A way to do this is to

provide each VM with its own virtual disk, to which the file system is mapped, and transport the

contents of this virtual disk along with the other states of the VM. Although seeing that in today’s

trends the capacity of the disks is higher, the migration of the contents of an entire disk over the

network is not a proper choice. Another solution could be to have a global file system on each

machine where e VM could be located. This excludes the possibility of copying files from one machine

to another, while all files may be accessible through the network. Moreover, it is impractical to ensure

a consistent global root file system across all machines [106].

2.6. Performance Metrics

Despite the fact that the VM live migration process has great benefits in data centers, it should not

be ignored even its cost such as performance loss and energy overhead. This cost is also critical for

businesses to achieve their goals.

To increase efficiency in VM consolidation and quality of services at an acceptable level, the overall

performance should be evaluated through several metrics, like energy consumption, number of VM

migrations, Service Level Agreement violations, performance degradation due to migration, energy

consumption and SLA.

The live VM migration performance can be measured by the following metrics:

1. Downtime: This metric represents the time when a service is not available during the

processor states migration process. The downtime metric Tdown depends on the page dirty

44

rate D, page size L, duration Tn of the last pre-copy round n, and link speed B, and is defined

as in Equation (2.1) [101], [103], [107]:

 (2.1)

2. Pages Transferred: This metric indicates the number of pages transferred and duplicate pages

during VM migration [101], [103], [107]. For a round i, the page transferred is calculated as

in Equation (2.2):

 (2.2)

where Vmem is the amount of VM memory; Ti-1 is the time taken to migrate dirty memory

pages, which is generated during just previous round.

The elapsed time of VM migration Ti at each round is defined in Equation (2.3):

 (2.3)

Where R is memory transmission rate during VM migration.

The network traffic Vmig during VM migration is defined in Equation (2.4):

 (2.4)

The migration latency Tmig is calculated as in Equation (2.5):

 (2.5)

3. Preparation Time: This metric represents the time difference between the moment of

initiation of the migration process and transferring the VM’s state to the destination PM,

without interrupting the execution and dirtying memory pages.

4. Resume Time: This is the time when the VM migration has finished and resumes the VM

execution at the destination PM.

n
down

D L TT
B
× ×

=

1

, if 0;
, otherwise.-

=ì
= í ×î

mem
i

i

V i
V

D T

1

i
mem

i i

V DT
R +

×
=

0

in

mig mem
i

DV V
R=

æ ö= ç ÷
è ø

å

0

n

mig i
i

T T
=

=å

45

5. Application Degradation: This is a parameter that indicates the performance of an application

that is interrupted or slow down services due to the migration process.

6. Link speed: This is also an important parameter that affects the performance of VM migration.

Bandwidth allocation or capacity of the link is inversely proportional to downtime and total

migration time. Faster transfer during the migration process requires more bandwidth, thus

migration requires less time to complete [108].

7. Page dirty rate: This is the rate at which VM memory pages are modified by VM applications

and this directly affects the number of pages that are transferred in each pre-copy iteration

[108]. Higher page dirty rates cause increased data being sent per iteration and this leads in

increasing total migration time and service downtime. Dirty page rate and migrating VM

performance are in nonlinear relationships. If the rate of dirty pages is lower than link

capacity, the migration process can transfer all modified pages at a frequent time then this

leads in lower total migration time and downtime. Otherwise, the migration performance

degrades.

8. Energy consumption (E): This is a key parameter since the target of VM consolidation is to

reduce energy consumption. Energy consumption of the data center can be generated from

various sources such as CPU, Memory, power supply units, disk storage boxes and cooling

systems. Energy consumption is given in Equation (2.6) [66].

 (2.6)

where, E is Energy Consumption, u(t) is the CPU usage, Power is Power Consumption, which

is proportional to CPU usage as shown in Equation (2.7).

 (2.7)

where q is the fraction of energy consumed by the idle server, Pmax is the maximum power

consumption by utilized server, and u is the CPU utilization.

Energy consumption of the data center for the whole experimental time is measured in KWh.

9. Service Level Agreement Violations (SLAV): This is an important metric to measure the

quality of service (QoS). Actually, SLA is the agreement between cloud provider and consumer

in terms of maximum response time and minimum throughput. SLAV is proposed in [21] and

(())E Power u t dt= ò

max max() (1)Power u q P q P u= × + - ×

46

measure by the SLA violations due to over-utilization (SLAVO) and SLA violation due to

migration (SLAVM). Performance degradation due to PM overloading and due to VM

migrations metrics is shown in the Equation (2.8) [39], [66].

 (2.8)

SLAVO indicates the percentage of time, during which active PMs have experienced the CPU

or memory utilization of 100% as:

 (2.9)

Where M is the number of PMs, Tsi is the total time that the PM i has experienced the

utilization level of 100% leading to an SLA violation. is the total time period of the PM i

during active state.

SLAVM shows the overall performance degradation as a result of live migration of VMs, as

shown in Equation (2.10).

 (2.10)

Where N is the number of VMs; is the estimate of the performance degradation of the

VMs j caused by migrations; is the total CPU capacity demanded by the VM j during its

lifetime.

10. Number of VM migrations: Live migration of virtual machines is a costly operation,

considering some parameters like amount of CPU processing on a source PM, the network

traffic between the source and destination PMs, downtime of the services and total migration

time [33]. Therefore, a smaller number of the VM migrations means an efficient

consolidation.

The authors in [21] have defined the total migration time and performance degradation along

VMs live migration, as shown in Equation (2.11) and (2.12), respectively.

 (2.11)

SLAV SLAVO SLAVM= ×

1

1 M
i

i i

TsSLAVO
M Ta=

= å

iTa

1

1 N
j

j j

Cd
SLAVM

N Cr=

= å

jCd

jCr

j
mj

j

M
T

B
=

47

where is the total time for VM j migration; is amount of memory used by VM j, and

is the available bandwidth to the VM j.

 (2.12)

where is the total performance degradation by VM j, t0 is the time when the migration

starts, Tmj is the time taken to complete the migration, uj(t) is the CPU utilization by the VM j.

11. Energy consumption and SLA violation (ESV): A metric combines energy and SLA violations.

Actually, if we try to reduce too much energy than the SLA violation will be increased, so need

to find a trade-off that will consume less power and still incur a less SLA violation [22]. For

this purpose, the ESV metric is defined, which is given by Equation (2.13).

 (2.13)

where E is energy consumption and SLAV is the SLA violations of all VMs.

2.7. CloudSim

CloudSim is an extensible simulation framework that enables modelling, simulation and

experimentation of cloud computing infrastructures and application services [42]. The main features

of CloudSim are [43]:

o Modelling and simulation of large-scale cloud computing data centers.

o Modelling and simulation of virtualized server hosts.

o Energy-aware computational resources.

o Support for data center network topologies and message-passing applications.

o Modelling and simulation of federated clouds.

o Support for user-defined policies for allocation of hosts and host resources to virtual

machines.

CloudSim enables researchers and experts from industry to perform tests and experiments, and to

develop the best policies, based on specific scenarios and configuration in all the critical aspects

related to cloud computing.

mjT jM

jB

0

0

0.1 ()mjt T

dj jt
U u t dt

+
= × ò

djU

ESV E SLAV= ×

48

Figure 2.18 shows the layered implementation of the CloudSim architecture.

Figure 2.18: Layered CloudSim architecture [42]

The top layer of CloudSim is the User Code, which contains the basic entities such as the number of

PMs with all their specifications, the number of tasks and the application’s configuration, the

specifications of VMs, the number of users and the types of their applications, and scheduling policies

and strategies for the data center broker. Based on these modules, an application developer in the

cloud can implement various functions, such as workload distribution with increasing demand,

perform robust tests based on application configurations, and model reliable and customized

techniques.

CloudSim layer enables the modelling of a virtual environment and has special management interface

for different resources. This layer implements the basic functions, such as providing the appropriate

PMs for VMs, application execution management and monitoring the dynamic state of the system.

Therefore, to map the PMs to VMs, the cloud provider can implement the strategies and different

techniques by adding the programming modules based on the functions of this layer.

49

2.8. Summary

In this chapter, we have given an overview of the key concepts and characteristics of cloud

computing, starting from fundamental characteristics in cloud computing, cloud service models,

deployment models and actors in the cloud. Virtualization has also been described as a fundamental

and useful technique that enables efficient resource management in the cloud environment. The

agreement between the cloud provider and the consumer, known as SLA, has been addressed, which

defines the obligations between the parties and ensures that the requirements regarding the quality

of services have been met.

We have provided an overview of dynamic resource allocation in cloud infrastructures with a focus

on virtual machine consolidation (VMC) through the live migration mechanism. The components and

possibilities of the live migration process were explained. To evaluate the overall performance in the

cloud infrastructure are presented the fundamental metrics.

In addition, we have introduced the CloudSim simulator, which is a well-known and very useful

simulator in both industry and academia for modelling cloud computing processes.

50

 3

Related Work

3.1. Introduction

In this chapter, we analyze the research work related to resource allocation in cloud infrastructure.

Section 3.2 presents and discusses VM consolidation approaches based on live migration process.

Approaches that have dealt with dynamic VM consolidation based on hierarchical architectures are

presented in Section 3.3. Section 3.5 addresses the problem of task scheduling and resource

allocation in cloud environments. Section 3.4 summarizes this chapter.

3.2. VM Consolidation based on Live Migration

An important mechanism to allocate resources to the virtual machines (VMs) in a data center is

live migration. Live migration is a costly operation that consumes network bandwidth and energy.

The problem of VM consolidation and mapping with physical machines (PMs) need to address the

issues: a) when to start the VM live migration process, b) which PM is targeted as a source for VM

live migration, c) which VMs need to migrate from selected, which is the destination PM to placement

the selected VMs. These issues that pose an optimization problem have been addressed from the

different research works.

There are several approaches that have addressed the VM consolidation process through live

migration.

Wood et al. [44] propose a system called Sandpiper to detect overloading physical machines and

creates a new mapping of physical to virtual resources, resizing virtual machines, and initiating

migrations. To detect overloaded physical machines, the Sandpiper collects the usage statistics for

51

VM and PM and based of them create a mirror of resource usage, and then applied the prediction

techniques.

Beloglazov and Buyya [21], propose an adaptive heuristic for dynamic consolidation of VMs based

on the statistical analyses of the historical data. To detect whether the physical machine is

overloaded or underloaded they used lower and upper thresholds. Methods that are used for host

overloading are Median Absolute Deviation, Interquartile Range, Local Regression and Robust Local

Regression. To select VMs to migrate from overloaded and underloaded host they propose three

policies: The Minimum Migration Time Policy, The Random Choice Policy, and The Maximum

Correlation Policy. Whereas, for the VM placement is used the Power Aware Best Fit Decreasing

(PABFD). This algorithm is a modification of the Best Fit Decreasing (BFD) algorithm. The primary

focus of their work was only to reduce energy consumption and do not consider other performance

metrics.

Murtazaev and Oh [33] propose an algorithm for server consolidation called Sercon to minimize

the number of used servers and number of migrations. Sercon considers a threshold value so that

the CPU’s physical machine not to reach 100% of the utilization that leads to performance

degradation. This algorithm migrates VMs from the least loaded nodes to the most loaded ones.

Sercon inherits some characteristics of well-known heuristic algorithms for bin-packing problems,

such as First-Fit and Best-Fit. From the results, it can be concluded that the proposed algorithm is

scalable for middle-sized data centers.

 Feller et al. [34] propose a fully decentralized dynamic VM consolidation scheme based on an

unstructured peer-to-peer (P2P) network of physical machines to address the scalability and packing

efficiency issues. This scheme uses a dynamic topology that is built by periodically and randomly

exchanging neighbourhood information among physical machines. The VM consolidation operates

only within the scope of the neighbourhoods where the system can scale with an increasing number

of PMs and VMs, without having to require the global system knowledge. In this regard, another

contribution is the modelling of a migration-cost aware ACO-based dynamic VM consolidation

algorithm, which focuses on minimizing the number of PMs, and the number of migrations required

to move from one machine to another.

Khanna et al. [46] propose an approach for dynamic consolidation of VMs based on live migration.

Their approach for host overload detection is also based on resource usage exceeding a threshold

value. Their goal is to minimize the number of hosts by maximizing the variance of resource capacity

52

residuals. This is achieved by ordering VMs in non-decreasing order of their resource usage and

migrating the least loaded VM to the least residual resource capacity host.

Beloglazov et al. [19] propose energy-aware heuristic algorithms for dynamic allocation of VMs

to hosts based on live migration. They decide on the overload or underload state of a host based on

whether the CPU usage is higher or lower than the overload or underload thresholds, respectively.

The authors apply a modified Best-Fit- Decreasing (BFD) heuristic to pack VMs to fewer hosts, which

considers the power increase of hosts.

Gong and Gu [47] propose a dynamic consolidation approach called Pattern-driven Application

Consolidation (PAC) based on extracting patterns of resource usage called signatures using signal

processing approaches such as Fast Fourier Transform (FFT) and Dynamic Time Warping (DTW).

Based on extracted signatures, they perform dynamic placements of VMs to the hosts that have the

highest match between VM resource usage signature and host free capacity signature. Their work

focuses on periodic global consolidation for VM resource usage patterns that show periodicity. The

authors also consider on demand VM migrations for instantaneous overloads, but in contrast to our

approach, they base overload detection on a single resource usage value exceeding a static threshold.

Andreolini et al. [48] propose an approach for host overload detection in which a host is declared

as overloaded when there is a substantial change in the load trend of the host, as a result of applying

the CUSUM algorithm. Their goal is similar to the goal of our work for providing a robust and stable

approach avoiding unnecessary live migrations, but their load change point detection requires past

history usage data to be available, at which point the SLA violations have already happened. In

contrast, our approach applies long-term prediction to avoid violations before they happen.

Esfandiarpoor et al. [110] propose a VM consolidation approach for virtualized data centers in

order to reduce energy consumption, by addressing structural features such as racks and network

topology of the data center in cloud environments. Their model initially improved the existing VM

placement algorithm that is known as Modified Best Fit Decreasing (MBFD) by proposing new

algorithms named OBFD, Place VMs Rack by Rack (RBR), Place VMs in Non-Underutilized Rack (NUR),

and Hybrid of Server and Rack Consolidation (HSRC). To minimize the energy consumption the

intention is to turn off the routers with low traffic or idle routers and cooling equipment. From the

experimental results, the proposed algorithms OBFD, RBR, NUR, and HSRC save up to 1.6%, 11.8%,

12.5% and 14.7% energy, respectively, compared to an existing MBFD algorithm.

53

Yadav et al. [112] propose an energy-aware dynamic VM selection algorithm to consolidate VMs

from overloaded or underloaded physical machines in order to minimize the energy consumption, to

reduce the SLAs violation and to maximize the Quality of Service (QoS). The algorithm named MuMs

(Maximum Utilization Minimum Size) for the VM selection scheme, where selects VMs from

overloaded or under-loaded PM and migrated to the other PM with sufficient capacity. Therefore,

the VM with the highest utilization of the CPU is selected which is divided by the total size of the RAM

allocated to this VM. To estimate the efficiency of the algorithm, several metrics are used: total

energy consumption, SLA violation, number of migrations, and number of hosts shutdown. The

MuMs algorithm is implemented in the CloudSim simulator and is compared with state-of-the-art

algorithms such is Median Absolute Deviation (MAD), Linear Regression (LG), and Inter Quartile

Range (IQR).

Yadav et al. [109] propose adaptive heuristic algorithms, named Least median square Regression

(LmsReg) for overloaded PM detection and Minimum utilization Prediction (MuP) for VM selection

of overloaded PMs. The LmsReg algorithm aims to minimize energy consumption and avoid SLA

violation. The upper CPU utilization threshold is determined based statistical analyses of the past CPU

utilization of the PMs. The variability of CPU utilization directly affects the upper CPU utilization

threshold, and if this variability is small then CPU utilization reaches 100% utilization, therefore this

leads to SLA violation. To find an optimal solution a robust regression technique is used, which is

robust and reliable for dynamic environments. The MuP policy works in such a way that the selection

of VM is determined depending on CPU utilization over the period of time. So, select a VM who’s CPU

utilization is less than the other VMs on same overloaded PM. This policy greatly reduces SLA

violation and performance degradation at the migration process. The algorithms are evaluated with

real CPU utilization data of heterogeneous PMs for metrics as energy consumption, SLA violation, the

number of host shutdown, number of VMs migrations, and performance ratio metric. LmsReg and

MuP are compared with other existing algorithms for overloaded PM detection such as Median

Absolute Deviation (MAD), Linear Regression (LR), Inter Quartile Range (IQR) and VM selection, such

as Minimum Migration Time (MMT), Maximum Correlation (MC) and Minimum Utilization (MU). The

results are generated by the CloudSim simulator and show that the proposed algorithms perform

better than other existing algorithms that are taken for comparison.

Fard et al. [114] developed a VM selection policy to decrease the number of migrations during

the live migration process, in order to prevent performance degradation. The proposed VM selection

54

policy named Maximum Fit (MF) calculates the deviation between the utilization of overloaded PMs

and its threshold and through binary search tends to find a VM on the PM in which the utilization is

close to the deviation. The implementation of the algorithm is performed on the CloudSim simulator

and PlanetLab data. They showed that their VM selection policy performs better than existing VM

selection policies Minimum Migration Time (MMT) and Local Regression (LR).

Wang and Tianfield [115] propose two approaches regarding dynamic VM consolidation (DVMC)

in order to reduce energy consumption without compromising the SLA. One proposed approach is a

VM selection policy known as high CPU utilization-based migration VM selection (HS), and another

approach is a VM placement policy named Space Aware Best Fit Decreasing (SABFD). The HS policy

sort VMs based on their CPU utilization in decreasing order and the VM with the highest CPU

utilization in the overloaded PM will be selected first to migrate. The migration of VMs with the

highest CPU utilization will continue until the PM becomes non-overloaded. In addition, the SABFD

policy first sorts VMs based on their CPU utilization in decreasing order. The PMs that have enough

resources in MIPS (millions of instructions per second) will be estimated for the first VM. The PM with

the minimal available resource in MIPS after the VM is placed in will be selected to migrate this VM

to. The process repeats until all the VMs have migrated. This VM placement policy for migrating VMs

to the destination PMs contributes to decreasing the number of migrations and PM shutdowns, and

this leads to energy saving. The results show that through the HS policy the energy consumption is

lesser than the well-known VM selection policy MMT (Minimum Migration Time) [21], while the SLA

violation metric was higher than MMT. In addition, the results show that SABFD policy performs

better than well-known VM placement policy PABFD (Power Aware Best Fit Decreasing) [21] on both

energy consumption and SLA violation metrics.

Liu et al. [116] developed an approach based on Ant Colony System (ACS) algorithm for allocating

the VMs in the minimum number of active PMs in order to reduce energy consumption in data

centers. The authors also developed an order exchange and migration (OEM) mechanism for the ACS

named OEMACS algorithm, to meet the needs of both homogeneous and heterogeneous physical

machine environments. According to this approach, the structure of VMs is constructed by artificial

ants based on global search information. OEMACS distributes pheromone between VM pairs that

indicates a bond among the VMs on the same PM and record suitable VM groups through learning

from historical experience. The OEMACS algorithm is efficient for large-scale problems and by

experiments it is seen that this algorithm performs well in minimizing the number of active PMs,

55

improving the resource utilization, load balancing between resources, and reducing power

consumption.

Moghaddam et al. [113] propose an energy-aware VM selection policy for CPU load balancing, in

order to minimize the number of migration and to reduce the SLA violations. The VM selection policy

using the hybrid load balancing model considers the CPU utilization of the VMs on each PMs and

linear correlation between the CPU usage of the VMs. The intention is to design an optimal policy

that selects the appropriate VMs for migration in order to decrease the time of migration, the

number of overloaded and under-loaded PMs and to reduce the energy consumption and SLA

violations. To evaluate the performance of the proposed VM selection policy several metrics are

used, such is the total energy consumed by PMs, the total SLA violations, the ESV metric that is

expressed as production between energy consumption and the SLA metric, and the total number of

VM migrations.

There are several works that apply prediction techniques and algorithms for resource allocation in

cloud infrastructure.

Bobroff et al. [50] proposes a dynamic server consolidation and migration algorithm by combining

time series forecasting and bin packing heuristic techniques to minimize the number of physical

machines. The proposed algorithm called Measure Forecast Remap (MFR) dynamically remaps VMs

to PMs in order to minimize the number of PMs required to support a workload at a specific rate of

SLA violations. From the experiments, it is evident that the proposed MFR algorithm achieves a

significant reduction in resource consumption, up to 50% compared with static allocation

approaches. However, the MFR algorithm does not treat the number of migrations required to a

new VM placement.

Prevost et al. [68] propose a framework combining the load demand prediction and stochastic

state transition models in order to optimize cloud resource allocation by minimizing energy

consumed. They used neural network and autoregressive linear prediction algorithms to forecast

loads in cloud data center applications. To predict the host utilization, they used statistical and neural

network.

Di et al. [67] propose a prediction method based on Bayes model to predict a mean load over a

long-term time interval. The prediction principle of the model combines the mean load over a future

time interval, up to 16 hours and mean load over consecutive future intervals that are referred to as

56

a pattern. The Bayesian prediction is based on some important properties, which include the

expectation, predictability, trends, and pattern of physical machine load. The improvement of the

predictive power of a Bayesian model for physical machine load prediction is done by looking at

whether the above properties are complementary to each other. They have evaluated their method

using Google data centers traces for one month with thousands of machines, where the Bayes

method outperforms other techniques that are taken for comparison by 5.6-50 % in long-term

prediction.

Gong et al. [51] and later Shen et al. [52] proposes an approach for VM fine-grained resource

allocation based on resource demand prediction. They base their resource demand prediction on two

methods: a) Fast Fourier Transform to find periodicity or signature of resource demand and b) a state-

based approach using Markov chains. If they predict a conflict, they apply a live migration action to

resolve it, considering the migration penalty. As the authors point out, using a multi-step Markov

model to predict further into the future lowers the prediction accuracy.

Islam et al. [53] proposes resource prediction approaches based on machine learning. More

specifically, they propose and experiment with Linear Regression and an Error Correction Neural

Network. They show experimentally the superiority of the neural network in making more accurate

predictions, but they do not apply their techniques to host overload detection or in general for VM

resource allocation.

Khatua et al. [54] proposes an approach for VM load prediction several time steps into the future

by applying an Auto-regressive Integrated Moving Average (ARIMA) model. They apply their

approach for horizontal scaling in cloud settings. If an overload situation is detected, based on some

threshold value, then the number of VMs is increased. Also, their approach does not consider the

uncertainty and prediction errors in their model of long-term prediction, which is important for

increasing the quality of allocation decisions.

Qiu et al. [55] propose an approach for VM load prediction based on a deep learning prediction

model. More specifically, this model is composed of two layers, the Deep Belief Network (DBN) and

a regression layer. The DBN is used to extract the high-level workload features from the past VM

resource utilizations, while the regression layer is used to predict the future load values. The authors

evaluate experimentally only the prediction accuracy of the approach, but do not apply it on any VM

resource allocation problem.

57

3.3. VM Consolidation based on Hierarchical Architectures

To increase the physical machine utilization and power efficiency of data centers, a hierarchical

architecture is needed.

Some authors have investigated the use of hierarchical architecture for VM consolidation.

Jung et al. [58] have proposed a holistic controller framework called Mistral that optimizes power

consumption and overall performance. The authors argue that Mistral can be configured as a multi-

level hierarchical controller to allow the management of large-scale systems. This approach has dual

objectives; power and performance, and to use both of them the framework uses a utility-based

model. They assumed a set of distributed applications to be managed with multiple tiers of

components. Each tier may have some replicas that reside inside VMs running on the PMs, with one

replica for VM. Each application is associated with a set of transaction types, through which the users

access its services. Mistral controllers are activated to determine which VM should reside on PM and

how much CPU it should receive. In addition, a system configuration consists of the set of VMs, the

PM on which VMs reside, and the CPU fraction allocated to them. According to the experiments, the

authors conclude that Mistral provides better overall utility than existing controllers do. It is

recommended that Mistral can be used as a multi-level hierarchical controller in large scale systems.

Nurmi et al. [45] have proposed Eucalyptus, an open source cloud computing framework for VM

creation and resource control in a hierarchical manner. The Eucalyptus architecture is hierarchical

and composes of four high level components.

Feller et al. [61] propose a scalable and fault tolerant VM management framework called Snooze.

This framework uses a hierarchical architecture that is composed of three software components. A

Local Controller (LC), who controls the physical machines. These local controllers are managed by a

Group Manager (GM). Finally, at the high tier of the architecture is a Group Leader (GL), who

distribute VM requests from the users between the GMs. As well, Snooze supports a power

management and VM consolidation aspects.

Farahnakian et al. [49] propose a distributed controller to perform dynamic VM consolidation to

improve the resource utilizations and to reduce the energy consumption. They used an ant colony

system to optimize VM placement. The VM consolidation problem treated as one-dimensional bin

packing problem.

58

Farahnakian et al. [56] have proposed an architecture based on multi-agent systems for dynamic

VM consolidation. The authors split the problem of dynamic consolidation into two subproblems,

namely host status detection and VM placement optimization. This two-level architecture uses a local

agent for each host, which detects when the host is overloaded through a reinforcement learning

(RL) approach. Another agent called global agent has a supervisory role. It receives information from

the local agent and takes decisions for the migration of VMs.

Farahnakian et al. [57] propose a VM management framework based on multi-agent systems

aimed to reduce SLA violations and power consumption. The agents, arranged in a three-level

hierarchical architecture, are called global, cluster and local agents. A local agent is responsible for

the resource usage of the host. To coordinate the local agents by respective clusters, a cluster agent

is used, and a master node runs a global agent.

Hwang et al. [65] have proposed a hierarchical resource management architecture for VM

consolidation in order to improve the energy efficiency. The resource demands are modelled as

random variables. Hierarchical resource architecture uses two managers; a global manager assigns

VMs into a cluster, while a local manager deploys the VMs to PMs in the cluster.

3.4. Task Scheduling and Resource Allocation in Cloud Environments

Several approaches have been presented to solve the problem of task scheduling in cloud

environments. The general task-scheduling problem is NP-complete [76]. Thus, the research in this

field focuses on finding low-complexity heuristics that perform well in the scheduling process.

The task scheduling problem is generally divided into two categories: static and dynamic scheduling.

In the static scheduling category, all information related to tasks such as execution and

communication cost as well as the relationship between tasks is known in advance. In the dynamic

scheduling category, such information in relation to tasks is not available and decisions are made at

runtime [72].

In general, static algorithms are grouped into two categories: Heuristic algorithms and Guided

Random Search algorithms. Heuristic algorithms through polynomial time complexity produce

approximate solutions, which are often good solutions. Guided Random Search algorithms also give

approximate solutions, but here to improve the solution quality needs more iterations, so it makes it

more costly than the heuristic algorithms [86].

The heuristic algorithms are grouped into three subcategories: list-scheduling algorithms,

59

clustering algorithms and duplication-based algorithms. Clustering algorithms are mostly used for

homogeneous systems to form clusters of tasks that are assigned to processors.

The duplication-based algorithms have higher time complexity (i.e., cubic) and the duplication of

the execution of tasks and this leads to the higher processor power. Therefore, these algorithms are

considered as not very practical.

List-scheduling algorithms provide the most efficient schedules in relation to other categories. In

this case, the scheduling algorithm has two phases: the prioritizing phase, in which priority is assigned

to each task and a processor selection phase, in which the suitable processor is selected. If two or

more tasks have equal priority, then a task is chosen randomly.

There are many approaches by different researchers, and we will present some of them.

El-Rewini and Lewis [87] propose a Mapping Heuristic (MH) scheduling algorithm that schedules

program modules represented as nodes in a task graph with communication onto the target machine

topology. MH performs ordering of tasks and then allocates them to the processor. MH handles the

contention information, communication delay, the balance between computation and

communication in multiprocessor systems. Compared with recently heuristic algorithms the MH

algorithm has lower performance because MF only considers a processor ready when then it finishes

the last task he has on the ordered list. The time complexity of the MH algorithm is , where

v is the number of tasks and p is the number of processors.

Dynamic Level Scheduling (DLS) [88] is another compile-time scheduling heuristic algorithm,

which considers inter-processor communication overhead when mapping precedence graphs onto

heterogeneous processor architectures. DLS dynamically assigns task priority and match these tasks

with processors at each step to eliminate shared resource contention. DLS estimates the availability

of each processor if it is ready to perform any task and thus schedules a task to allocate to a currently

busy processor. Processor selection is based on the Earliest Start Time (EST) parameter, which does

not guarantee the minimum completion time for a specific task and this is a weakness of the

algorithm. DLS does not address the idle time between two tasks that are scheduled to be processed

on the same processor. The time complexity of the DLS algorithm is , where v is the number

of tasks and p is the number of processors.

Iverson et al. [89] propose a heuristic algorithm called Levelized Min-Time (LMT) Algorithm. The

approach is built in two phases. In the first phase, the problem of mapping and scheduling of the

precedence constraints is divided into a series of non-precedence constraints sub-problems. This

2()O v p×

3()O v p×

60

process is known as level sorting. In the second phase, are treated individually sub-problems from

the first phase. The approach that makes this process is called a Min-Time algorithm. The first and

second phase together forms the LMT algorithm. The time complexity of the LMT algorithm is

, where v is the number of tasks and p is the number of processors.

Another static scheduling heuristic algorithm for heterogeneous processors is called Best

Imaginary Level (BIL) [90]. BIL defines a static level of a node incorporating the effect of inter-

processor communication overhead and processor heterogeneity. The algorithm has the target to

minimize the scheduling length (makespan) of the input task graph. The BIL algorithm offers an

optimal solution for linear task graph. The time complexity of the BIL algorithm is ,

where v is the number of tasks and p is the number of processors.

Radulescu and van Gemund [91] present two static list-scheduling approaches called Fast Load

Balancing (FLB) and Fast Critical Path (FCP). The priority of tasks in these two approaches is assigned

dynamically or statically. The weaknesses of the FLB and FCP algorithms are that they make poor

scheduling for irregular task graphs and large processor speed variance.

Topcuoglu et al. [92] [86] have proposed two low-complexity heuristic algorithms for scheduling

DAGs tasks on a bounded number of heterogeneous processors called Heterogeneous-Earliest-

Finish-Time (HEFT) and Critical-Path-on-a-Processor (CPOP). The HEFT algorithm has two phases: a

task prioritizing phase, which defines the priority of all tasks, and a processor selection phase which

selects tasks depending on their priority and schedules them on a suitable processor. The CPOP

algorithm has two phases: a task prioritizing and processor selection phase like the HEFT algorithm,

but CPOP algorithm uses a different strategy to set the priority of tasks and to determine the suitable

processor for each selected task. The time complexity for the HEFT and CPOP algorithms is

, where v is the number of tasks and p is the number of processors. The HEFT algorithm is one the

best algorithms in the group of list scheduling heuristic algorithms for task scheduling.

A list scheduling heuristic algorithm for a bounded number of heterogeneous processors is called

Heterogeneous Critical Parent Trees (HCPT) [93]. The HCPT algorithm uses a mechanism to construct

the scheduling list L instead of assigning priorities to the tasks. The algorithm divides the task graph

into a set of unlisted-parent trees. The root of each unlisted-parent tree is a critical node (CN). HCPT

consists of two phases: listing tasks and machine assignment. To evaluate the HCPT algorithm, a large

set of application graphs are used that are generated randomly with varying characteristics based on

2 2()O v p×

2(log)O v p p× ×

2()O v p×

61

real world problems, such as Gaussian elimination, and molecular dynamic code. HCPT algorithm

guarantees better scheduling results than FLB, DLS and CPOP, which are explained in this section. The

time complexity of the HCPT algorithm is , where v is the number of tasks and p is the

number of processors.

Ilavarasan et al. [94] propose a task scheduling algorithm for heterogeneous computing systems

called High Performance task Scheduling (HPS). The HPS algorithm consists of three phases: level

sorting, task prioritization, and processor selection. In the level sorting phase, the given task graph is

traversed in a top-down fashion to sort task at each level in order to group the tasks that are

independent of each other. So, tasks at the same level can be executed in parallel. In the task

prioritization phase, for each task a priority is assigned and calculated through the attributes Down

Link Cost (DLC), Up Link Cost (ULC) and Link Cost (LC) of the task. The DLC of a task represents the

maximum communication cost among all the immediate predecessors of the task. The ULC of a task

represents the maximum communication cost among all the immediate successors of the task. The

LC of a task is the sum of DLC, ULC and maximum LC of all its immediate predecessor tasks. Based on

LC values, at each level, the task with the highest LC value receives the highest priority, followed by

the task with the next highest LC value and so on the same level. In the processor selection phase,

the processor with minimum Earliest Finish Time (EFT) for a task is selected to execute the task [72].

Evaluation of HPS algorithm is performed for parameters such is makespan, speedup, efficiency and

the scheduling time. The time complexity of the HPS algorithm is , where v is the

number of tasks and p is the number of processors.

Ilavarasan and Thambidurai [85] present another list scheduling for heterogeneous computing

systems called low complexity Performance Effective Task Scheduling (PETS). The PETS algorithm as

the HPS algorithm [94] explained above has three phases: level sorting, task prioritization, and

processor selection. In the level sorting phase, the tasks are divided into levels and for each level, the

tasks are independent, similar to HPS algorithm. In the task prioritization phase for each task is

assigned and calculated priority through attributes Average Computation Cost (ACC), Data Transfer

Cost (DTC) and the Rank of Predecessor Task (RPT). In the processor selection phase, the processor

with minimum Earliest Finish Time (EFT) for a task is selected and assigned to execute the task. It also

uses an insertion-based policy for a task scheduling in an idle slot between two previously scheduled

task on a given processor [72]. The performance of the PETS algorithm has been evaluated based on

well-known problems such as LU decomposition, Fast Fourier Transformation, and Molecular

2()O v p×

2((log))O v p v×

62

Dynamics code, and is tested for average schedule length ratio, speedup, efficiency and running time

metrics. The results have shown that the PETS algorithm performs better than LMT, CPOP and HEFT

algorithms. The time complexity of the PETS algorithm is , where v is the number of

tasks and p is the number of processors.

Daoud and Kharma [95] present a static list-based scheduling algorithm for heterogeneous

distributed computing systems called Longest Dynamic Critical Path (LDCP). LDCP addresses the fact

that a single DAG may have more than one critical path, if scheduled on more than one non-identical

processor. The LDCP algorithm consists of three phases: task selection, processor selection and

update status. In the task selection phase, the algorithm first identifies a set of tasks that have a key

role in determining the provisional schedule length, then for each processor at the beginning of the

scheduling process has constructed a directed acyclic graph that corresponds to a processor. In the

processor selection phase, using the insertion-based policy, the selected task is assigned to a

processor in order to minimize its finish execution time. In the update status phase, when a task is

scheduled on a given processor, the status of the system must be updated in order to reflect the new

changes. During the calculation in the algorithm is neglected the communication cost overhead

between the tasks that are scheduled on the same processor. The LDCP algorithm is compared with

two other algorithms HEFT and DLS, which are explained in this section, and the results show that

LDCP algorithm performs better than HEFT and DLS in terms of normalized schedule length and

speedup. The time complexity of the LDCP algorithm is , where v is the number of tasks and

p is the number of processors.

Bittencourt et al. [96] propose a scheduling algorithm an improvement version of the HEFT

algorithm called Lookahead. The algorithm takes an improvement for HEFT to provide more

information in the scheduling decision-making process before allocating each task. The first approach

of the Lookahead algorithm is the use of lookahead information from the task graph in order to

minimize the estimated finish time of the children of the task being scheduled. The second approach

tackles the priority task list, changing the order of the scheduled tasks in order to see which order

gives a better-estimated finish time. The Lookahead algorithm has the same structure as HEFT but

computes the estimated finish time metric for each child of the current task. In addition, the

Lookahead algorithm satisfies improvements in cases where the communication cost is higher with

respect to computation. From simulated experiments of the Lookahead algorithm, it is evident that

the algorithm provides shorter makespan up to 20% on average. The time complexity of the

2((log))O v p v×

3()O v p×

63

Lookahead algorithm is where v is the number of tasks and p is the number of processors.

Arabnejad and Barbosa [72] propose a list-scheduling algorithm for heterogeneous computing

systems called Predict Earliest Finish Time (PEFT). PEFT algorithm compared to state-of-the-art

algorithms has a look ahead attribute which does not increase the time complexity. The algorithm is

based on an Optimistic Cost Table (OCT) which is used for rank tasks and for processor selection. The

OCT is the matrix where the rows indicate the number of tasks and the columns indicates the number

of processors. Values from the cost table are used in the processor selection phase. PEFT adds to

Earliest Finish Time (EFT) the processing time stored in the cost table for the pair (task, processor).

All the processors are tested, and the one that has the minimum value is selected. To set the task

priority must be computed the average OCT for each task over all processors. The results show that

the PEFT algorithm performed better than state-of-the-art quadratic algorithms in terms of the

schedule length ratio, efficiency and frequency of the best results, and offers the lowest quadratic

time complexity. The time complexity of the PEFT algorithm is , where v is the number of

tasks and p is the number of processors.

 Parsa and Entezari-Maleki [77] propose a task-scheduling algorithm called RASA (Resource

Aware Scheduling Algorithm) that takes the scalability characteristics of resources into account. RASA

is compared with two well-known scheduling algorithms, Max-Min and Min-Min, making use of their

advantages and avoiding their disadvantages. Initially, RASA estimates the completion time of the

task on each of the available computing resources and then applies Min-Min and Max-Min

algorithms. For executing small tasks before large tasks, the RASA uses Min-Min strategy, and to

avoid delays in the execution of large tasks and to ensure concurrency in the execution small and

large tasks, RASA uses Max-Min strategy. RASA is more efficient in task scheduling and achieves

better load balancing.

To achieve better results than RASA, an improved version of the Max-Min algorithm has been

proposed by Elzeki et al. [78]. Their improved Max-Min algorithm is based on the expected execution

time as a basis for selecting tasks instead of completion time. This approach has resulted in better

load balancing and smaller makespan than other algorithms used for comparison.

Canon et al. [84] have analyzed 20 static makespan-centric Directed Acyclic Graph (DAG)

scheduling heuristics by investigating how robustness and makespan are correlated. The authors

have addressed the issue whether dynamically changing the order of the tasks on their processors

4 3()O v p×

2()O v p×

64

can improve robustness. The twenty heuristic algorithms that are analysed, in alphabetical order, are

BIL, CPOP, DPS, Duplex, FCP, FLB, GDL, HBMCT, HCPT, HEFT, k-DLA, LMT, MaxMin, MCT, MET,

MinMin, MSBC, OLB, PCT, WBA. From the evaluation of the algorithms above are derived some

conclusions such as: it is better to respect the static order of the tasks on the processors than to

change this order of the tasks dynamically; the robustness and makespan attributes are correlated,

and in this case static scheduling tends to be the most robust; algorithms such as HEFT, HBMCT, GDL,

PCT, are among the best for makespan and robustness.

To schedule large-scale workflows with various QoS parameters, Chen and Zhang [81] have

proposed an Ant Colony Optimization (ACO) algorithm. According to this approach, the users can

specify their QoS preferences and determine the minimum QoS thresholds for a given application.

The basic parameters of QoS, which are addressed in this model, are reliability, time and cost. The

objective of the proposed ACO algorithm is to find a suitable scheduling plan that satisfies all user

defined QoS parameters. The model consists of seven instance-based heuristics that guide the search

behaviour of ants, and an adaptive scheme to manage these heuristics.

Hu et al. [79] have proposed a probability dependent priority algorithm to determine the

allocation strategy that requires the smallest number of physical machines to execute tasks. The

model considers the processing of interactive jobs only, where jobs usually have small processing

requirements and needed good response time performance. The number of physical machines

required is affected by the resource allocation and job scheduling strategy within the application

environment. In this model, the Service Level Agreement (SLA) is based on response time distribution

that is more relevant than the mean response time in terms of performance requirements of

interactive applications.

Pandey et al. [80] have proposed a scheduling strategy based on a Particle Swarm Optimization

(PSO) algorithm to schedule applications to cloud resources that tackle both computation cost and

data transmission. They used heuristics to minimize the total cost of execution of application on cloud

environments. The algorithm was compared with the existing heuristic algorithm ’Best Resource

Selection’ (BRS) where PSO can achieve three times cost savings compared to BRS, and the best

distribution of the workload to resources. This approach can be used for a variety of tasks and

resources by increasing the dimension of the particles and the number of resources.

Byun et al. [82] have proposed an architecture for the automatic execution of large-scale

65

workflow applications on dynamically and elastically provisioned computing resources. A heuristic

algorithm named Partitioned Balanced Time Scheduling (PBTS) is proposed that estimates the

optimal number of resources to execute a workflow within a user-specified finish time. The algorithm

also generates a task to resource mapping and is designed to run online. This approach treats the

elasticity of the cloud resources but does not consider the heterogeneity of computing resources by

assuming there is only one type of VM available.

Malawski et al. [69] have addressed the issue of efficient management under budget and deadline

constraints on Infrastructure-as-a-Service (IaaS) clouds. They propose various static and dynamic

strategies for both task scheduling and resource provisioning. The three algorithms that are proposed

are: a) Dynamic Provisioning Dynamic Scheduling (DPDS), which is an online algorithm that provisions

resources and schedules task runtime. DPDS consists of two main phases: a provisioning procedure

that based on resource utilization, and a scheduling procedure; b) Workflow-Aware DPDS (WA-

DPDS), which is an extended version of the DPDS algorithm by introducing a workflow admission

procedure. WA-DPDS compares the current cost and remaining budget, tackles the cost of the

currently running VMs, and the cost of workflows that have been admitted; c) Static Provisioning

Static Scheduling (SPSS), in contrast to the above algorithms, the SPSS algorithm creates a

provisioning and scheduling strategy before running any workflow tasks. From the results, it is

evident that an admission procedure based on workflow structure and the task’s estimated execution

time can improve the quality and performance. Their work considers only a single type of virtual

machines (VM) and does not treat heterogeneity of IaaS clouds.

Rodriguez and Buyya [83] have proposed a resource provisioning and scheduling strategy for

scientific workflows in cloud infrastructures, specifically in the Infrastructure-as-a-Service (IaaS)

model. The authors have modelled this strategy through a static cost-optimization, meta-heuristic

optimization technique, Particle Swarm Optimization (PSO), to optimize the total execution cost

while meeting deadline constraints. The algorithm considers the fundamental principles of the IaaS

cloud such as pay-as-you-go model, heterogeneity, elasticity, dynamic provisioning of computing

resources, performance variations, and VM boot time parameters.

Mittal and Katal [98] have proposed a task-scheduling algorithm that builds upon the advantages

of the state-of-the-art algorithms considering the distribution and scalability characteristics of cloud

resources, named as Optimized Task Scheduling Algorithm (OTSA). The algorithm distributes the

tasks over the resources in an appropriate manner to gain the lower value of the makespan metric.

66

The OTSA is compared to some of the existing algorithms such as Min-Min, Max-Min, RASA, Improved

Max-Min, and Enhanced Max-Min, and from the results show that the OTSA algorithm in most cases

performs better than other algorithms.

Liu et al. [99] have proposed a task-scheduling algorithm based on Genetic and Ant Colony

Optimization algorithm in the cloud environments. This approach is a combination of Genetic and

ACO algorithms (GA-ACO) in order to get the best result of task scheduling and takes less time. The

focus of the GA-ACO algorithm is as follows. At the beginning of the task scheduling process, it takes

advantage of a genetic algorithm’s global search ability, and forms chromosome by indirect encoding.

Then, through the fitness function, the reciprocal of the task completion time is chosen. After the

selection, crossover and mutation, the optimal solution is generated and convert this solution into

ACO’s initial pheromone, and in this way, the optimal solution of the task scheduling is generated.

From the simulation results, it is seen that the integration of GA and ACO is useful to solve the task

scheduling problems in cloud environments, and efficiently improves the searching of the algorithm.

Cui and Xiaoqing [97] have proposed a workflow task-scheduling algorithm in cloud environments

based on genetic algorithm. In this algorithm, the priority of each task is assigned by an up-down

levelling method, where all workflow tasks are divided into the different levels that enable the

parallel execution of workflow tasks. The task-scheduling problem is addressed in two dimensions.

First, a new genetic crossover is designed, and secondly a mutation operation to produce new

different offspring for increasing the population diversity. The evaluation of the individual fitness of

the population realized through the fitness function synchronously considering the scheduling time

and the scheduling cost. The simulation results show that the proposed algorithm offers better

performance in reducing the workflow scheduling cost.

Gawali and Shinde [100] proposed a heuristic approach for task scheduling and resource

allocation in cloud computing environments. Their approach combines the Modified Analytic

Hierarchy Process (MAHP), Bandwidth Aware divisible Scheduling (BATS) + BAR optimization, Longest

Expected Processing Time pre-emption (LEPT), and divide-and-conquer methods. Through the MAHP

process, each task is processed before its actual allocation to cloud resources. The resources are

allocated using the combined BATS plus Bar optimization methods and consider the bandwidth and

load of cloud resources as constraints. The proposed model moreover pre-empts resource intensive

tasks using LEPT pre-emption. To improve the model more, the divide-and-conquer approach is used,

where the improvement it is seen from the experiments by comparing with existing BATS and

67

Improved Differential Evolution Algorithm (IDEA) frameworks applied to performance metrics as

turnaround time and response time. Finally, the proposed approach in terms of resource utilization

enables efficient resource allocation with high utility. Maximum utilization is achieved for computing

resources such as CPU, memory, and bandwidth, where it differs from other existing approaches that

consider only the CPU and memory.

Bryk et al. [111] addressed the area of workflow ensemble scheduling algorithms under cost and

deadline constraints in IaaS clouds, with a focus on file transfers between workflow tasks which have

a large impact on workflow ensemble execution. They developed and implemented a global storage

model for transferring files between tasks. The model enables to calculate the bandwidth dynamically

and supports a configurable number of replicas, allowing to be tested for various levels of congestion

in the system. The paper also addresses the issue of how file transfers affect the execution of

scientific applications. It is evident that some applications, for example, the Google Cloud Storage

may spend up to 90% of their execution time on file transfers. Also, caching files in local VM storage

should be considered where some applications indicate caching ratios greater than 50%.

Tsai et al. [137] provided an approach to optimize the problem of task scheduling and resource

allocation using a differential evolution algorithm. The proposed algorithm, called improved

differential evolution algorithm (IDEA), focuses on the cost and time model in the cloud environment.

In the cost model, the costs of processing and receiving subtasks are calculated, whereas for the time

model the time for waiting, receiving, and processing are included, excluding the variations of tasks

which are not covered.

Maguluri and Srikant [138] proposed a throughput optimal load balancing and scheduling

algorithm for a cloud data center with the assumption that the job sizes are unknown in the

beginning, however, more information becomes available later. Knowing that each job requests a

certain amount of resources, such as CPU, memory, disk space and more, these jobs need to be

scheduled non-preemptively on physical machines. However, although the job sizes are unknown,

the algorithm does not waste the resources, only in cases when the job sizes have high variability,

then the resource wastage is high. The algorithm works when the job sizes are not bounded, when

they are geometrically distributed. The proposed algorithm is non-preemptive, so these types of

algorithms are more difficult to address because the state of the system for different time intervals

is coupled.

68

Cheng and Wang [139] proposed an energy-saving task scheduling algorithm for cloud

environments, which is based on the vacation queuing model. The authors have used the vacation

queuing model to schedule tasks in heterogeneous cloud environments, taking into account the

change in the state of a compute node, latency during the process of transition of states, and the

different energy consumption parameters. The algorithm is based on similar tasks. However, this

approach does not promise to ensure proper utilization of resources.

Lin et al. [140] proposed a task scheduling algorithm considering the bandwidth resource, based

on a nonlinear programming model. Algorithm named as Bandwidth-Aware Task-Scheduling (BATS)

is a heuristic algorithm for divisible load scheduling to solve the bounded multi-port model. The

model allocates an appropriate number of tasks to each VM including CPU, memory, and network

devices. The task scheduling problem based only on CPU and memory resources without the

bandwidth resource is not a sustainable solution, because due to the insufficiency of the network

bandwidth it can result in waste of resources. Based on experimental results the BATS algorithm

performs well in decreasing the execution time and is convenient for scheduling task in bandwidth-

bounded cloud environments.

Liu et al. [141] proposed a parallel task scheduling algorithm which is an extension of the first-

come-first-serve (FCFS) technique, named aggressive-consolidation-based first-come first-serve

(ACFCFS) algorithm. The algorithm uses the parallel workload consolidation which includes parallel

workloads of different PMs from the set of PMs in order to improve resource utilization. To organize

VMs, the method of two-tier processor partition for parallel workload consolidation is used. This two-

tier method divides the CPU into two priorities, one with high CPU priority and the other with low

CPU priority, and both VM groups are mapped to one processor.

The performance of tasks that run on VMs with high CPU priority is close to the tasks that run on

dedicate processors, whereas the idle CPU cycles perform well on tasks that run on VMs with low

CPU priority. In the ACFCFS algorithm, users must specify a task’s process number and the CPU

utilization values. Also, as an extended version of the existing FCFS algorithm, the ACFCFS algorithm

retains all the advantages of FCFS, such as no requirements for a task’s runtime estimation, no

starvation, no task migration, and is easy to implement.

Experimental results show that this algorithm is robust in terms of evaluating CPU usage in parallel

processes and CPU cycles.

69

Keshk et al. [142] proposed a task scheduling policy as an improved adaptation of the ant colony

technique for the problem of load balancing. The Ant Colony Optimization (ACO) technique uses

random optimization search, so it is a reasonable technique for a cloud environment for allocating

the incoming tasks to VMs. This algorithm known as a Modified Ant Colony Optimization for Load

Balancing (MACOLB) aims to balance the system workload and to minimize the makespan for tasks

in the given set. The load balancing factor in MACOLB is a key feature to ensure a lower degree of

imbalance in the system, hence it contributes to overall performance gain. However, the proposed

approach does not address the availability of resources and the weight of tasks.

Shamsollah et al. [143] proposed a model for scheduling physical machine load based on a multi-

criteria approach. The model takes into account several criteria with different priorities for allocating

processor load fractions. This approach is built on Analytical Hierarchy Process theory (AHP), which

is recognized as an adequate method for the scheduling problem, as a problem based on priorities

and with variable parameters over time. AHP as a decision-making method and with a multi-criteria

attributes consists of three levels: objective level, attributes level, and alternatives level.

However, the proposed approach does not provide satisfactory optimization because makespan is

defined under priority conditions and is different over time.

Goudarzi et al. [144] proposed a resource allocation approach in order to reduce power

consumption and migration cost in a cloud infrastructure, assuring that SLA criteria are met at the

client-level under probability considerations. A penalty is charged to the provider’s system if the

client’s requirements are not fulfilled, limited to a specific upper ceiling to perform the service in

accordance with the terms of the SLA. Addressing the resource allocation problem specifically in VM

placement, an algorithm based on convex optimization and dynamic programming is used.

Experimental evaluation shows that incorporating the SLA in an effective VM placement phase results

in lowering of the operating costs in a cloud environment.

Ghanbari et al. [145] addressed the load scheduling problem through a multi-objective

optimization of divisible load to increase performance. The method enables to estimate the current

computation rates of worker processors.

The proposed approach based on a multi-level tree network-topology explores the effect of the

multi-criteria method regarding payment, makespan, and utility, where the results show that the

approach offered reduces the makespan, increase the utility, and optimizes the process of scheduling

tasks in a cloud environment.

70

Radojevic and Zagar [146] proposed a model for load balancing in a cloud infrastructure which

automates the scheduling of tasks and minimizes human intervention. The model incorporates

virtualized resources and the experience of the end users in order to influence the decision for load

balancing proactively. The model continuously monitors computing resources, including load

balancers and applications in the physical machines, and based on the collected information, the

decisions will be directed to the load balancers. However, the model has some drawbacks, such as

the lack of an analysis of capabilities of nodes and the configuration parameters. Also, the system

does not provide the backup process, which can result in a single point of failure.

Zhu et al. [147] addressed the real-time task scheduling problem through the rolling-horizon

architecture. In their approach, an energy-aware scheduling algorithm named as EARH is modeled

for real-time, aperiodic, and independent tasks, in which the authors have incorporated rolling-

horizon strategy. The EARH algorithm has integrated resource scaling up and scaling down strategies

which adjust the active PM’s scale in order to meet the requirements of the task in real time and save

energy. Experimental results show that the proposed approach improves the quality of scheduling

for different workloads and aims to save energy in a cloud environment.

3.5. Summary

This chapter has presented and discussed related work on cloud resource allocation. Research works

were analyzed in these directions; the state of the art on the VM consolidation through live migration

based on centralized architectures; the VM consolidation based on hierarchical architectures; and

research work in task scheduling and resource allocation in cloud environments.

By considering these approaches, we have identified the requirements that should be fulfilled in this

thesis.

71

Part II.

Long-term Predictions and Task
Scheduling

72

 4
Long-Term Predictions for Host
Overload and Underload Detection
in Cloud Infrastructures

4.1. Introduction

One of the key mechanisms for dynamic resource allocation is live migration of VMs. Using live

migration makes it possible to manage cloud resources efficiently by adapting resource allocation to

VM loads, keeping VM performance levels according to SLAs and lowering energy consumption of

the infrastructure. However, one problem to address in the context of live migration is to detect

when a PM is overloaded or underloaded.

Most of the existing approaches that address the problem of live migration are based on monitoring

resource usage, and if the actual or the predicted next value exceeds a specified threshold, then a

host is declared as overloaded. A problem with the existing approaches lies in that decisions about

when a PM is overloaded or underloaded are made from a single resource usage value or a few future

values, so this leads to improper decisions, unnecessary live migration overhead and stability issues.

However, it should be noted that live migration is an expensive action which can lead to VM

performance violations. A more promising approach is to base live migration decisions on resource

usage predictions several steps ahead in the future. This increases stability by performing migration

actions only when the load persists for several time intervals, but also allows cloud providers to

predict overload states before they happen [38]. However, one should keep in mind that predicting

further into the future increases the prediction error and the uncertainty and, in this case, it violates

the advantages of long-term predictions.

In this chapter, a new approach for PM overload and underload detection based on long-term

resource usage predictions is presented. The following issues are specifically addressed:

73

o A new approach of dynamic resource allocation of VMs in cloud infrastructure is presented.

It combines local and global VM resource allocations. Local resource allocation enables

allocating CPU resource shares to VMs according to the current load, while global resource

allocation enables live migration actions when a PM is overloaded and underloaded in order

to mitigate VM performance violations and to reduce energy consumption.

o Another issue that is presented is based on long-term resource usage predictions to detect

when a PM is overloaded or underloaded.

o In relation to the new approach of long-term resource usage predictions the uncertainty and

VM live migration overheads are considered.

4.2. Resource Manager Architecture

The resource manager architecture works on the principle of managing an IaaS cloud in which several

VMs run on the physical machine. The overall architecture of the resource manager is shown in Figure

4.1, consisting of a VM Agent, Host Agent and Global Agent.

Figure 4.1: Resource manager architecture

The tasks of each agent are described below [38]:

• VM Agent: for each VM there is a VM Agent which is responsible for local resource allocation

decisions by dynamically determining the resource shares to be allocated to its own VM.

Allocation decisions are made in discrete time intervals where in each interval the resource

share to be given in the next time interval is determined. In our approach, the time interval is

74

set to 10 seconds in order to adapt quickly to load changes. The time interval is not set to less

than 10 seconds, since in long-term prediction this would increase the number of time steps

to predict into the future, lowering the prediction accuracy. On the other side, setting an

interval larger than 10 seconds can lead to inefficiencies and SLA violations due to the lack of

quick adaptation to the load changes. This way of dynamic resource allocation enables the

cloud provider to adapt the resources given to each VM according to the current load, thus

keeping the required performance level with the minimum resource costs.

• Host Agent: for each host (or physical machine) there is a Host Agent that receives the

resource allocation decisions of all VM Agents and determines the final allocations by

resolving any possible conflicts. The Host Agent decides about the final CPU allocations for all

VMs. The possibility of any conflict can arise when the CPU requirements of all VMs exceed

the total CPU capacity, but if there is no conflict, then the final CPU allocation is the same as

the allocations requested by the VM agents. If there is a conflict, the Host Agent computes

the final CPU allocations according to the following equation:

 (4.1)

where FinalAlloc is the final allocation, ReqAlloc is the required allocation, Sum_ReqAlloc is

the sum of all VMs’ requested allocations and TotalCap is the total CPU capacity.

Another important function of the Host Agent is to detect whether the host (PM) is

overloaded or underloaded. Then, this information is passed to the Global Agent that then

initiates live migration actions for moving VMs away from overloaded or underloaded hosts

according to the global allocation algorithm.

• Global Agent: has the duty to make global resource allocation decisions to initiate live

migration actions of VMs from overloaded or underloaded hosts to the other hosts in order

to reduce SLA violations and energy consumption. The Global Agent receives information

from the Host Agent if a host will be overloaded or underloaded in the future, and based on

this information performs the appropriate VM live migration action if it is worth the cost. The

Global Agent is based on the resource allocation algorithm used in previous work [21] for

global VM resource allocation and the Power Aware Best Fit Decreasing (PABFD) [21]

algorithm for VM placement. In our approach, we have modified these techniques to apply

75

them in the long-term prediction with uncertainty. In the VM selection stage is used the

Minimum Migration Time (MMT) [21] policy, but with the modification that only one VM is

selected for migration in each decision round even if the host can possibly remain overloaded

after migration. This reduces the number of simultaneous VM live migration, and the

overhead derived from these actions. For the consolidation process, our approach focuses on

the underloaded hosts that are detected by the proposed long-term prediction techniques.

From the list of hosts identified as underloaded, the ones that have lower average CPU usage

of previous historical values are considered first. Applying the proposed long-term prediction

techniques, the hosts that are not underloaded are chosen as the VM live migration

destination.

4.2.1 Host Overload Detection

To detect if a host is overloaded, a long-term time series prediction approach is used. In our approach,

long-term prediction means predicting 7-time intervals ahead into the future. A host is considered

overloaded if the actual and the predicted total CPU usage of 7-time intervals ahead into the future

exceed an overload threshold. The predicted total CPU usage of a time interval into the future is

estimated by summing up the predicted CPU usage values of all VMs of the corresponding time

interval [38].

The value of predicting 7-time intervals into the future is chosen such that it is greater than the

estimated average live migration time (around 4-time intervals). The average live migration time is

assumed to be known and its value of 4-time intervals is estimated by averaging over all VM live

migration times over several simulation experiments. In real world scenarios, this value is not known

in advance, but it can be estimated based on the previous history of live migration times. On the

other side, having a larger value than 7-time intervals is not useful because some overload states that

do not last long can be skipped.

Based on some experiments, increasing the number of prediction time intervals further into the

future does not increase the stability and performance.

The overload threshold value is determined dynamically based on the number of VMs and relates to

the VM SLA violation metric, as explained in the next sections.

76

4.2.2 Host Underload Detection

Since in the above section it is the duty of the host agent to detect whether a host is underloaded in

order to apply dynamic consolidation by live migrating all its VMs to other hosts and turning off the

host to save energy. Also, the long-term time series predictions of CPU usage are used. A host is

considered underloaded if the actual and the predicted total CPU usage of 7-time intervals ahead

into the future are less than an underload threshold. Hence, the value of 7-time intervals is long

enough to skip short-term underload states, but not too long as to miss any opportunity for

consolidation [38].

The underload threshold value is a constant value, and it is set to 10% of the CPU capacity, but it can

be configured by the administrator according to his or her preferences for consolidation

aggressiveness.

4.2.3 Host Not-Overload Detection

To make the decision to initiate the live migration process, the global agent needs to know the hosts

that are not overloaded in order to use them as destination hosts for VM live migrations.

A host is declared as not overloaded if the actual and the predicted total CPU usage of 7 time intervals

ahead into the future is less than the overload threshold [38]. The actual and the predicted total CPU

usage of any time interval is estimated by summing up the actual and predicted CPU usage of all

existing VMs plus the actual and the predicted CPU usage of the VM to be migrated. The purpose is

to check whether the destination host remains not overloaded after the VM has been migrated.

4.2.4 Uncertainty in Long-Term Predictions

The process of detecting the host if it is overloaded or overloaded based on long- term predictions

carries with it the uncertainty of correct predictions, which can lead to erroneous decisions. To take

into account the uncertainty of long-term predictions, a probabilistic distribution model of the

prediction error is used. The probability density function of the prediction error for every prediction

time interval is first computed. Since the probability distribution of the prediction error is not known

in advance and different workloads can have different distributions, a non-parametric method to

build the density function online is required. Therefore, in our approach, a non-parametric method

77

for probability density function estimation based on kernel density estimation [123] is used. It

estimates the probability density function of the prediction error every time interval based on a

history of previous prediction errors [38]. In this case, the probability density function of the absolute

value of the prediction error is used. Since there are 7-time interval predictions into the future, 7

different prediction error probability density functions are built online.

4.2.5 Probabilistic Overload Detection

To detect if a host is overloaded, i.e., if the future total CPU usage will be greater than the overload

threshold, we use the probability density function of the prediction error for each predicted time

interval. This is defined in Algorithm 1 that returns true or false with some probability whether the

future CPU usage will be greater than the overload threshold [38].

First, the algorithm finds the probability that the future CPU usage will be greater than the overload

threshold. If the predicted CPU usage is greater than the overload threshold, the difference, called

max_error, between the predicted CPU usage and overload threshold, is found. For the future CPU

usage to be greater than the overload threshold, the absolute value of the error (i.e., the difference

between predicted and future value) should be less than max_error. Based on a cumulative

distribution function of the prediction error, the probability that the prediction error is less than

max_error, i.e., the future CPU usage is greater than the overload threshold, is found. Since it can

happen that the future CPU usage will be greater than the overload threshold, and also that the

prediction error will be greater than max_error, the probability that this happens, given as (1-

probability)/2, is added to the calculated probability to yield the final probability (probability+1)/2.

Algorithm 1: Overload Detection

1: if Pred_Total_Util >= OverThreshold then
2: max_error=Pred_Total_Util - OverThreshold
3: probability=CumulativeProbability(max_error)
4: probability=(probability+1)/2
5: end
6: else
7: max_error=OverThreshold - Pred_Total_Util
8: probability=CumulativeProbability(max_error)
9: probability=(probability+1)/2
10: probability=1-probability
11: end

78

12: probability=(probability)*100
13: randnum=rand.nextInt(100)
14: if randnum < probability then
15: return true
16: end
17: else
18: return false
19 end

If the predicted CPU usage is less than the overload threshold, by the same approach, first, the

probability that the future CPU usage will be less than the overload threshold is found. Then, the

probability that the future CPU usage will be greater than the overload threshold is given as (1-

probability). Finally, the algorithm returns true with the estimated probability.

Algorithm 1 returns the overload condition probabilistically only for a single prediction time interval.

Therefore, to declare the host as overloaded, the actual CPU usage should exceed the overload

threshold, and the algorithm should return true for all 7 prediction time intervals in the future.

The interpretation of taking into account prediction uncertainty in overload detection is as follows.

Although CPU prediction can lead to values above the overload threshold, there is some probability,

due to the uncertainty of prediction, that the CPU utilization will be lower than the threshold. This

means that for some fraction of the time the host will not be considered as overloaded. This increases

the stability of the approach, as shown by the lower number of live migrations for the probabilistic

overload detection approach, compared to other approaches.

Furthermore, when CPU prediction is lower than the overload threshold, there is some probability

that the CPU utilization will be greater than the threshold. This means that for some fraction of the

time the host will be considered as overloaded. In summary, we can say that the host is considered

as overloaded or not in proportion to the uncertainty of prediction, which is the right thing to do, as

supported by our experimental results compared to approaches that do not take prediction

uncertainty into account.

4.2.6 Probabilistic Not-Overload Detection

To take into account the uncertainty of long-term predictions in detecting whether a host is not

overloaded, Algorithm 2 is proposed. It returns true, with some probability, if the future CPU usage

of some prediction time interval will be less than the overload threshold. The host is declared as not

79

overloaded if the actual CPU usage is less than the overload threshold, and Algorithm 2 returns true

for all 7 prediction time intervals in the future.

Algorithm 2: Not-Overload Detection

1: if Pred_Total_Util >= OverThreshold then
2: max_error=Pred_Total_Util - OverThreshold
3: probability=CumulativeProbability(max_error)
4: probability=(probability+1)/2
5: probability=1-probability
6: end
7: else
8: max_error=OverThreshold - Pred_Total_Util
9: probability=CumulativeProbability(max_error)
10: probability=(probability+1)/2
11: end
12: probability=(probability)*100
13: randnum=rand.nextInt(100)
14: if randnum < probability then
15: return true
16: end
17: else
18: return false
19: end

4.2.7 Probabilistic Underload Detection

To detect whether a host is underloaded, Algorithm 3 is proposed. It returns true, with some

probability, if the future CPU usage of some prediction time interval will be less than the underload

threshold. The host is declared as underloaded if the actual CPU usage is less than the underload

threshold, and Algorithm 3 returns true for all 7 prediction time intervals into the future.

Algorithm 3: Underload Detection

1: if Pred_Total_Util >= UnderThreshold then

2: max_error=Pred_Total_Util - UnderThreshold
3: probability=CumulativeProbability(max_error)
4: probability=(probability+1)/2
5: probability=1-probability
6: end

80

7: else
8: max_error=UnderThreshold - Pred_Total_Util
9: probability=CumulativeProbability(max_error)
10: probability=(probability+1)/2
11: end
12: probability=(probability)*100
13: randnum=rand.nextInt(100)
14: if randnum < probability then
15: return true
16: end
17: else
18: return false
19: end

4.3. Experimental Results

An experimental evaluation of the proposed approach is done through the CloudSim [42]

simulator. It is a well-known simulator that permits the simulation of dynamic VM resource allocation

and energy consumption in virtualized environments. We have made modifications and extensions

to the simulator to integrate the proposed approach and to provide support for setting the CPU CAP

to VMs for local resource allocation.

In our experiments, a virtualized data center with 100 heterogeneous hosts is simulated. Two

types of hosts are simulated, each with 2 CPU cores. One host has CPU cores with 2,100 MIPS and

the other one has CPU cores with 2,000 MIPS, while both have 8 GB of RAM. One host simulates the

power model of the HpPro-LiantMl110G4 Xeon3040 computer, and the other one simulates the

power model of the HpProLiantMl110G5 Xeon3075. On each host are scheduled 3 VMs (in total 300

VMs). Four types of VMs are used, and each VM requires one VCPU. Three VMs require a maximum

VCPU capacity of 1000 MIPS, while the other one requires 500 MIPS. Two VMs require 1740 MB of

RAM, one requires 870 MB, and the last one requires 613 MB.

To test realistic workloads, the CPU usage data of real VMs running on the PlanetLab [37]

infrastructure are chosen to simulate VM workloads. Each VM runs one application (cloudlet in

CloudSim terminology) and the cloudlet length, given as the total number of instructions, is set to a

large value in order to prohibit cloudlets to finish before the experiment ends. The experiment is run

for 116-time intervals, and the duration of a time interval is set to 10 seconds.

81

We also use WEKA [124], a machine learning framework with Gaussian Processes for regression

through its Java API for long-term time series prediction. A history of previous CPU usage data with

a length of 20 samples is used for prediction and forecasting model training. To keep the simulation

time to acceptable levels, the forecasting model is trained every 5 time intervals with new CPU usage

data. For kernel density estimation, the empirical probability distribution implementing the Variable

Kernel Method with Gaussian Smoothing of the Apache Commons Math 3.6 API [125] is used. A

history of previous prediction errors with a length of 30 samples is used for probability density

function model training, which is done in each time interval.

The experimental results are generated by comparing six different approaches, as follows:

a. No-Migrations (NOM): This approach allocates CPU resources locally to VMs but does not

perform live migration actions.

b. Short-Term Detection (SHT-D): Represents the detection of whether a host is overloaded,

not-overloaded, or underloaded based on short-term CPU usage predictions. Thus, this

technique detects an overload state if the actual and the predicted CPU usage values of the

next two-time intervals in the future are above the overload threshold. The same applies to

not-overload and underload states where the actual and predicted CPU values for the next

two-time intervals into the future are used.

c. Long-Term Detection (LT-D): This approach represents overload, underload and not-

overload detections on long term CPU usage predictions of the next 7 control intervals into

the future.

d. Long-Term Probabilistic Detection (LT-PD): Bases overload, underload and not-overload

detections on long term CPU usage predictions of the next 7 control intervals into the future

but considers prediction uncertainty through prediction error probability distribution

modelling.

e. Local Regression Detection (LR-D): This approach uses the local regression technique to

predict the resource usage in the future. We have chosen this state-of-the-art technique

since it achieves the best performance as shown by the authors [21] compared to other

techniques that use static or adaptive utilization thresholds.

82

We have defined five performance metrics for evaluation of the proposed approach, as discussed

below:

a. VM SLA Violation (VSV): This metric represents the penalty of the cloud provider for violating

the performance of the VMs of the cloud consumer. The performance of an application

running inside a VM is at an acceptable level if the required VM resource usage is less than

the resource share allocated. A VM SLA violation is defined to happen if the difference

between the allocated CPU share and CPU usage of a VM is less than 5% of the CPU capacity

for 4 consecutive time intervals. The idea is that application performance degraded if the

required CPU usage is near to the allocated CPU share. The penalty of a VM SLA violation is

the CPU share by which the actual CPU usage exceeds the 5% threshold difference from the

allocated CPU, for all 4 consecutive time intervals. In this case it is the goal of the global agent

to mitigate VM SLA violations by providing sufficient free CPU capacity through VM live

migration, in order to have the CPU share allocation above the required usage by more than

5% for each VM. Through experiments the VM SLA Violation metric if defined to overload

states of hosts. It is calculated dynamically based on the number of VMs. Let us define N as

the number of VMs on a host. To avoid a VM SLA violation, each VM should have more than

5% capacity above CPU usage, so the total free CPU capacity of the host should be more than

N ∗ 5%. Based on this, the overload threshold is calculated as the total CPU capacity (100%)

minus N∗5%. This means that the overload threshold represents the CPU usage level above

which some VMs will have SLA violations.

b. Energy Consumption (E): This metric computes energy consumption in a data center

measured in KWh, for the whole experimental time.

c. Number of VM Migration (NM): This metric represents the number of VM migrations for the

whole experimental time.

d. Energy and VM SLA Violations (ESV): This metric combines energy consumption (E) and

cumulative VM SLA Violation (CVSV), as given in the formula below:

 ESV=E · CVSV (4.2)

where E is energy consumption and CVSV is the cumulative VSV value of all VMs for the entire

experimental time.

83

The simulation experiment is run for two different load levels called LOW and HIGH and three

different VM live migration SLA violation penalties, mp=2%, mp=4% and mp=6% (MP2, MP4, MP6).

The load level represents the CPU usage consumed by each VM. The load levels (Low and High) are

taken by multiplying the PlanetLab CPU usage values for each time interval with a constant value of

8 and 14, respectively.

The experiment is repeated five times for each combination of approach and load level.

To see the effect the load level has on the VM SLA violation, Figure 4.2 presents the cumulative VSV

value for each approach averaged over all combinations of load levels and migration penalties The

cumulative VSV value is the sum of VSV values of all VMs for the whole experimental time. The graph

shows that the LT-PD technique achieve lower VM SLA violation levels than the other approaches

because it considers the prediction uncertainty. It is also evident that the LR-D technique

approximately like LT-D perform better than SHT-D approach because both techniques apply

prediction of resource usage into the future, but without taking prediction uncertainty into account.

Therefore, taking into consideration long-term prediction uncertainty in decision-making is useful for

lowering VM SLA violations.

Figure 4.2: Cumulative VSV over all loads and migration penalties

To see the effect the load level has on VM SLA violations, in Figure 4.3 the cumulative VSV value is

shown, averaged over all migration penalties, for each approach and the two load levels. From the

graph can be observed that in all approaches, increasing the load increases the VM SLA violations,

which is expected since there is more contention for resources. It is also seen that for both load levels,

84

the LT-PD technique achieves the lowest VSV value compared to the other approaches.

Figure 4.3: Cumulative VSV over all migration penalties and two load levels

In Figure 4.4, the number of VM live migrations for each approach averaged over all combinations of

load levels and migration penalties is shown. From the graph it can be observed that the LT-PD

approach achieves the smallest number of live migrations compared to other approaches.

Figure 4.4: Number of live migrations over all loads and migration penalties

85

The results show that the transition from short-term prediction to long-term prediction increases the

stability of the approach thus reducing the number of live migrations. It is also evident that

considering uncertainty of long-term predictions and live migration penalties increases stability and

reduces the number of live migrations further. Another notable case is the LR-D approach, which has

the highest number of VM live migrations compared to other approaches for the fact that the LR-D

approach takes live migration actions if only one predicted usage point in the future is above the

threshold, while the other approaches check several points into the future.

In Figure 4.5 it is shown for each approach how the number of live migrations is affected by the load

level. It can be noticed that the number of live migrations of the LT-PD approach is significantly

smaller than for other approaches.

Figure 4.5: Number of live migrations over all migration penalties for two load levels

Figure 4.6 shows the energy consumption of the data center for the whole experimental time for

each approach over all combinations of load levels and migration penalties.

86

Figure 4.6: Energy over all loads and migration penalties

In Figure 4.7, we show for each approach how the energy consumption is affected by the load level.

It can be observed that that increasing the load increases the energy consumption for all approaches.

Decreased energy consumption with a decrease in the load level can be explained by the fact that

low load creates more opportunities for consolidation and turning off hosts.

Figure 4.7: Energy over all migration penalties for two load levels

Figure 4.8 shows the ESV value for the whole experimental time for each approach over all

87

combinations of load levels and migration penalties. The graph shows that LT-PD has lower ESV

value than other approaches.

Figure 4.8: ESV value over all loads and migration penalties

In Figure 4.9, we show for each approach how the ESV metric is affected by the load level. It is

observed that the ESV metric is lower for the LT-PD approach than the other approaches for each

load level.

Figure 4.9: ESV value over all loads and migration penalties

88

4.4. Summary

In this chapter, we have presented a VM resource allocation approach in a cloud infrastructure

environment. It allocates resources locally by changing the CPU share given to VMs according to the

current load. While global resource allocation is done by migrating VMs from overloaded or

underloaded hosts to other hosts to reduce VM SLA violations and energy consumption. Long-term

predictions of resource usage are used to detect if a host is overloaded or underloaded, based on

Gaussian processes as a machine learning approach for time series forecasting.

We have also considered the prediction uncertainty through a probability distribution model of the

prediction error, based on the kernel density estimation method.

Based on the results of the experiments, we can draw conclusions in two directions. First, making

long-term predictions of resource demand can increase stability and overall performance of a cloud.

Second, making overload detection decisions proportional to the uncertainty of predictions increases

the overall performance of the VM migrations in the cloud infrastructure.

89

 5

The Experiential Heterogeneous
Earliest Finish Time Algorithm
for Task Scheduling in Clouds

5.1. Introduction

Task scheduling in cloud environments is the problem of assigning and executing computational

tasks on the available cloud resources. Effective task scheduling approaches reduce the task

completion time, increase the efficiency of resource utilization, and improve the quality of service

and the overall performance of the system. In this chapter, we present a novel task scheduling

algorithm for cloud environments based on the Heterogeneous Earliest Finish Time (HEFT) algorithm,

called experiential HEFT. It considers experiences with previous executions of tasks to determine the

workload of resources. To realize the experiential HEFT algorithm, we propose a novel way of HEFT

rank calculation to specify the minimum average execution time of previous runs of a task on all

relevant resources. Experimental results indicate that the proposed experiential HEFT algorithm

performs better than HEFT and the popular Critical-Path-on-a-Processor (CPOP) algorithm considered

in our comparison.

The Infrastructure-as-a-Service (IaaS) service model in cloud computing can be used to adjust the

capacity of cloud resources depending on changing demands of applications. This feature is known

as auto-scaling [69].

Task scheduling in cloud infrastructures is the problem of assigning tasks to appropriate resources

[70]. Task scheduling can have a significant impact on the performance of the system and is

particularly challenging when the cloud resources are heterogeneous in terms of their computation,

memory, and communication characteristics, due to different execution speeds, memory capacities,

and communication rates between processors.

90

Typically, the scheduling process in the cloud consists of several phases [75]: resource discovery

and filtering, where a broker discovers the resources in the network and collects their status

information; resource selection, where the target resources are selected, based on the main

parameters of the task and the resources; task submission, where tasks are submitted to selected

resources.

Task scheduling algorithms select and allocate suitable resources to tasks such that the overall

execution can be completed to satisfy objective functions specified by users or cloud providers [73-

74]. For example, to improve Quality of Service (QoS) for users and maximize profit for cloud

providers, parameters such as resource utilization, throughput, performance, execution times,

computational cost, bandwidth, energy consumption, and Service Level Agreements (SLAs) may be

considered [71]. The task-scheduling problem can be classified into static and dynamic scheduling. In

static scheduling, all information about tasks such as execution and communication costs for each

task and the relationship with other tasks are known in advance. In dynamic scheduling, there is no

prior information, i.e., decisions are made at runtime [72].

In Figure 5.1, we present a system model for the workflow scheduling problem in cloud

environments. There are three layers: the task graph layer is composed of tasks with precedence

constraints, the resource graph layer which represents a network of VMs, and the cloud

infrastructure layer as a set of data centers connected by network links [127].

Figure 5.1: A system model of workflow application scheduling in a cloud environment

91

In this chapter, we present a novel dynamic task scheduling algorithm for cloud environments

with heterogeneous resources. It extends the Heterogeneous Earliest Finishing Time (HEFT)

algorithm by utilizing past experiences with task executions; hence we call it the experiential HEFT

(EHEFT) algorithm. It uses an additional parameter that calculates the minimum average execution

time of previous runs of a task on all relevant resources. This parameter equips the proposed EHEFT

with the ability to take the workload and processing power of resources into account when assigning

a task to a processor. It gives priority to a resource that in the past has executed the task faster than

others. Experimental results show that our EHEFT algorithm performs better and is more efficient

than other than the original HEFT and the popular Critical-Path-on-a-Processor (CPOP) algorithm

considered in our comparison.

This chapter is organized as follows. Section 5.2 describes the task scheduling problem

formulation. HEFT and CPOP are described in Section 5.3. Our novel EHEFT algorithm is introduced in

Section 5.4. Experimental results are presented in Section 5.5. Section 6 concludes the paper and

outlines areas for future work.

5.2. Task Scheduling Problem Description

To split an application into tasks with appropriate sizes, we use DAGs. Each task of a DAG

corresponds to the sequence of operations and a directed edge represents the dependency between

the tasks.

More precisely, a DAG is represented by the graph G = (V, E), where V is the set of v tasks and E is

the set of e edges between the tasks. Each edge (i, j) E represents the dependency such that task ni

should complete its execution before task nj starts. If a task has no a parent task, this task is defined

as the entry task of a workflow of tasks. If a task has no a child, this task is defined as the exit task of

a workflow of tasks.

From the DAG, we derive a matrix W that is a v x p computation cost matrix, where v is the number

of tasks and p is the number of processors; wi,j represents the estimated execution time to complete

task vi on processor pj. The average execution time of task vi is defined in Equation (5.1) [85] [72]:

 (5.1)

Î

,i j
j P

i

w
w

p
Î=
å

92

Each edge (i, j) E is associated with a non-negative weight ci,j which represents the communication

cost between the task vi and vj. The average communication cost of an edge (i, j) is defined by Equation

(5.2):

 (5.2)

is the average communication startup time and is the average transfer rate among the processors;

datai,j is an amount of data required to be transmitted from task vi to task vj. In cases when tasks vi

and vj are scheduled to run on the same processor, the communication cost is considered to be zero,

because the intra-processor communication cost is negligible compared to the inter-processor

communication cost.

A task workflow example and a computation cost matrix of tasks 1-10 for the resources R1, R2, R3

is shown in Figure 5.2.

Figure 5.2: An example of task graph and computation time matrix of the tasks in each processor

A popular metric in task scheduling is the makespan or schedule length, which defines the finish

time of the last task in the given DAG. The makespan is defined by Equation (5.3):

 (5.3)

where AFT(nexit) represents the Actual Finish Time of the exit node.

Furthermore, the Earliest Start Time EST (ni, pj) of a node ni on a processor pj, which is defined in

Equation (5.4):

Î

,
,

i j
i j

data
c L

B
= +

L B

max{ ()}exitmakespan AFT n=

93

 (5.4)

where Tavail is the earliest time at which processor pj is ready to execute the task. pred(ni) is the set of

immediate predecessor tasks of task ni. The inner max block in the EST equation denotes the time at

which all data needed by ni arrive at processor pj. The communication cost cm,i is zero if the

predecessor node nm is assigned to processor pj.

Finally, EFT(ni, pj) defines the Earliest Finish Time of a node ni on a processor pj, which is defined in

Equation (5.5):

 (5.5)

5.3. CPOP and HEFT

In this section, we describe two popular algorithms for task scheduling, namely the Critical-Path-

on-a-Processor (CPOP) and Heterogeneous-Earliest-Finish-Time (HEFT) algorithms [72] [86].

Canon et al [84] have compared 20 scheduling algorithms and have concluded that both

algorithms perform well, but the HEFT algorithm is the algorithm in terms of makespan.

 Topcuoglu et al. [86] also consider the HEFT algorithm among the best list-based heuristic

algorithms, and use the CPOP algorithm, among others, for comparison.

In both algorithms, the tasks are ordered based on a scheduling priority defined by a ranking function.

The rank value for an exit task ni is:

 (5.6)

For other tasks, the rank values are computed recursively based on the Equations (5.1), (5.2) and
(5.6), as defined in Equation (5.7):

 (5.7)

where succ(ni) is the set of immediate successors of task ni, is the average communication cost of

edge (i, j), and is the average execution time of task ni.

,()
(,) max{ (), max (())}

m i
i j avail j m m in pred n

EST n p T p AFT n c
Î

= +

,(,) (,)i j i j i jEFT n p EST n p w= +

()i irank n w=

,
()

() (())max
j i

u i i i j u j
n succ n

rank n w c rank n
Î

= + +

,i jc

iw

94

5.3.1 CPOP

The CPOP algorithm consists of two phases: task prioritization and processor selection.

The task prioritization phase assigns the priority of each task by computing the rank values for all

tasks. In CPOP, for a given application the graph uses a critical path, where the length of this path is

the sum of the communication costs of the tasks on the path and the communication costs between

the tasks along the path.

The sum of rank values set the priority of each task. Initially, the entry task is the selected task and

marked as a critical path task. An immediate successor (of the selected task) that has the highest

priority value is selected and is marked as a critical path. This process is repeated until the exit node

is reached [86].

In the processor selection phase, the task that has the highest priority is selected for execution. If the

selected task is on the critical path, it will be scheduled on the critical path, it will be scheduled on the

critical path processor. Otherwise, the task is assigned to a processor that minimizes the earliest

execution finish time.

The CPOP algorithm is shown in Algorithm 1 [86].

Algorithm 1 CPOP Algorithm

1: Set the computation costs of tasks and communication costs of edges with
mean values.

2: Compute ranku , starting from the exit task.

3: Compute rankd of tasks, starting from the entry task.

4: Compute priority(ni) for each task ni in the graph.

5: |CP| = priority(nentry), where nentry is the entry task.

6: SETCP = {nentry}, where SETCP is the set of tasks on the critical path.

7: nk ß nentry

8: while nk is not the exit task do

9: Select nj where ((nj ∈ succ(nk)) and (priority(nj) == |CP|)).

10: SETCP = SETCP U {nj}.

11: nk ß nj

12: end while

13: Select the critical path processor.

95

14: Initialize the priority queue with the entry task.

15: while there is an unscheduled task in the priority queue do

16: Select the highest priority task ni from priority queue.

17: if ni ∈ SETCP then

18: Assign the task ni on critical path processor

19: else

20: Assign the task ni to the processor pj which minimized the EFT(ni, pj).

21: Update the priority queue with the successors of ni.

22: end while

The CPOP algorithm has O (v2 x p) time complexity, where v is the number of tasks and p is the number

of processors [72] [85].

5.3.2 HEFT

Similarly, the HEFT algorithm also has the same two phases: task prioritization and a processor

selection [72] [86].

In the task prioritization phase, HEFT assigns the priorities of all tasks by computing the rank for each

task, which is based on mean computation time and mean communication cost. The task list is ordered

by decreasing of their rank values.

The processor selection phase schedules the tasks on the processors that give the Earliest Finish Time

(EFT) for the task. The algorithm uses an insertion policy that tries to insert a task at the earliest idle

time between two already scheduled tasks on a processor. The slot should have enough capacity to

accommodate the task.

The HEFT algorithm also has O (v2 x p) time complexity, where v is the number of tasks and p is the

number of processors [72] [85] [86].

The HEFT algorithm is shown in Algorithm 2 [86].

Algorithm 2 HEFT Algorithm

1: Set the computation costs of tasks and communication costs of edges with
mean values.

96

2: Compute 𝑟𝑎𝑛𝑘' for all tasks, starting from the exit task.

3: Sort the tasks in a scheduling list by decreasing order of 𝑟𝑎𝑛𝑘' values.

4: while there are unscheduled tasks in the list do

5: Select the first task ni, from the list for scheduling.

6: for each processor m do

7: Compute EFT(i, m) value using insertion-based scheduling policy

8: Assign task ni to the processor pj that minimized EFT of task ni.

9: end while

5.4. Experiential HEFT

We now present a novel task-scheduling algorithm, called experiential HEFT (EHEFT), which gives

the original HEFT algorithm the ability to take the workload and computational power of resources

into account when assigning a task to processor. In the EHEFT algorithm, the average execution time

of a task is calculated by the definition given in Equation (5.1). Furthermore, the calculation of the

average communication cost is performed according to Equation (5.2). As an extension of Equation

(5.7), we have added a parameter that calculates the rank by considering the minimum average

execution time of the task on each relevant resource. This novel rank calculation is shown in Equation

(5.8) [121]:

 (5.8)

where R represents the set of processors; j is a processor of the set of processors. The execution time

of the task i on processor j is defined by wi,j, while the number of previous executions of the task in

processor j is defined by nj.

The proposed EHEFT algorithm is shown in Algorithm 3 [121].

Algorithm 3 Experiential HEFT Algorithm

1: Compute the computation cost for each task according to Equation (5.1)

2: Compute the communication cost of edges according to Equation (5.2)

3: Compute the average execution time of previous runs:

,
0

,
()

() (()) minmax

j

j i

n

i j
i

u i i i j u j j Rn succ n j

w
rank n w c rank n

n
=

ÎÎ

= + + +
å

97

for each task

 for each machine do

sum up the time of the task’s previous executions in the assigned
processor.

end for

4: Calculate the minimum as the proportion of the sum from Step 3 and the
number of executions of a task in the assigned processor.

5: end for

6: Compute the rank value for each task according to Equation (5.8)

7: Sort the tasks in a scheduling list by decreasing order of task rank values

8: while there are unscheduled tasks in the list

9: select the first task i from the list

 for each processor m do

 Compute the EFT(i, m) value

 end for

 Assign task i to processor m that minimized EFT of task i.

10: end while

To prioritize processors that have executed a given task in a more efficient manner in the past, a

sum and a count of previous execution times of tasks for each of the resources in the cloud is stored.

When there is no such data, the EHEFT algorithm performs exactly as the HEFT algorithm itself.

Therefore, EHEFT algorithm we propose is highly dependent on the values of past execution times of

tasks.

Assuming a high heterogeneity between cloud resources, variable processing powers, and

workloads, as well as considering that some tasks are better suited for a particular processor

architecture than others, by including the minimum average execution time of previous runs of a task

in the resources of the cloud, the EHEFT algorithm gives precedence to a processor that has performed

better in executing a given task in the past.

98

5.5. Experimental Results

In this section, we present experimental results of our proposed EHEFT algorithm compared to the

existing HEFT and CPOP algorithms. The tests were conducted on an Intel Core i7-6500U CPU with a

2.50 GHz × 4 speed, 16 GB of RAM, on Ubuntu 16.04 LTS.

To evaluate the performance of the EHEFT algorithm the application graphs that are generated

randomly, are considered. We have implemented and simulated three algorithms using the Python

programming language. Our simulator has five input parameters: the number of resources (i.e.,

processors) in the cloud, the number of DAG nodes (i.e., tasks), connections between tasks, resource

heterogeneity, and previous run statistics for each task

The input parameters that are defined to build the weighted DAG are:

• Number of computation nodes in the DAG (Number of DAG Tasks).

• β (Range percentage of computation costs on processors). It is the heterogeneity factor for

the processor speeds. A high β value causes higher heterogeneity and different computation

costs among processors, and a low β value indicates that the computation costs for a given

task are nearly equal among processors. The average computation cost of each task ni in a

given graph is selected randomly from a uniform distribution with range ,

where is the average computation cost of a given graph that is set randomly in the

algorithm. The computation cost of each task ni on each processor pj is randomly set from the

following range.

 (5.9)

• CCR (Communication to Computation Ratio). This metric defines the ratio of the sum of the

edge weights to the sum of the node weights for a given DAG. If a CCR value for a given DAG

is very low, then it can be considered as a computation intensive application.

For simplicity, constant values are set for the average computational and communication costs. The

simulator defines a set of virtual resources with heterogeneous processing powers, as well as current

computational workloads and communication costs for the given input DAG. The simulator is fed with

99

different input values to test variance of the algorithm in terms of makespan and runtime under

different conditions.

In our experiment, the following parameters with defined values are used:

• β = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

• Number of DAG Tasks = {5, 10, 15, 20, 25}

• Connectivity = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

• Number of Processors = {2, 3, 4, 5, 6}

Our experiments are run for each of the tasks in each of the processors. Such test runs were performed

to collect statistics for the execution times that were then used to calculate the minimum average

execution time for past runs of a given task on all cloud resources.

To avoid that this additional parameter biases the ranking function, a scaling parameter is used.

This scaling parameter determines the weight of the minimum average execution time for past runs

in the overall calculation of rank. For all compared algorithms, the simulation conditions were the

same.

We use the following performance metrics for our evaluation of the proposed approach.

5.5.1 Scheduling Length Ratio (SLR)

To evaluate a schedule for a single DAG, the most commonly used metric is the makespan. The

makespan represents the finish time of the last task in the scheduled DAG, as shown in Equation (5.3).

Considering that a large set of task graphs that have different properties is used, then the schedule

length should be normalized to a lower bound, which is known as the Schedule Length Ratio (SLR),

defined in Equation (5.10).

 (5.10)

The denominator in SLR metric is the minimum computation cost of the critical path tasks, represented

as CPMIN.

,min { }
j

i MIN

p Q i j
n CP

makespanSLR
wÎ

Î

=
å

100

Figures 5.3 - 5.6 show the makespan of the three algorithms calculated by the example task graph

and computation time matrix of the tasks in each processor of Figure 5.2. The calculation of the

makespan is performed for (a) Number of Tasks (Figure 5.3), (b) Connectivity (Figure 5.4), (c) Number

of Processors (Figure 5.5), and (d) Processor Range (Figure 5.6).

In Figure 5.3, the simulations are run for five different DAG nodes, with an increasing number of

nodes. As expected, the makespan increases with the number of nodes for each of the algorithms we

evaluated. EHEFT performs better than the other algorithms because it considers the heterogeneity

of resources when calculating the rank for a task. It assigns the execution of a task to a resource that

not only has the best present conditions to achieve the earliest finish time, but that has also shown to

do so in the past.

Figure 5.3: Makespan for number of tasks

Figure 5.4 shows that increasing the connectivity between nodes of the input DAG also increases

the makespan of the algorithms linearly. The higher the number of dependent tasks on the graph, the

more time it takes for the algorithm to assign and execute the tasks. Therefore, it is important to assign

tasks that are part of critical paths to resources that can execute them in the fastest manner. In

our simulations, we have put more load on the tasks in the critical path. Thus, the results indicate the

ability of EHEFT to assign such tasks to resources with highest processing power.

101

Figure 5.4: Makespan for connectivity

Figure 5.5 shows that increasing the number of processors and a constant node number for the

input DAG decreases the makespan. The improvement in performance of the EHEFT algorithm is due

to the variance in the calculation of the rank that the statistics of previous runs provide.

Figure 5.5: Makespan for number of processors

The main advantage of EHEFT over HEFT and CPOP is the processor range parameter Beta, as shown

in Figure 5.6. EHEFT considers the processing efficiency of a resource for a task, given its previous run

statistics. The performance of EHEFT improves with the increase of the processor range, because it is

102

the factor that makes the highest difference with respect to the average past execution time

parameter.

Figure 5.6: Makespan for processor range

In Figure 5.7, we present the SLR value for each of algorithms calculated from the number of nodes.

The graph shows that the SLR value for EHEFT is lower than for the HEFT and CPOP algorithms.

Figure 5.7: Scheduling length ratio

103

5.5.2 Runtime

The runtime metric represents the execution time to obtain the output of schedule for a given task

graph. The results for the runtimes of our performed experiments are shown in the graphs below.

Figures 5.8 – 5.11 show the runtimes of each of the algorithms calculated for the parameters (a)

Number of Tasks (Figure 5.8), (b) Connectivity (Figure 5.9), (c) Number of Processors (Figure 5.10), and

(d) Processor Range (Figure 5.11).

Figure 5.8 shows that for small numbers of DAG nodes the difference in runtime between EHEFT

and HEFT is small. The improvement in performance that the minimum average execution time of the

task for each resource gives is only apparent when the number of nodes in the input DAG increases.

Figure 5.8: Runtime for number of tasks

Figure 5.9 shows that increasing the connectivity between the nodes in the graph results in an

increased runtime for the algorithms. The small difference in performance between EHEFT and HEFT

is due to the difference in the handling of critical path tasks in the overall runtime. The CPOP algorithm

takes more time to execute due to its two-phase rank calculation.

104

Figure 5.9: Runtime for connectivity

As shown in Figure 5.10, task assignment and execution are performed in a faster manner with an

increasing number of simulated virtual resources, as indicated by the decrease in the runtimes of the

algorithms. The EHEFT algorithm gains an edge in performance due to its ability to assign the heavy

loaded tasks and the ones in the critical path to better performing resources.

Figure 5.10: Runtime for number of processors

Figure 5.11 shows that increasing the processor range improves the performance of all the

algorithms that we evaluated. Since the CPOP algorithm assigns only tasks on the critical path to

critical path processors, the EHEFT and HEFT algorithms show better results due to the fact that not

105

only critical path tasks may be assigned to high performance resources. Tasks that take more time to

process and that are not on the critical path of the graph are better assigned to resources through the

HEFT and EHEFT algorithms. The difference in performance between the EHEFT and HEFT algorithm

lies in the fact that EHEFT assigns tasks to resources that were better suited to execute such tasks in

the past.

Figure 5.11: Runtime for processor range

5.6. Summary

In this chapter, we have presented a novel task-scheduling algorithm for cloud environments, called

Experiential Heterogeneous Earliest Finish Time (EHEFT) algorithm. In EHEFT, we have modified the

rank calculation of the original HEFT algorithm by adding a parameter that specifies the minimum

average execution time of a task on each relevant resource. The EHEFT algorithm performs better than

the original HEFT and CPOP algorithms in terms of scheduling length ratio and runtime.

106

Part III.

Distributed Resource Allocation

107

 6

Distributed Resource Allocation
in Cloud Computing using Multi-
Agent Systems

6.1. Introduction

The virtualized infrastructure is a key component that enables a data center to serve multiple users

in an efficient, flexible and secure way. The cloud infrastructure must accommodate varying demands

within certain time constraints; hence, it requires powerful dynamic resource allocation methods.

The Infrastructure-as-a-Service (IaaS) model of cloud computing allocates resources in the form of

VMs that can be resized and live migrated at runtime [33].

The rapidly growing demand from hundreds of millions of end users for the use of Internet-scale

applications has caused cloud providers (such as Google, Amazon, and Microsoft) to operate large-

scale data centers around the world. These large-scale data centers consume a large amount of

energy. A large energy consumption leads to high costs and to high carbon emissions. Currently, data

centers that power Internet-scale applications consume about 1.3% of the worldwide electricity

supply, and this fraction is expected to grow to 8% by 2020 [31].

In recent years, a primary focus of research in the field of cloud infrastructures is to reduce energy

consumption and service level agreement (SLA) violations for efficiently managing resources.

Most of existing state-of-art VM resource allocation approaches are centralized, but a centralized

controller does not scale well for large cloud infrastructures, might represent a communication

bottleneck, and is a single point of failure in terms of reliability [57].

As well, some of the existing approaches for VM consolidation [32-35] have as their main objective

the energy efficiency and the reduction of SLA violations. For VM consolidation, these approaches

108

use live migration actions. Some authors have treated the VM consolidation process as an

optimization problem [36], taking into account constraints such as data center capacity and SLAs.

In contrast to the existing dynamic VM consolidation approaches presented above, in this chapter

we propose a distributed resource allocation approach based on multi-agent systems. Our approach

does not use static or adaptive thresholds, but it is based on the utility function model based on host

CPU utilization. Basing resource allocation decision on utility function optimization offers a flexible

resource allocation policy that is not present in the threshold- and rule-based policies. This means

that the core allocation algorithm, namely the utility function optimization mechanism, does not

need to change. Changing the form of the utility function can easily change the resource allocation

policy.

6.2. System Architecture

In this section, we discuss large-scale data center architectures consisting of m hosts and n virtual

machines running on each host. Since the workload and the CPU usage change over time, an efficient

approach for dynamic VM consolidation is needed.

Our work [40] focuses on two models of architectures that will be presented below. Figure 6.1 depicts

a two-level centralized architecture, consisting of a local agent called Host Agent and a central

controller called Global Agent. The tasks of each agent are described below:

• Host Agent (HA): is responsible for continuously monitoring the host’s CPU utilization and to

determine whether the host is in an overloaded or underloaded state. This information is

passed to the global agent that initiates live migration actions if needed. It is also responsible

for initiating local allocation actions by deciding about the CPU capacity (CAP) allocation to

each VM and resolving conflicts when the sum of the CAP values for all VMs is greater than

the total CPU capacity.

• Global Agent (GA): makes global resource allocation decisions to optimize the VM placement

in order to reduce the SLA violations and energy consumption. It gets the information from

the HA for a host’s status data, available CPU capacity, used CPU capacity, and the predicted

CPU utilization, and performs the appropriate live migration actions.

109

Figure 6.1: Centralized allocation architecture

Figure 6.2 shows a distributed architecture where the communication is performed between the HAs.

In this case, a HA decides to perform live migrations without activating any central controller or GA.

If the HA detects an overload or underload situation, it forwards a live migration request to another

randomly selected HA to find a host as a possible destination for the VM placement.

Figure 6.2: Distributed allocation architecture

6.3. Centralized and Threshold-Based Distributed Allocation Approaches

In this section, we describe a centralized resource allocation approach and a threshold-based

distributed resource allocation approach.

VMM

VM1

Host 1

Host
Agent1

VM2 VM3

Global Agent

VMM

VM1
Host

Agent2

VM2 VM3

Host 2

VMM

VM1

Host 1

Host
Agent1

VM2 VM3

VMM

VM1
Host

Agent2

VM2 VM3

Host 2

VMM

VM1

Host 3

Host
Agent3

VM2 VM3

VMM

VM1

Host 4

Host
Agent4

VM2 VM3

110

6.3.1 Centralized Allocation

The centralized allocation (CA) approach is based on the architecture shown in Figure 4.1, where the

communication is performed between the GA and the HAs. The HA uses historical data to detect

whether the host is in an overloaded or in an underloaded state. A host is considered as overloaded,

if the actual and the past three host CPU usage values exceed an upper threshold. A host is considered

as underloaded if the actual and the past three host CPU usage values are less than a lower threshold.

If a host is in one of these situations, then the GA takes a decision for VM live migration.

In a host overload situation, the VM that has the maximum average CPU utilization is selected. After

selecting the first VM, the host is checked again if it is still overloaded in order to proceed with the

selection of another VM. This process continues until the host is no longer overloaded. In a host

underload situation, all of its VMs are selected for migration in order to turn off the host.

The VM placement algorithm that allocates the VMs to hosts is based on the Best First Decreasing

(BFD) algorithm [12], a heuristic algorithm known for solving bin-packing problems.

6.3.2 Threshold-Based Distributed Allocation

A distributed resource allocation approach is suitable for large data centers where centralized

optimization complexity and single point of failure are important factors to consider. This approach

is based on the architecture shown in Figure 4.2 where each HA makes live migration decisions in

cooperation with other HAs.

To determine the host’s overloaded or underloaded state, upper and lower thresholds are used. In

this work, the lower threshold is set to 10% of the CPU capacity, and the upper threshold is calculated

as the total CPU capacity (100%) minus N*5%, where N is the number of VMs.

When the HA detects a host in an overloaded or under-loaded state, it makes a live migration request

to a randomly selected host, to serve as a destination for the VM placement. If the request is rejected

due to insufficient resource capacity, the HA randomly tries another host. If it fails to find a suitable

host, after trying a predefined number of times, it powers on a new host. The VM selection process

is the same as in the centralized approach.

111

6.4. Utility-Based Distributed Allocation Approach

To increase flexibility and to achieve a better overall performance in a data center, we propose a

novel Utility-based Distributed Allocation (UDA) approach. This approach is based on the architecture

shown in Figure 6.2.

Unlike the DA, to make VM live migration decisions and to detect a host’s overloaded or underloaded

state, the UDA approach is based on a utility function model. In Figure 4.3, the host utility function

model used in our approach is shown, based on host CPU utilization ranging from 0 to 100%. From

the graph it is evident that the best value (max of 1) of the utility function is at host CPU utilizations

of 70% and 0%. The 70% of CPU utilization is optimal, since the host is fully utilized but not

overloaded. The utility value is set to 1 also when the CPU utilization is 0%, with the idea to promote

the removal of VMs and host shutdown when the load is low. The goal of the HA is to initiate VM live

migration actions in order to maximize the utility function, resulting in optimal resource utilization.

According to the UDA approach during the monitoring process, a HA considers taking VM live

migration actions if the utility value is lower than 0.8, for 4 consecutive time intervals.

In this work, the value of 4 consecutive time intervals is the average VM live migration time. It is

estimated by averaging over all VM live migration times over several simulation experiments. The

reason is that in order to increase the stability of the approach, live migration actions are not started

immediately but only if low utility states persist longer than the migration time.

In this case, the HA should make a VM live migration request to a peer HA selected randomly.

Figure 6.3: The utility function model

112

In Figure 6.4, the communication scheme between source and destination host is illustrated.

Figure 6.4: Communication scheme between source and destination host

 The communication proceeds as follows. When the source HA senses that there is a low utility

state, it calls the start_decision() procedure. This procedure selects a destination host randomly and

sends a migration request message. The message contains all information needed by the destination

HA to make migration decisions, such as a list of VMs with their CPU utilization, free RAM capacity

etc.

 To mitigate any race conditions of receiving migration requests by other hosts, this procedure also

sets the busy_with_migration variable to true. After receiving a migration request, if

busy_with_migration is false, the receiving host sets it to true and calls the

receive_migration_request() procedure that is explained in Algorithm 1. This procedure makes

migration decision of migrating one VM from source to destination host or vice versa and notifying

the source host for the decision with a reply message. If the destination host is busy with processing

another migration request, it send a reply indicating the reason of request rejection as busy.

 The HA uses two threads, one for accepting requests and one for making migration decisions. This

is done for not blocking the sending HA for a reply. After receiving the reply, the source HA calls

receive_migration_reply() that is explained in Algorithm 2. Algorithm 1 is executed on the destination

host in response to a VM live migration request. This algorithm estimate, which VM should be

migrated and in which direction the maximum utility increase should be given.

Algorithm 1 receive_migration_request()

1: push_p = DO_NOTHING
2: utility_before = get_utility(source_h) + get_utility(dest_h)
3: for each VM in source_h.VM_list do

Destination HostSource Host

request

reply

start_decision()

receive_migration
_request()

receive_migration
_reply()

113

4: utility_after = get_utility(source_h_util - vm.get_avrg_util())+
 get_utility(dest_h.get_avrg_util(h) + vm.get_avrg_util());

5: utility_increase = utility_after - utility_before;
6: if (utility_increase > max_util_increase) &

(dest_h.get_free_ram() >= vm.ram) then
7: max_util_increase = utility_increase;
8: max_migrating_vm = vm;
9: push_p = PUSH_VM;
10: end if
11: end for
12: for each VM in dest_h.getVMList() do
13: utility_after = get_utility(source_h_util + vm.get_avrg_util())+

get_utility(dest_h.get_avrg_util(h) - vm.get_avrg_util());
14: utility_increase = utility_after - utility_before;
15: if (utility_increase > max_util_increase) &

(source_h.get_free_ram() >= vm.ram) then
16: max_util_increase = utility_increase;
17: max_migrating_vm = vm;
18: push_p = PULL_VM;
19: end if
20: end for
21: if max_util_increase > utility_diff_thr then
22: send.Reply(push_p, migrating_vm);
23: end if
24: else
25: send.Reply(DO_NOTHING, null);
26 busy_with_migration = false;
27: end

Utility_before is the sum of the source and destination host utility values before VM live migration.

Utility_after is the sum of the source and destination host utility values after VM live migration. The

increase of the host utility value as a result of VM live migration is defined through utility_increase.

The get.avrg_util() method gives the average CPU utilization of VMs, source and destination hosts,

calculated for the past 4 consecutive intervals. The utility increase should be greater than a

predefined utility_diff_thr threshold in order to take a VM migration action. This is done to increase

the stability of the approach and reduce unnecessary VM live migrations. The variable

busy_with_migration also is set to false on both source and destination hosts, when the VM live

migration process is finished.

114

Algorithm 2 is executed on the source host after receiving the response from the destination host.

In Algorithm 2, the push_pull variable indicates the direction of VM live migration. If its value is

DO_NOTHING, there is no live migration action because there is no increase in utility function, or the

destination host is busy with another migration process.

To differentiate between the cases, the variable reject is tested to check if the destination host is

busy with another migration. The busy_counter variable limits how many times to try other hosts if

previous hosts are busy. The overload_counter limits how many times to try other hosts if there are

no increases in utility.

Algorithm 2 receive_migration_reply()

1: if (push_pull == DO_NOTHING) & (reject == BUSY) then
2: if busy_counter != 0 then
3: start_decision();
4: busy_counter --;
5: end if
6: else
7: busy_counter = busy_counter_thr;
8: busy_with_migration = false;
9: end
10: else if push_pull == DO_NOTHING then
11: if overload_counter != 0 then
12: start_decision();
13: overload_counter --;
14: end if
15: else if (source_h.get_avrg_util(h) >

(source_h.getUpperThr(h))
16: new_h = host_power_on();
17: migrate_vm_to_host(source_h, new_h,

source_h.selectVM());
18: end if
19: else
20: busy_with_migration = false;
21: overload_counter = overload_counter_thr;
22: end
23: end if
24: else if push_pull == PUSH_VM then
25: migrate_vm_to_host(source_h, dest_h, migrating_vm);
26: end if
27: else if push_pull == PULL_VM then

115

28: migrate_vm_to_host(dest_h, source_h, migrating_vm);
29: end if

In both cases, the start_decision() is called to make a new migration request to another randomly

selected host. If a suitable host is not found for a number of trials, because there is no increase in

utility (the overload_counter variable reaches a threshold) and the source host is in an overloaded

state, then a new host is powered on. In this case, selectVM() is called to select the VM that should

be migrated from the source host to the new host.

If the value of the push_pull variable is PUSH_VM or PULL_VM, then it indicates a VM live migration

action from source to destination host or from destination to source host, respectively.

6.5. Experimental Results

In this section, we present experimental results of our proposed UDA approach compared to three

other approaches. The first one, called No Migration (NOM) approach, allocates CPU resources to

VMs locally, but does not perform live migration actions.

The second one is the Centralized Approach (CA), and the last approach is Distributed Allocation (DA),

as described in Section IV.

To have a controlled experimental environment and the possibility of repeated experimental runs,

we have developed a simple event-based cloud simulator. We consider data centers of different sizes

with the number of hosts varying from 100 to 700 and an initial allocation of 3 VMs per host. To

simulate VM workloads, CPU usage data of real VMs running in PlanetLab [37], is used.

Each VM runs one application with a variable workload. The experiment is run for 570-time intervals,

and the duration of a time interval is set to 5 seconds. The simulation experiment is run for four

different load levels called VLOW, LOW, HIGH and VHIGH. The load level represents the CPU usage

consumed by each VM. The load levels taken by multiplying the PlanetLab CPU usage values for each

time interval with a constant value are as follows: VLOW with 0.2, LOW with 1, HIGH with 2 and

VHIGH with 3. The experiment is repeated ten times for each combination of approach and load level.

We have defined four performance metrics for evaluation of the proposed approach, as discussed

below.

116

6.5.1 VM Sla Violation (VSV)

This metric represents the penalty of the cloud provider for violating the performance of the cloud

consumer VMs. The VM SLA violation happens if the difference between allocated CPU and CPU

usage of the VM is less than 5% of the CPU capacity for four consecutive intervals. The reason for this

metric is that the performance of an application is poor if the required CPU usage is near the allocated

CPU share.

Considering the VM SLA violation metric above, we have defined an upper threshold for host

overload detection, which is calculated dynamically depending on the number of VMs. To avoid a VM

SLA violation, each host must have more than 5% capacity above the CPU usage for each VM, so the

total free CPU capacity of the host should be more than N*5%, where N is the number of VMs. The

overload threshold is calculated as the total CPU capacity (100%) minus N* 5% [14]. For the underload

threshold, we used a fixed value of 10% of the CPU capacity.

In the results, we show the cumulative VSV (CVSV) value that is estimated as the sum of VSV values

of all VMs for the whole experimental time.

6.5.2 Energy Consumption (E)

This is an important metric, since the target of server consolidation in a data center is to reduce

energy consumption. The total energy consumption of the data center, measured in KWh, for the

whole experimental time is shown in the experimental results.

6.5.3 Number of VM Migrations

The process of live migration is costly because it takes a significant quantity of CPU processing on the

source host, traffic load during the communication between the source and destination host [39] and

can cause VM SLA violations.

6.5.4 Energy and VM Sla Violations (ESV)

This metric combines energy consumption (E) and cumulative VM SLA violation (CVSV) value in a

single metric:

 𝐸𝑆𝑉 = 𝐸 × 𝐶𝑉𝑆𝑉 (6.1)

To see the effect the load level has on the VM SLA violation, Figure 6.5 presents the cumulative VSV

117

value for each approach and the four load levels. For each approach, we notice that while the load

increases, the SLA violations are increased. From the results, we can see that for all load levels, the

UDA approach achieves the lowest CVSV value compared to the other approaches.

Figure 6.5: Cumulative VSV over all load levels

Figure 6.6 shows the energy consumption of the data center for the whole experimental time for

each approach over all load levels. It is evident that by increasing the load, the energy consumption

is increased for all approaches.

The UDA approach, despite consuming more energy than the CA and DA approaches, has smaller SLA

violations and therefore a lower ESV metric than other approaches, as shown in Figure 6.8.

Figure 6.6: Energy over all load levels

118

Figure 6.7 shows how the load levels affect the number of live migrations.

Figure 6.7: Number of live migrations over all load levels

It can be noticed that the number of live migrations of the UDA approach is significantly smaller than

CA and DA for low load levels (VLOW and LOW), while for high load levels (HIGH and VHIGH), the

number of live migrations of the UDA approach is smaller than DA but greater than the CA approach.

This is because for high load levels it needs more VM live migrations to achieve lower values of the

SLA violations and ESV metric.

Figure 6.8 shows the ESV metric over four load levels, where it is evident that the ESV metric is smaller

for the UDA approach than the other approaches for each load level.

Figure 6.8: ESV over all load levels

119

We have also estimated the ESV metric for different number of hosts, for all approaches and four

load levels. We have tested for 100, 300, 500 and 700 hosts.

In Figure 6.9, we show the ESV value for all load levels, such as (a) VLOW Load, (b) LOW Load, (c)

HIGH Load, and (d) VHIGH Load.

The UDA approach for all load levels achieves the smallest ESV value compared to the other

approaches.

(a)

(b)

120

 (c)

(d)

Figure 6.9: ESV per number of hosts: (a) VLOW load, (b) LOW load, (c) HIGH load, (d) VHIGH load

121

6.6. Summary

We have presented a multi-agent distributed approach for dynamic resource allocation in cloud

infrastructures based on utility function optimization. The advantage of our approach based on multi-

agent systems is that in each PM there is an agent who is responsible for making the decision to

initiate the live migration process of VMs from one PM to another PM.

Through our proposed approach, a centralized controller is avoided, which in a large cloud

infrastructure could be a communication bottleneck and a single point of failure. This would decrease

the overall reliability of the system.

Compared to other approaches, the utility-based distributed resource allocation approach shows

reduced VM SLA violations and minimized ESV metrics.

122

Part IV.

Conclusion

123

 7

Conclusion

This chapter summarizes our research contributions for resource allocation in cloud infrastructure as

well as presents future work.

7.1. Summary

Cloud computing as a computation model that supports virtualization technology has provided

great benefits to the IT infrastructure in general. These benefits are best observed by cloud providers

and consumers. Cloud customers can obtain the resources they need on demand, at optimal cost,

and with high performance, through a pay-as-you-go model. On the other hand, cloud providers

obtain efficient resource utilization and a significant reduction in operational and energy costs.

Therefore, to maintain these benefits for cloud consumers and cloud providers, adequate dynamic

resource allocation approaches are needed, specifically in virtual machine consolidation.

Although various VM resource allocation approaches have been proposed for cloud

environments, there are still open research challenges that require implementation of innovative

techniques in this direction. In this dissertation, several VM resource allocation approaches have

been presented as a way of addressing some of the drawbacks of existing approaches, with a focus

on the dynamic allocation of resources in cloud infrastructures.

In a cloud infrastructure, the dynamic consolidation of VMs through live migration is a

fundamental approach to reduce energy consumption and operational costs. More specifically, live

migration in a data center has many benefits, such as load balancing, manageability and

maintenance, minimum violation of the SLAs, energy management, improved performance and

reliability, improving utilization of resources and reducing management costs. Most of the existing

124

approaches for VM consolidation are based on low-level utilization metrics and thresholds, so they

have not guaranteed to deliver high performance of the applications for the cloud consumer and the

cost-benefits of the cloud provider. In the context of live migration, the approaches to detect if a PM

is overloaded or underloaded are based on short-term predictions. This means that they are based

on monitoring if the current or the predicted next value exceeds a specified threshold, to determine

whether a PM should be considered as overloaded or underload, respectively. Therefore, making

decisions to initiate live migration actions based on short-term predictions can lead to hasty

decisions, unnecessary live migration overhead, and stability issues.

In this dissertation, an approach to dynamically allocate resources to VMs in cloud infrastructures

has been presented. It combines local and global VM resource allocation strategies based on a multi-

agent resource architecture. In this approach, to detect whether a PM is overloaded or underloaded

is based on long-term resource usage predictions. In the context of this work, long-term predictions

mean predicting 7-time intervals ahead into the future. Based on this premise, a PM is declared as

overloaded if the current and the predicted total CPU usage of 7-time intervals ahead into the future

exceed an overload threshold. The same applies when a PM is declared as underloaded if the current

and the predicted total CPU usage of 7-time intervals ahead into the future are less than an underload

threshold. On the other side, a PM is declared as not overloaded if the current and the predicted

total CPU usage of 7-time intervals ahead into the future is less than the overload threshold. For long-

term predictions, a supervised machine learning approach based on Gaussian Processes is used.

Another important issue to note especially in long-term resource predictions is the fact that

predicting further into the future increases the prediction error and the uncertainty, thus diminishing

the benefits of long-term prediction. Based on this, we have also considered uncertainty as an

integral feature of long-term resource predictions. To consider the uncertainty of long-term

predictions, a probabilistic model of the prediction error is built online using the non-parametric

kernel density estimation method. The results show that the approach presented for dynamic

resource allocation which considers long-term predictions of resource demand and uncertainty of

predictions increases stability and overall performance in the cloud infrastructure.

A key function in cloud computing resource management is task scheduling, where the

application of effective task scheduling techniques can reduce task completion time, increase the

efficiency of resource utilization, increase the quality of services, and improve the performance of

the system. Since cloud computing delivers services over the Internet, service customers must submit

125

their request online, where each service has a number of costumers and also a number of tasks that

must be processed at a time. Therefore, it is imperative that systems have implemented scheduling

techniques and policies that consider certain parameters, such as the nature of the task, the size of

the task, the task execution time, the availability of resources, the task queue, and the load on the

resources. Thus, proper task scheduling may result in an efficient utilization of resources. The task

scheduling problem itself is NP-hard, so heuristic algorithms must be implemented to solve it. Based

on this, we have presented a task scheduling algorithm for cloud environments based on the

Heterogeneous Earliest Finish Time (HEFT) algorithm, called experiential HEFT (EHEFT). It considers

experiences with previous executions of tasks to determine the workload of resources. To realize the

EHEFT algorithm, we propose a new way of HEFT rank calculation to specify the minimum average

execution time of previous runs of a task on all relevant resources. Experimental results show that

our EHEFT algorithm performs better and is more efficient in terms of scheduling length ratio and

runtime rather than several well-known existing approaches.

The IaaS model of cloud computing allocates resources in the form of VMs that can be resized

and live migrated at runtime. Thus, for dynamic VM consolidation an important mechanism that

provides major benefits for data centers is live migration of VMs, from one PM to another PM. Live

migration of VMs enables the allocation of resources to running services without interruption during

the migration process. This is important, especially for services with particular quality of service (QoS)

requirements. In the context of VM resource allocation in most existing approaches, the problem lies

in the fact that they are based on centralized resource manager architectures. These architectures

are based on a central controller, which does not perform well for large cloud infrastructures, with

the possibility of a communication bottleneck, and is a single point of failure in terms of reliability. In

contrast to the existing dynamic VM consolidation approaches, we have presented a distributed

resource allocation approach based on multi-agent systems.

7.2. Future Work

To further improve the solutions proposed in this dissertation, we have identified several areas for

the future work. Based on experimental results, the distributed VM resource allocation approach

that uses the utility function based on multi-agent systems has resulted in better overall performance

compared to a centralized approach and threshold-based distributed approach. A distributed VM

126

resource allocation approach is suitable for large-scale cloud infrastructures and avoids the

drawbacks arising from the centralized approach in terms of single point of failure and

communication bottlenecks. In this distributed architecture based on multi-agent systems, on each

physical machine, there is an agent who is responsible for making the decisions for the live migration

of VMs from one PM to another PM. A future challenge to be investigated is how local agents with a

limited view should coordinate each other to achieve a global optimization objective.

For a distributed VM allocation approach, what can be further investigated is the development of an

accurate model that selects the best utility function to improve the reduction in energy consumption

in a data center. Another direction that can be investigated in terms of the model for the utility

function is the inclusion of other resources, such as memory and network I/O, since they have a

significant impact on the overall performance in the process of dynamic VM consolidation.

In the context of VM consolidation with a special emphasis on the live migration process, a challenge

is to detect when a PM is in an overloaded or underloaded state, in order to make the decision to

initiate the live migration process. Some of the existing approaches have based their prediction on

monitoring resource usage where the actual or the predicted next value exceeds specified thresholds,

i.e, the upper and lower threshold. Mostly, these approaches rely on live migration decisions based

on short-term predictions and this leads to unnecessary live migration overhead and stability issues.

Unlike existing approaches, we have based the live migration decisions on resource usage predictions

several steps ahead in the future, thus making long-term predictions. This increases the stability of

the live migration process. However, an interesting area of future work would be the investigation of

long-term predictions of the usage of multiple resources such as CPU, memory, and I/O bandwidth

and their interdependencies in allocation decisions.

To further optimize the chain of dynamic resource allocation processes and especially VM placement,

other factors such as network traffic and thermal issues should be considered. The process of VM

consolidation where the migration of VMs to PMs located in different racks should take place also

has network cost and VM traffic load. This network cost in a data center should not be neglected

because it can lead to higher SLA violations. Therefore, in order to reduce network traffic, more

efficient techniques and approaches with low computational complexity should be investigated.

These techniques based on network-aware and traffic-aware patterns should analyze the impact of

traffic and network topology inside a data center.

127

Another direction in which further research can be investigated and which is important for VM

consolidation is the thermal problem of computing resources. A significant portion of electrical

energy consumed by computing resources is converted into heat. Operation of devices at high

temperatures reduces their lifetimes and the availability and reliability of the system. Although

nowadays there are advanced cooling systems in modern data centers, however, for cloud providers

they are expensive to buy, costly to maintain, and they consume energy as well. Therefore, it is

necessary to develop thermal-aware VM consolidation techniques based on machine learning

methods that reduce the energy consumption of the devices in the data center, and at the same time

to reduce heat.

128

REFERENCES

[1] Y. O. Yazır, C. Matthews, R. Farahbod, ”Dynamic Resource Allocation in Computing Clouds
using Distributed Multiple Criteria Decision Analysis,“ In: IEEE 3rd International Conference
on Cloud Computing, IEEE, pp. 91-98, 2010.

[2] N. B. Ruparelia, ”Cloud Computing,” In: The MIT Press, Book, 2016.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, ”Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th
Utility,” In: Future Generation Computer Systems, Volume 25, Issue 6, pp. 599-616, 2009.

[4] P. Mell and T. Grance, ”The NIST Definition of Cloud Computing,” In: Recommendations of
the National Institute of Standards and Technology, Information Technology Laboratory,
Special Publication 800-145, 2011.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. Katz, ”Above the Clouds: A Berkeley
View of Cloud Computing,” In: UC Berkeley Reliable Adaptive Distributed Systems
Laboratory White Paper, 2009.

[6] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to Cloud Computing,” In: Chapter 1,
Book: Cloud Computing Principles and Paradigms. Edited by: Rajkumar Buyya, James
Broberg, Andrzej Goscinski, Wiley, 2011.

[7] S. Murugesan and I. Bojanova, ”Cloud Computing: An Overview,” In: Chapter 1, Book:
Encyclopedia of Cloud Computing, IEEE Press/WILEY, 2016.

[8] W. Stallings, ”Overview of Cloud Computing,” In: Chapter 2, Book: Cloud Computing
Security, Foundations and Challenges, edited by J. R. Vacca, CRC Press, Taylor & Francis
Group, 2017.

[9] National Institute of Standards and Technology, ”The NIST Cloud Computing Reference
Architecture,” In: Recommendations of the National Institute of Standards and
Technology, Information Technology Laboratory, Special Publication SP-500-292, 2011.

[10] Trusting the Cloud, ” Provides Cloud Audit Services,” In:
http://www.trustingthecloud.eu/joomla/, Accessed November 2017.

[11] Gartner, “Gartner Says Cloud Consumers Need Brokerages to Unlock the Potential of Cloud
Services,” In: http://www.gartner.com/it/page.jsp?id=1064712, Accessed November
2017.

[12] S. Nanda and T. Chiueh, ”A Survey on Virtualization Technologies,” In: Report: Department
of Computer Science, SUNY at Stony Brook, 2005.

[13] Redswitches, ”The Different Types of Virtualization in Cloud Computing – Explained,” In:
https://redswitches.com/blog/different-types-virtualization-cloud-computing-explained/,
Accessed November 2017.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer , I. Pratt and A.
Warfield, ”Xen and the Art of Virtualization,” In: SOSP '03 Proceedings of the Nineteenth

129

ACM Symposium on Operating Systems Principles, Pages 164-177, ACM, October 2003.

[15] IBM Knowledge Center, ”KVM Overview,” In:
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaat/liaatkvmover.htm,
Accessed November 2017.

[16] B. Jennings and R. Stadler, ”Resource Management in Clouds: Survey and Research
Challenges,” In: Journal of Network and Systems Management, Volume 23, Issue 3, pp.567-
619, Springer, 2014.

[17] M. Ullrich, J. Lassig and M. Gaedke, ”Towards Efficient Resource Management in Cloud
Computing: A Survey,” In: IEEE 4th International Conference on Future Internet of Things
and Cloud, IEEE, Austria, 2016.

[18] Q. Zhang, E. Gurses, R. Boutaba, and J. Xiao, ”Dynamic Resource Allocation for Spot
Markets in Clouds,” In: Proceeding in Hot-ICE'11 Proceedings of the 11th USENIX
Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services , ACM, 2011.

[19] A. Beloglazov, J. Abawajy and R. Buyya, “Energy-aware Resource Allocation Heuristics for
Efficient Management of Data Centers for Cloud Computing,” In: Future Generation
Computer Systems 28, pp. 755–768, 2012.

[20] D. Deng, K. He, Y. Chen, ”Dynamic Virtual Machine Consolidation for Improving Energy
Efficiency in Cloud Data Centers,” In: 4th International Conference on Cloud Computing
and Intelligence Systems (CCIS), pp. 366-370, 2016.

[21] A. Beloglazov and R. Buyya, ”Optimal Online Deterministic Algorithms and Adaptive
Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines
in Cloud Data Centers,” In: Concurrency And Computation: Practice And Experience, pp.
1397-1420, Volume 24, Issue 13, 2012.

[22] M. A. H. Monil and R. M. Rahman, ”VM Consolidation Approach based on Heuristics, Fuzzy
Logic, and Migration Control,” In: Journal of Cloud Computing: Advances, Systems and
Applications, Springer, 2016.

[23] M. R. Chowdhury, M. R. Mahmud, R. M. Rahman, “Implementation and Performance
Analysis of Various VM Placement Strategies in CloudSim,” In: Journal of Cloud Computing:
Advances, Systems and Applications, Springer, 2015.

[24] W.S. Cleveland, C. Loader, “Smoothing by Local Regression: Principles and Methods,” In:
Statistical Theory and Computational Aspects of Smoothing, pp. 10-49, Physica-Verlag
Heidelberg, 1996.

[25] X. Fu, Ch. Zhou, ”Virtual Machine Selection and Placement for Dynamic Consolidation in
Cloud Computing Environment,” In: Frontiers of Computer Science, Volume 9, Issue 2, pp.
322–330, April 2015.

[26] A. Verma, G. Dasgupta, T.K. Nayak, P. De, R. Kothari, ”Server Workload Analysis for Power
Minimization using Consolidation,” In: USENIX'09 Proceedings of the 2009 Conference on
USENIX Annual Technical Conference, June 2009.

130

[27] Z. Usmania and S. Singh,”A Survey of Virtual Machine Placement Techniques in a Cloud
Data Center,” In: Procedia Computer Science, Volume 78, pp. 491 – 498, , Elsevier, 2016.

[28] M. Masdari, S. S. Nabavi, V. Ahmadi, ”An Overview of Virtual Machine Placement Schemes
in Cloud Computing,” In: Journal of Network and Computer Applications, Volume 66, pp.
106–127, May 2016.

[29] M. A. Haque Monil, R. Qasim, R. M. Rahman, ”Energy-Aware VM Consolidation Approach
using Combination of Heuristics and Migration Control,” In: Ninth International Conference
on Digital Information Management, pp. 74–79, IEEE, 2014.

[30] A. Mosa and N. W. Paton, ”Optimizing Virtual Machine Placement for Energy and SLA in
Clouds using Utility Functions,” In: Journal of Cloud Computing: Advances, Systems and
Applications, 2016.

[31] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, ”It's not Easy being Green,” In: Proceedings
of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp. 211-222, ACM, 2012.

[32] G.B. Fioccola, P. Donadio, R. Canonico, and G. Ventre, ”Dynamic Routing and Virtual
Machine Consolidation in Green Clouds,” In: 8th International Conference on Cloud
Computing Technology and Science (CloudCom), IEEE, pp. 590-595, 2016.

[33] A. Murtazaev and S. Oh, “Sercon: Server Consolidation Algorithm using Live Migration of
Virtual Machines for Green Computing,” In: IETE Technical Review, Volume 28, Issue 3, pp.
212-231, Taylor & Francis, 2011.

[34] E. Feller, C. Morin, and A. Esnault, ”A Case for fully Decentralized Dynamic VM
Consolidation in Clouds,” In: Cloud Computing Technology and Science (CloudCom), 4th
IEEE International Conference, pp. 26-33, IEEE, December 2012.

[35] M. Marzolla, O. Babaoglu and F. Panzieri, ”Server Consolidation in Clouds through
Gossiping,” In: World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE
International Symposium, IEEE, pp. 20-24, June 2011.

[36] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, ”Sandpiper: Black-Box and Gray-Box
Resource Management for Virtual Machines,” In: Computer Networks, Volume 53, Issue
17, pp. 2923–2938, Elsevier, December 2009.

[37] K. Park and V. S. Pai, ” CoMon: A Mostly-Scalable Monitoring System for PlanetLab,” In:
ACM SIGOPS Operating Systems Review, Volume 40, Issue 1, pp. 65-74, ACM, 2006.

[38] D. Minarolli, A. Mazrekaj and B. Freisleben, ”Tackling Uncertainty in Long-Term Predictions
for Host Overload and Underload Detection in Cloud Computing,” In: Journal of Cloud
Computing: Advances, Systems and Applications, Springer, 2017.

[39] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T. Hieu, and H. Tenhunen, ”Energy-
aware VM Consolidation in Cloud Data Centers Using Utilization Prediction Model,” In: IEEE
Transaction on Cloud Computing, Volume XX, No. X, IEEE, 2016.

[40] A. Mazrekaj, D. Minarolli and B. Freisleben, ”Distributed Resource Allocation in Cloud

131

Computing using Multi-Agent Systems,” In: Telfor Journal, pp.110-115, 2017.

[41] National Institute of Standards and Technology, ”The NIST Cloud Computing Standards
Roadmap,” In: Recommendations of the National Institute of Standards and Technology,
Information Technology Laboratory, Special Publication SP-500-292, 2011.

[42] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose and R. Buyya, ”CloudSim: A Toolkit
for Modelling and Simulation of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms,” In: Journal Software-Practice & Experience, Volume 41,
Issue 1, pp. 23-50, ACM, 2011.

[43] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose and R. Buyya, ”CloudSim: A Novel
Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services,”
In: http://www.cloudbus.org/cloudsim/, Accessed November 2017.

[44] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, ”Sandpiper: Black-box and Gray-Box
Resource Management for Virtual Machines,” In: Computer Networks, Volume 53, Issue
17, pp. 2923-2938, Elsevier, 2009.

[45] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov,
“The Eucalyptus Open-Source Cloud-Computing System,” In: Cluster Computing and the
Grid, 9th IEEE/ACM International Symposium, pp. 124–131, 2009.

[46] G. Khanna, K. Beaty, G. Kar, and A. Kochut, ”Application Performance Management in
Virtualized Server Environments,” In: Proceedings 10th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2006), pp. 373–381, IEEE, 2006.

[47] Z. Gong and X. Gu, ”PAC: Pattern-driven Application Consolidation for Efficient Cloud
Computing,” In: Proceedings IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 24-33, IEEE, 2010.

[48] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori, ”Dynamic Load Management of
Virtual Machines in Cloud Architectures,” In: CloudComp, Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, Volume 34,
pp. 201-214, Springer, 2009.

[49] F. Farahnakian, A. Ashraf, P. Liljeberg, T. Pahikkala, J. Plosila, I. Porres, and H. Tenhunen,
“Energy-aware Dynamic VM Consolidation in Cloud Data Centers using Ant Colony
System,” In: 7th International Conference on Cloud Computing (CLOUD),pp. 104–111, IEEE,
2014.

[50] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Placement of Virtual Machines for Managing
SLA Violations,” In: Integrated Network Management, 10th IFIP/IEEE International
Symposium, pp. 119–128, IEEE, 2007.

[51] Zh. Gong, X. Gu, J. Wilkes, ”Press: Predictive Elastic Resource Scaling for Cloud Systems,”
In: Proceedings of International Conference on Network and Service Management
(CNSM’10), pp. 9–16, IEEE, 2010.

[52] Zh. Shen, S. Subbiah, X. Gu, and J. Wilkes, ”Cloudscale: Elastic Resource Scaling for Multi-
Tenant Cloud Systems, ” In: Proceedings of the 2nd ACM Symposium on Cloud Computing,

132

pp. 1–14, ACM, 2011.

[53] S. Islam, J. Keung, K. Lee, and A. Liua, ”Empirical Prediction Models for Adaptive Resource
Provisioning in The Cloud,” In: Future Generation Computer Systems, Volume 28, Issue 1,
pp. 155–162, 2012.

[54] S. Khatua, M. M. Manna, and N. Mukherjee, ”Prediction-Based Instant Resource
Provisioning for Cloud Applications,” In: Proceedings of the IEEE/ACM 7th International
Conference on Utility and Cloud Computing, IEEE Computer Society, pp. 597–602, 2014.

[55] F. Qiu, B. Zhang, and J. Guo, ”A Deep Learning Approach for VM Workload Prediction in the
Cloud,” In: 17th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, pp. 319–324, IEEE, 2016.

[56] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, H. Tenhunen, ”Multi-Agent based
Architecture for Dynamic VM Consolidation in Cloud Data Centers,” In: 40th Euromicro
Conference on Software Engineering and Advanced Applications, pp. 111–118, IEEE,
August 2014.

[57] F. Farahnakian, P. Liljeberg, T. Pahikkala, J. Plosila and H. Tenhunen, ”Hierarchical VM
Management Architecture for Cloud Data Centers,” In: 6th International Conference on
Cloud Computing Technology and Science, pp. 306-311, IEEE, 2014.

[58] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu, “Mistral: Dynamically Managing
Power, Performance, and Adaptation Cost in Cloud Infrastructures,” In: Distributed
Computing Systems (ICDCS), 30th International Conference on, pp. 62–73, IEEE, 2010.

[59] S.A. Baset, ”Cloud Service Level Agreement,” In: Chapter 36, Book: Encyclopedia of Cloud
Computing, IEEE Press/WILEY, 2016.

[60] A. Sahai, S. Graupner, V. Machiraju and V. Moorsel, “Specifying and Monitoring Guarantees
in Commercial Grids through SLA,” In: Proceedings Cluster Computing and the Grid
(CCGrid), 3rd IEEE/ACM International Symposium, IEEE, 2003.

[61] E. Feller, L. Rilling, and Ch. Morin, ”Snooze: A Scalable and Autonomic Virtual Machine
Management Framework for Private Clouds,” In: 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 482-489, IEEE/ACM, 2012.

[62] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant Algorithms for Discrete Optimization,”
In: Artificial Life Journal, Volume 5, Issue 2, pp. 137-172, ACM, April 1999.

[63] F. Farahnakian, ”Energy and Performance Management of Virtual Machines Provisioning,
Placement and Consolidation,” In: PhD thesis, Turku, Finland, 2016.

[64] N. M. Seel, ”Encyclopedia of the Sciences of Learning,” In: Mathematical Models, Springer-
Verlag, 2012.

[65] I. Hwang and M. Pedram, “Hierarchical Virtual Machine Consolidation in a Cloud
Computing System,” In: Proceedings of IEEE Sixth International Conference on Cloud
Computing, pp. 196–203, 2013.

[66] G. E. I. Selim, M. A. El-Rashidy N. A. El-Fishawy, “An Efficient Resource Utilization

133

Technique for Consolidation of Virtual Machines in Cloud Computing Environments,” In:
33rd National Radio Science Conference, pp. 316-324, IEEE, 2016.

[67] Sh. Di, D. Kondo, and W. Cirne, ”Host Load Prediction in a Google Compute Cloud with a
Bayesian Model,” In: SC '12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, IEEE, USA, 2012.

[68] J. J. Prevost, K. Nagothu, B. Kelley and M. Jamshidi, ”Prediction of Cloud Data Center
Networks Loads Using Stochastic and Neural Models,” In: 6th International Conference
on System of Systems Engineering (SoSE), IEEE, USA, 2011.

[69] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and Deadline-Constrained
Provisioning for Scientific Workflow Ensembles in IaaS Clouds,” In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 1–11, 2012.

[70] P. Bailin, W. Yanping, L. Hanxi, Q. Jie, "Task Scheduling and Resource Allocation of Cloud
Computing Based on QoS," In: Advanced Materials Research, Volume 915-916, pp. 1382-
1385, 2014.

[71] K. Dubey, M. Kumar, S.C. Sharma, “Modified HEFT Algorithm for Task Scheduling in Cloud
Environment,” In: Procedia Computer Science, Volume 125, pp. 725-732, 2018.

[72] H. Arabnejad, J. G. Barbosa, “List Scheduling Algorithm for Heterogeneous Systems by an
Optimistic Cost Table,” In: IEEE Transactions on Parallel and Distributed Systems, Volume
25, Issue 3, 2014.

[73] J. Yu, R. Buyya, K. Ramamohanarao, “Workflow Scheduling Algorithms for Grid
Computing,” In: Metaheuristics for Scheduling in Distributed Computing Environments, pp.
173-214, Springer, 2008.

[74] L. Singh, Sarbjeet Singh, “A Survey of Workflow Scheduling Algorithms and Research
Issues,” In: International Journal of Computer Applications, Volume 74, Issue 15, July 2013.

[75] M. Choudhary, S. K. Peddoju, ”A Dynamic Optimization Algorithm for Task Scheduling in
Cloud Environment,” In: Journal of Engineering Research and Applications (IJERA), Volume
2, Issue 3, pp. 2564-2568, 2012.

[76] M. R. Garey, D. S. Johnson, ”Computers and Intractability; A Guide to the Theory of NP-
Completeness,” In: Book, 1979.

[77] S. Parsa, R. Entezari-Maleki, ”RASA: A New Task Scheduling Algorithm in Grid
Environment,” In: World Applied Sciences Journal, 7 (Special Issue of Computer & IT), pp.
152-160, 2009.

[78] O. M. Elzeki, M. Z. Reshad, M. A. Elsoud, ”Improved Max-Min Algorithm in Cloud
Computing,” In: International Journal of Computer Applications, Volume 50, Issue 12, 2012.

[79] Y. Hu, J. Wong, G. Iszlai, M. Litoiu, ”Resource Provisioning for Cloud Computing,” In:
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON, pp.
101-111, ACM, 2009.

134

[80] S. Pandey, L. Wu, S. M. Guru, R. Buyya, ”A Particle Swarm Optimization-based Heuristic for
Scheduling Workflow Applications in Cloud Computing Environments,” In: 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA),
IEEE, 2010.

[81] W. N. Chen and J. Zhang, “An Ant Colony Optimization Approach to a Grid Workflow
Scheduling Problem with Various QoS Requirements,” In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, Volume 39, Issue 1, pp. 29-43,
2009.

[82] E. K. Byun, Y. S. Kee, J. S. Kim, S. Maeng, “Cost Optimized Provisioning of Elastic Resources
for Application Workflows,” In: Future Generation Computer Systems, Volume 27, Issue 8,
pp. 1011–1026, 2011.

[83] M. A. Rodriguez, R. Buyya, ”Deadline Based Resource Provisioning and Scheduling
Algorithm for Scientific Workflows on Clouds,” In: IEEE Transactions on Cloud Computing,
Volume 2, Issue 2, 2014.

[84] L.C. Canon, E. Jeannot, R. Sakellariou and W. Zheng, ”Comparative Evaluation of the
Robustness of DAG Scheduling Heuristics,” In: Grid Computing - Achievements and
Prospects, edited by Sergei Gorlatch, Paraskevi Fragopoulou and Thierry Priol, pp. 73-84,
Springer, 2008.

[85] E. Ilavarasan, P. Thambidurai, ”Low Complexity Performance Effective Task Scheduling
Algorithm for Heterogeneous Computing Environments,” In: Journal of Computer Sciences,
Volume 3, Issue 2, pp. 94-103, 2007.

[86] H. Topcuoglu, S. Hariri, Wu, W.Min-You, “Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing,” In: IEEE Transactions on Parallel and
Distributed Systems, Volume 13, Issue 3, pp. 260–274, 2002.

[87] H. El-Rewini and T.G. Lewis, ”Scheduling Parallel Program Tasks onto Arbitrary Target
Machines,” In: Journal of Parallel and Distributed Computing, Volume 9, Issue 2, pp. 138-
153, 1990.

[88] G. C. Sih and E.A. Lee, ”A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architecture,” In: IEEE Transactions on Parallel and
Distributed Systems, Volume 4, Issue 2, pp. 175-187, 1993.

[89] M. A. Iverson, F. Ozguner and G. J. Follen, ”Parallelizing Existing Applications in a
Distributed Heterogeneous Environment”, In: 4th Heterogeneous Computing Workshop
(HCW 95), pp. 93-100, 1995.

[90] H. Oh and S. Ha, ”A Static Scheduling Heuristic for Heterogeneous Processors, ” In: Euro-
Par. 96 Parallel Processing, Volume 1124 of Lecture Notes in Computer Science, pp. 573-
577, 1996.

[91] A. Radulescu and A. J. C. van Gemund, ”Fast and Effective Task Scheduling in
Heterogeneous Systems,” In: 9th Proceedings Heterogeneous Computing Workshop
(HCW), pp. 229-238, 2000.

135

[92] H. Topcuoglu, S. Hariri and M.-Y. Wu, ”Task scheduling algorithms for heterogeneous
processors,” In: 8th Proceedings Heterogeneous Computing Workshop (HCW), pp. 3-14,
1999.

[93] T. Hagras and J. Janecek, ”A Simple Scheduling Heuristic for Heterogeneous Computing
Environments,” In: Proceedings Second International Symposium on Parallel and
Distributed Computing, pp. 104-110, 2003.

[94] E. Ilavarasan, P. Thambidurai and R. Mahilmannan, ”High Performance Task Scheduling
Algorithm for Heterogeneous Computing System,” In: Distributed and Parallel Computing,
Volume 3719 of Lecture Notes in Computer Science, pp. 193-203, 2005.

[95] M.I. Daoud and N. Kharma, ”A High Performance Algorithm for Static Task Scheduling in
Heterogeneous Distributed Computing Systems,” In: Journal of Parallel and Distributed
Computing, Volume 68, Issue 4, pp. 399-409, 2008.

[96] L.F. Bittencourt, R. Sakellariou and E.R.M. Madeira, ”DAG Scheduling Using a Lookahead
Variant of the Heterogeneous Earliest Finish Time Algorithm,” In: 18th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP’10),
pp. 27-34, 2010.

[97] Y. Cui and Zh. Xiaoqing, ”Workflow Tasks Scheduling Optimization Based on Genetic
Algorithm in Clouds,” In: 3rd IEEE International Conference on Cloud Computing and Big
Data Analysis (ICCCBDA), IEEE, pp.6-10, 2018.

[98] Sh. Mittal and A. Katal, ”An Optimized Task Scheduling Algorithm in Cloud Computing,” In:
6th International Conference on Advanced Computing, IEEE, pp.197-202, 2016.

[99] Ch.-Y. Liu, Ch.-M. Zou, P. Wu, ”A Task Scheduling Algorithm based on Genetic Algorithm
and Ant Colony Optimization in Cloud Computing,” In: 13th International Symposium on
Distributed Computing and Applications to Business, Engineering and Science, IEEE, pp. 68-
72, 2014.

[100] M. B. Gawali and S. K. Shinde, ”Task Scheduling And Resource Allocation in Cloud
Computing using a Heuristic Approach,” In: Journal of Cloud Computing: Advances,
Systems and Applications, Volume 7, Issue 4, Springer, 2018.

[101] A. Choudhary, M. C. Govil, G. Singh, L. K. Awasthi, E. S. Pilli and D. Kapil, ”A Critical Survey
of Live Virtual Machine Migration Techniques,” In: Journal of Cloud Computing: Advances,
Systems and Applications, 6(23), Springer, 2017.

[102] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, ”Live
Migration of Virtual Machines," In: Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation (NSDI’05), Volume 2, pp. 273–286, 2005.

[103] Anja Strunk, ”Costs of Virtual Machine Live Migration: A Survey,” In: IEEE Eighth World
Congress on Services, pp. 323-329, 2012.

[104] M. Hines and K. Gopalan, “Post-copy based live virtual machine migration using adaptive
pre-paging and dynamic self-ballooning,” In: Proceedings of ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE’09), Washington, 2009.

136

[105] S. Sharma and M. Chawla, ”A technical Review for efficient virtual machine migration,” In:
International Conference on Cloud & Ubiquitous Computing & Emerging Technologies,
IEEE, pp.20-25, 2013.

[106] S. Venkatesha, S. Sadhu, S. Kintali, ”Survey of Virtual Machine Migration Techniques,” In:
University of California, Santa Barbara, 2014.

[107] H. Liu, C.-Z. Xu, H. Jin, J. Gong, X. Liao, ”Performance and Energy Modeling for Live
Migration of Virtual Machines,” In: Proceedings of the 20th International Symposium on
High Performance Distributed Computing, ACM, California, pp. 171–182, 2011.

[108] S. Akoush, R. Sohan, A. Rice, A.W. Moore, A. Hopper, ”Predicting the Performance of Virtual
Machine Migration,” In: 18th Annual IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, IEEE, Miami Beach, pp. 37–
46, 2010.

[109] R. Yadav, W. Zhang, K. Li, C. Liu, M. Shafiq, and N. K. Karn, ”An Adaptive Heuristic for
Managing Energy Consumption and Overloaded Hosts in a Cloud Data Center,” In: Wireless
Networks: The Journal of Mobile Communication, Computation and Information, pp. 1-15,
Springer, 2018.

[110] S. Esfandiarpoor, A. Pahlavan, and M. Goudarzi, ”Structure-aware Online Virtual Machine
Consolidation for Data Center Energy Improvement in Cloud Computing,” In: Computers &
Electrical Engineering, Volume 42, pp. 74-89, 2015.

[111] P. Bryk, M. Malawski, G. Juve, E. Deelman, ”Storage-Aware Algorithms for Scheduling of
Workflow Ensembles in Clouds,” Journal of Grid Computing, Volume 14, Issue 2, pp. 359-
378, 2016.

[112] R. Yadav, W. Zhang, H. Chen, and T. Guo, ”Mums: Energy-Aware VM Selection Scheme for
Cloud Data Center,” In: 28th International Workshop on Database and Expert Systems
Applications (DEXA), IEEE, pp. 132–136, 2017.

[113] S. M. Moghaddam, S. F. Piraghaj, and M. O’Sullivan, ”Energy-efficient and SLA-aware
Virtual Machine Selection Algorithm for Dynamic Resource Allocation in Cloud Data
Centers,” In: 11th International Conference on Utility and Cloud Computing (UCC), IEEE,
pp. 103-113, 2018.

[114] S. Y. Z. Fard, M. R. Ahmadi, and S. Adabi, ”A Dynamic VM Consolidation Technique for QoS
and Energy Consumption in Cloud Environment,” In: The Journal of Supercomputing,
Volume 73, Issue 10, pp. 4347–4368, 2017.

[115] H. Wang, H. Tianfield, ”Energy-aware Dynamic Virtual Machine Consolidation for Cloud
Data Centers,” In: IEEE Access, Volume 6, IEEE, pp. 15259–15273, 2018.

[116] X.-F. Liu, Zh.-H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, ”An Energy Efficient Ant Colony
System for Virtual Machine Placement in Cloud Computing,” In: IEEE Transactions on
Evolutionary Computation, Volume 22, Issue 1, IEEE, pp. 1-15, 2018.

[117] M. A. Khan, A. Paplinski, A. M. Khan M. Murshed, and R. Buyya, ”Dynamic Virtual Machine
Consolidation Algorithms for Energy-Efficient Cloud Resource Management: A Review,” In:

137

Sustainable Cloud and Energy Services, Springer, pp. 135-165, 2018.

[118] A. Varasteh and M. Goudarzi, ”Server Consolidation Techniques in Virtualized Data
Centers: A Survey,” In: Systems Journal, Vol. 11, Issue 2, IEEE, pp. 772-783, 2017.

[119] M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, ”Toward Energy-Efficient Cloud
Computing: Prediction, Consolidation, and Overcommitment,” In: IEEE Network, Volume
29, Issue 2, pp. 56–61, 2015.

[120] A. Mazrekaj, D. Minarolli, and B. Freisleben, ”Dynamic Resource Allocation in Cloud
Environments,” In: Information & Communication Technologies at Doctoral Student
Conference (ICT@DSC), Thessaloniki, Greece, 9-11 May 2018.

[121] A. Mazrekaj, A. Sheholli, D. Minarolli, and Bernd Freisleben, “The Experiential
Heterogeneous Earliest Finish Time Algorithm for Task Scheduling in Clouds,” In: 9th
International Conference on Cloud Computing and Services Science (CLOSER 2019),
Heraklion, Crete, Greece, 2-4 May 2019.

[122] W. Hu, A. Hicks, L. Zhang, E.M. Dow, V. Soni, H. Jiang, R. Bull, J.N. Matthews, ”A Quantitative
Study of Virtual Machine Live Migration,” In: Proceedings of the 2013 ACM Cloud and
Autonomic Computing Conference on - CAC ’13, Florida, USA.

[123] D.W. Scott, ”Multivariate Density Estimation: Theory, Practice, and Visualization,” In: Wiley
Series in Probability and Mathematical Statistics: Applied Probability and Statistics Section,
Wiley, Brisbane, New York, 1992.

[124] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, ”The Weka Data
Mining Software: An update, ” In: ACM SIGKDD Explorations Newsletter, Volume 11, No.1,
2009.

[125] Commons Math: The Apache Commons Mathematics Library,
http://commons.apache.org/ [Accessed 2017].

[126] A. Mazrekaj, Sh. Nuza, M. Zatriqi, V. Alimehaj. “An Overview of Virtual Machine Live
Migration Techniques,” In: International Journal of Electrical and Computer Engineering
(IJECE), Vol. 9, No. 5, 2019.

[127] Y. Samadi, M. Zbakh, C. Tadonki, “E-HEFT: Enhancement Heterogeneous Earliest Finish
Time algorithm for Task Scheduling based on Load Balancing in Cloud Computing,” In:
International Conference on High Performance Computing & Simulation (HPCS), pp. 601-
609, Orleans, France, 2018.

[128] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, H. Tenhunen, “Utilization Prediction
Aware VM Consolidation Approach for Green Cloud Computing,” In: 8th International
Conference on Cloud Computing, IEEE, pp. 381-388, NY, USA, 2015.

[129] S. Ismaeel, R. Karim, A. Miri, “Proactive Dynamic Virtual-Machine Consolidation for Energy
Conservation in Cloud Data Centres,” In: Journal of Cloud Computing: Advances, Systems
and Applications 7(10), Springer, 2018.

[130] S. Ismaeel, A. Miri, “Using ELM Techniques to Predict Data Centre VM Requests,” In:

138

Proceedings of the 2nd IEEE International Conference on Cyber Security and Cloud
Computing, IEEE, pp. 80–86, New York, 2015.

[131] R. Karim, S. Ismaeel, A. Miri, “Energy-efficient Resource Allocation for Cloud Data Centres
using a Multiway Data Analysis Technique,” In: International Conference on Human-
Computer Interaction. Theory, Design, Development and Practice, Volume 9731, Springer-
Verlag, pp. 577–585, New York, 2016.

[132] R. Karim, C. Ding, A. Miri, “End-to-end Performance Prediction for Selecting Cloud Services
Solutions,” In: IEEE Symposium on Service-Oriented System Engineering, IEEE, pp. 69–77,
San Francisco, USA, 2015.

[133] G. F. Shidik, Azhari, K. Mustofa, “Evaluation of Selection Policy with Various Virtual Machine
Instances in Dynamic VM Consolidation for Energy Efficient at Cloud Data Center,” In:
Journal of Networks, Volume 10, No. 7, pp. 397–406, 2015.

[134] A. Song, W. Fan, W. Wang, J. Luo, Y. Mo, “Multi-objective Virtual Machine Selection for
Migrating in Virtualized Data Centers,“ In: Joint International Conference on Pervasive
Computing and the Networked World. Pervasive Computing and the Networked World.
Springer, pp. 426–438, 2013.

[135] S. S. Masoumzadeh, H. Hlavacs, “Integrating VM Selection Criteria in Distributed Dynamic
VM Consolidation using Fuzzy Q-Learning,“ In: Proceedings of the 9th International
Conference on Network and Service Management (CNSM), IEEE, pp. 332–338, Zurich,
Switzerland, 2013.

[136] M. Monil, R. Rahman, “Fuzzy Logic based Energy Aware VM Consolidation,” In:
International Conference on Internet and Distributed Computing Systems (IDCS). Lecture
Notes in Computer Science, Volume 9258. Springer, pp. 31–38, 2015.

[137] J. T. Tsai, J. C. Fang, J.H. Chou, “Optimized Task Scheduling and Resource Allocation on
Cloud Computing Environment using Improved Differential Evolution Algorithm, “In:
Computer and Operation Research, Volume 40, No. 12, pp. 3045–3055, 2013.

[138] S. T. Maguluri, R. Srikant, “Scheduling Jobs with Unknown Duration in Clouds,” In:
IEEE/ACM Transactions on Networking, Volume 22, No. 6, pp. 1938–1951, 2014.

[139] Ch. Cheng, J. Li, Y. Wang, “An Energy-saving Task Scheduling Strategy based on Vacation
Queuing Theory in Cloud Computing,” In: Tsinghua Science and Technology, Volume 20,
No. 1, pp. 28–39, 2015.

[140] W. Lin, Ch. Liang, J. Z. Wang, R. Buyya, “Bandwidth-aware Divisible Task Scheduling for
Cloud Computing,” In: Software: Practice and Experience, Volume 44, No.2, pp. 163–174,
2014.

[141] X. Liu, Y. Zha, Q. Yin, Y. Peng, L. Qin, “Scheduling Parallel Jobs with Tentative Runs and
Consolidation in the Cloud,” In: Journal of Systems and Software, Volume 104, No. C,
pp.141–151, 2015.

[142] A. E. Keshk, A. B. El-Sisi, M.A. Tawfeek, “Cloud Task Scheduling for Load Balancing Based
on Intelligent Strategy,” In: I. J. Intelligent Systems and Applications, Volume 6, No. 6, 2014.

139

[143] G. Shamsollah, M. Othman, W. J. Leong, M. R. A. Bakar, “Multi-Criteria Based Algorithm for
Scheduling Divisible Load,” In: Proceedings of the first international conference on
advanced data and information engineering (DaEng-2013), Springer, pp. 547–554, 2014.

[144] H. Goudarzi, M. Ghasemazar, M. Pedram M, “SLA-Based Optimization of Power and
Migration Cost in Cloud Computing,” In: Proceedings of 12th IEEE/ ACM International
Symposium on Cluster, Cloud and Grid Computing, IEEE, pp. 172-179, Ottawa, Canada,
2012.

[145] Sh. Ghanbari, M. Othman, M. R. A. Bakar, W. J. L Leong, “Multi-Objective Method for
Divisible Load Scheduling in Multi-Level Tree Network,” In: Future Generation Computer
Systems, Volume 54, pp. 132–143, 2016.

[146] B. Radojevic, M. Zagar, “Analysis of Issues with Load Balancing Algorithms in Hosted (Cloud)
Environments,” In: Proceedings of the 34th International Convention MIPRO, pp. 416–420,
2011.

[147] Zh. Xiaomin, L. T. Yang, H. Chen, J. Wang, S. Yin, X. Liu, “Real-Time Tasks-Oriented Energy-
Aware Scheduling in Virtualized Clouds,“ In: IEEE Transactions on Cloud Computing,
Volume 2, Issue 2, IEEE, pp. 168–180, 2014.

